
Citation: Ou, Y.; Niu, B.

Dual-Channel Feature Enhanced

Collaborative Filtering

Recommendation Algorithm. Future

Internet 2023, 15, 215. https://

doi.org/10.3390/fi15060215

Academic Editors: María N. Moreno

García and Fernando De la Prieta

Pintado

Received: 24 May 2023

Revised: 11 June 2023

Accepted: 13 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Dual-Channel Feature Enhanced Collaborative Filtering
Recommendation Algorithm
Yuanyou Ou and Baoning Niu *

College of Information and Computer, Taiyuan University of Technology, Jinzhong 030600, China;
ouyuanyou0437@link.tyut.edu.cn
* Correspondence: niubaoning@tyut.edu.cn

Abstract: The dual-channel graph collaborative filtering recommendation algorithm (DCCF) sup-
presses the over-smoothing problem and overcomes the problem of expansion in local structures only
in graph collaborative filtering. However, DCCF has the following problems: the fixed threshold of
transfer probability leads to a decrease in filtering effect of neighborhood information; the K-means
clustering algorithm is prone to trapping clustering results into local optima, resulting in incomplete
global interaction graphs; and the impact of time factors on the predicted results was not considered.
To solve these problems, a dual-channel feature enhanced collaborative filtering recommendation
algorithm (DCFECF) is proposed. Firstly, the self-attention mechanism and weighted average method
are used to calculate the threshold of neighborhood transition probability for each order in local
convolutional channels; secondly, the K-means++ clustering algorithm is used to determine the
clustering center in the global convolutional channel, and the fuzzy C-means clustering algorithm
is used for clustering to solve the local optimal problem; then, time factor is introduced to further
improve predicted results, making them more accurate. Comparative experiments using normalized
discounted cumulative gain (NDCG) and recall as evaluation metrics on three publicly available
datasets showed that DCFECF improved by up to 2.3% and 4.1% on two metrics compared to DCCF.

Keywords: recommendation algorithm; collaborative filtering; transition probability threshold; fuzzy
c-means clustering; time factor

1. Introduction

The rapid development of the internet has led to the rapid growth of different types
of data, resulting in the problem of “information overload”. It is not easy for users to
efficiently select the content they are interested in when facing massive amounts of net-
work data. The recommendation model [1] is a reliable and effective technique that can
recommend content of interest to users based on their historical behavior records, thereby
alleviating the problem of “information overload”. Collaborative filtering is widely used in
recommendation models, which is a recommendation algorithm based on user behavior
data. In recent years, driven by the demand for relationship modeling in recommendation
task scenarios, building collaborative filtering recommendation models [2,3] using graph
convolution networks has become mainstream.

However, the collaborative filtering model based on graph convolution networks has
the following problems: Firstly, graph convolution networks have the over-smoothing
problem [4,5]. The node features transferred to the deep layer gradually become similar,
and the preference features in the recommendation process become homogeneous, which
reduces the model performance. Secondly, the adjacency matrix is used to express the
interaction relationship between users and items, focusing on the feature aggregation [6] of
the local neighborhood, and it is impossible to mine the interaction pattern between nodes
through the overall structure of the graph.

The existing solutions represented by the dual-channel graph collaborative filtering
recommendation algorithm [7] (DCCF), on the one hand, introduce the transition matrix, set

Future Internet 2023, 15, 215. https://doi.org/10.3390/fi15060215 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15060215
https://doi.org/10.3390/fi15060215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-7924-3384
https://doi.org/10.3390/fi15060215
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15060215?type=check_update&version=1

Future Internet 2023, 15, 215 2 of 19

the transition probability threshold, determine the neighborhood range of nodes, and adopt
a single-layer network structure to suppress the over-smoothing problem in the graph
convolution network iteration process; on the other hand, clustering is used to construct
a global interaction graph, model the potential interaction between nodes, supplement
global information, and overcome the problem that the interaction information is limited
to the local neighborhood.

The above solution has the following problems: firstly, the transition probability
threshold is set to a fixed value and does not dynamically change the transition probability
threshold based on different samples, which will reduce the accuracy of the prediction
results; secondly, the K-means clustering algorithm used by DCCF for clustering is sensitive
to the initial clustering center, which makes it easy for the clustering result to fall into local
optimum and is not conducive to the construction of a comprehensive global interaction
graph; finally, users’ interests will change over time and DCCF does not consider the impact
of time factors on user preferences.

To solve the above problems, this paper proposes a dual-channel feature enhanced
collaborative filtering recommendation algorithm (DCFECF). The contributions of this
paper are summarized as follows:

1. In the local convolutional channel, we introduce a self-attention mechanism to calcu-
late the weight value of each edge and use the weighted average method to calculate
the threshold of neighborhood transition probability for each order. The transfer
probability threshold is converted from a fixed value to a dynamic value.

2. In the global convolutional channel, we use the K-means++ clustering algorithm
to determine the clustering center and then use the fuzzy C-means clustering algo-
rithm to replace the K-means clustering algorithm for clustering, solving the local
optimal problem and enabling the construction of a more comprehensive global
interaction graph.

3. At the same time, we introduce a time factor into the model and modify the existing
time factor expression to further improve the predicted results.

2. Related Work
2.1. Collaborative Filtering Model Based on Graph Convolution Network

In the process of building the collaborative filtering model, the graph convolution
network is introduced: on the one hand, by taking users and items as nodes, users’ scoring,
browsing, and other behaviors in history can be seen as the “connecting edge” between
the two, and graph structure can be used to express data, which is closer to the real
scene; on the other hand, graph convolutional networks have strong advantages in mining
connections between nodes and learning to represent graphical data. Introducing the graph
convolution network into collaborative filtering can further improve the performance of
algorithm recommendation.

The collaborative filtering model based on the graph convolution network has the
over-smoothing problem and the interaction information is limited to the local neighbor-
hood. The GC-MC model [8] introduces graph convolution operation for the first time,
using neighbor node information as a vector representation of user nodes and item nodes.
The NGCF model [9] utilizes a multi-layer graph convolutional network to extract feature
information. Both GC-MC and NGCF introduce graph convolutional networks into the
process of vector embedding, utilizing the added feature information of neighboring nodes
to enhance the model’s expression ability, but there is still an over-smoothing problem.
The LR-GCCF model [10] is simplified on the basis of the NGCF model, removing some
components that may affect recommendation performance and incorporating residual
connections to solve the over-smoothing problem. The DHCF model [11] constructs hyper-
graphs, expresses node neighborhood information, and proposes new graph convolution
operations. The DCCF model divides the vector expression update process between user
nodes and item nodes into local convolutional channels and global convolutional channels,
performing different information aggregation tasks. In the local convolutional channel,

Future Internet 2023, 15, 215 3 of 19

a single-layer network structure is used to suppress the over-smoothing problem in the
iterative process of graph convolutional networks; in the global convolution channel, K-
means clustering is used to construct the global interaction graph to supplement the global
information and overcome the problem that the interaction information is limited to the
local neighborhood.

2.2. Clustering Algorithm

Clustering algorithms are an unsupervised learning method, which are divided into
hard clustering and soft clustering. The membership degree of the hard clustering algorithm
only has two values: 0 and 1. The K-means clustering algorithm [12] is one of the classic
algorithms. The K-means++ clustering algorithm is improved on the basis of the K-means
clustering algorithm.

Soft clustering algorithms divide data by similarity and categorize data with high
similarity. The fuzzy C-means (FCM) [13] clustering algorithm is a distance-based soft
clustering algorithm that assigns each data point to multiple cluster centers and assigns a
membership degree to each data point.

Assuming user dataset U = {u1, u2, . . . , un}with m features, set as ui = {ri1, ri2, · · · , rim}.
If users are divided into k clusters with a cluster center of Z = {z1, z2, · · · , zk}, a fuzzy
matrix W =

(
wij
)

n×k can be constructed, where wij ∈ [0, 1] represents the membership
degree of the i-th user belonging to the j-th cluster. FCM uses the sum of squared errors
function as the objective function to minimize the objective function and divide n users
into k clusters. The definition formula and constraint conditions of the objective function
are shown in Equations (1) and (2).

Jk(W, Z) =
n

∑
a=1

k

∑
b=1

(wab)
ρ‖ua − zb‖2 (1)

k

∑
b=1

wab = 1, a = 1, 2, 3, · · · , n (2)

where ρ is the fuzzy index, usually taken as 2. Using the Lagrangian multiplier method,
calculate the extremum of the objective function, obtain the partial derivatives of variables
wij and zj, respectively, and obtain the membership degree and cluster center according to
Equations (3) and (4).

wab =

 ‖ua − zb‖
2

ρ−1

k
∑

j=1
‖ua − zj‖

2
ρ−1

−1

(3)

zb =

n
∑

i=1
(wab)

ρui

n
∑

i=1
(wab)

ρ
(4)

Before using FCM, we need to determine the fuzzy index ρ and the limiting iteration
index eps. After obtaining the final membership matrix, the partition of the cluster is
obtained through membership, and users are assigned to the cluster with the highest
membership, resulting in the highest similarity among users in the same user cluster.

3. DCFECF Model
3.1. Model Prediction Process and Framework

Compared with the DCCF model, the DCFECF model adds the introduction of the
time factor. Its prediction process is shown in Figure 1. Firstly, the initial graph struc-
ture is exported from the historical interaction record, including the bipartite interactive
graph between users and items, and the initialization vector expression of nodes in the

Future Internet 2023, 15, 215 4 of 19

graph. Secondly, local and global convolutional channels are used to express the interaction
relationship between higher-order nodes. Then, in the form of vector inner product, inter-
actions that were not observed in historical interaction records are predicted. Finally, the
time factor is added to the interactive prediction to further improve the prediction results.

Future Internet 2023, 15, x FOR PEER REVIEW 4 of 21

()

()

n

ab i

i
b n

ab

i

w u

z

w

1

1

=

=

=

 (4)

Before using FCM, we need to determine the fuzzy index and the limiting itera-

tion index eps . After obtaining the final membership matrix, the partition of the cluster

is obtained through membership, and users are assigned to the cluster with the highest

membership, resulting in the highest similarity among users in the same user cluster.

3. DCFECF Model

3.1. Model Prediction Process and Framework

Compared with the DCCF model, the DCFECF model adds the introduction of the

time factor. Its prediction process is shown in Figure 1. Firstly, the initial graph structure

is exported from the historical interaction record, including the bipartite interactive graph

between users and items, and the initialization vector expression of nodes in the graph.

Secondly, local and global convolutional channels are used to express the interaction re-

lationship between higher-order nodes. Then, in the form of vector inner product, inter-

actions that were not observed in historical interaction records are predicted. Finally, the

time factor is added to the interactive prediction to further improve the prediction results.

Figure 1. The prediction process of DCFECF.

Based on the above analysis, the structure of the DCFECF model is shown in Figure

2, which is mainly divided into three parts: the local convolutional channel, the global

convolutional channel, and the interactive prediction module.

Figure 1. The prediction process of DCFECF.

Based on the above analysis, the structure of the DCFECF model is shown in Figure 2,
which is mainly divided into three parts: the local convolutional channel, the global
convolutional channel, and the interactive prediction module.

Future Internet 2023, 15, x FOR PEER REVIEW 5 of 21

Figure 2. The model framework of DCFECF.

Where the local convolutional channel aggregates the feature information in the local

neighborhood structure, it uses a state transition matrix to determine the high-order

neighborhood range of nodes. By using the self-attention mechanism and the weighted

average method, the threshold of the neighborhood transition probability of each order is

obtained. Then, a single-layer graph convolutional network is used to aggregate local in-

formation between user nodes and item nodes, thereby suppressing the over-smoothing

problem. In the global convolution channel, the fuzzy C-means clustering algorithm opti-

mized by K-means++ clustering is used for clustering, and a global interaction graph is

constructed. According to the feature similarity between nodes, neighbor nodes with sim-

ilar features are selected for user and item nodes from the global perspective to supple-

ment global information and overcome the problem that interaction information is limited

to the local neighborhood. In the interaction prediction stage, local and global information

are integrated, and the inner product of the vector representations of user nodes and item

nodes is used to predict unknown interactions. Finally, the time factor is added to the

interactive prediction to further improve the prediction results.

3.2. Local Convolutional Channel

Like the setting of DCCF, DCFECF introduces the transition matrix [14] into the pro-

cess of graph convolution operation, and the transition matrix is defined as Equation (5).

P D A
−= 1

 (5)

A is the adjacency matrix of bipartite interactive graph, and D is the degree ma-

trix of the adjacency matrix. Each component
ij

P in the first-order transition matrix

P represents the transition probability of node i taking one step to reach node j . For

the higher-order transition matrix ()k
P k 2 , each component k

ij
P of the matrix

represents the probability of node i taking k steps to reach node j .

In the local convolution channel, when determining the neighborhood range of user

nodes and item nodes in the graph, the first-order neighborhood is determined by the

adjacency matrix A . For high-order neighborhoods with order k greater than or equal

to 2, the transition probability threshold kP for each order is set based on the

Figure 2. The model framework of DCFECF.

Where the local convolutional channel aggregates the feature information in the
local neighborhood structure, it uses a state transition matrix to determine the high-order
neighborhood range of nodes. By using the self-attention mechanism and the weighted
average method, the threshold of the neighborhood transition probability of each order
is obtained. Then, a single-layer graph convolutional network is used to aggregate local
information between user nodes and item nodes, thereby suppressing the over-smoothing

Future Internet 2023, 15, 215 5 of 19

problem. In the global convolution channel, the fuzzy C-means clustering algorithm
optimized by K-means++ clustering is used for clustering, and a global interaction graph is
constructed. According to the feature similarity between nodes, neighbor nodes with similar
features are selected for user and item nodes from the global perspective to supplement
global information and overcome the problem that interaction information is limited to
the local neighborhood. In the interaction prediction stage, local and global information
are integrated, and the inner product of the vector representations of user nodes and item
nodes is used to predict unknown interactions. Finally, the time factor is added to the
interactive prediction to further improve the prediction results.

3.2. Local Convolutional Channel

Like the setting of DCCF, DCFECF introduces the transition matrix [14] into the process
of graph convolution operation, and the transition matrix is defined as Equation (5).

P = D−1 A (5)

A is the adjacency matrix of bipartite interactive graph, and D is the degree matrix of
the adjacency matrix. Each component [P]ij in the first-order transition matrix P represents
the transition probability of node i taking one step to reach node j. For the higher-order
transition matrix Pk(k ≥ 2), each component

[
Pk
]

ij
of the matrix represents the probability

of node i taking k steps to reach node j.
In the local convolution channel, when determining the neighborhood range of user

nodes and item nodes in the graph, the first-order neighborhood is determined by the
adjacency matrix A. For high-order neighborhoods with order k greater than or equal to
2, the transition probability threshold Pk

Θ for each order is set based on the corresponding
transition matrix to determine the range of neighborhoods for each order of the node.

The transition probability threshold in DCCF is set to a fixed value of 0.5, and the
neighborhood information filtered for different sample data is different. In fact, the process
of determining the range of neighborhoods of different orders is progressive step by step.
For example, when calculating the range of second-order neighborhoods, it is performed on
the basis of first-order neighborhoods. The filtered second-order neighborhoods have strong
correlation with the first-order neighborhoods, and nodes with high transfer probabilities
are selected into the second-order neighborhoods. It can be considered that first-order
neighborhood nodes play a certain role in determining the nodes of the second-order
neighborhoods, and the weight values of the connecting edges of the two nodes become the
basis for determining the strength of the correlation between the two nodes. By introducing
the self-attention mechanism, the weight value of each edge can be obtained. By combining
the weight value with the transfer probability, the weighted average value is obtained,
which is the transfer probability threshold within the neighborhood of that order.

Based on the above analysis, the next step is to determine the transition probability
threshold Pk

Θ for each order. Firstly, the self-attention mechanism [15] is used to obtain the
weight values of each edge. The self-attention mechanism can independently calculate
attention weights at each position, which has advantages over traditional attention mech-
anisms. Assuming there are a total of m items, taking user u’s interaction with items i as
an example to calculate the weight value, where Query represents different items and Key
represents the user’s rating on the items. The specific process is as follows.

Step 1: Input source information. Enter the rating information X = {x1, x2, . . . , xm}
for m items.

Step 2: Calculate attention weight distribution. In the basic attention mechanism,
Key = Value = X, calculate the attention distribution using Equation (6).

αl = so f tmax(s(keyl , q)) = so f tmax(s(Xl , q)) =
es(Xl ,q)

m
∑

l=1
es(Xl ,q)

(6)

Future Internet 2023, 15, 215 6 of 19

where αl is the distribution of attention weights, representing the importance of infor-
mation. s(Xl , q) is the attention scoring mechanism, and we use the scaled dot product
model as the scoring mechanism. The calculation formula is shown in Equation (7), and
so f tmax(s(Xl , q)) represents that s(Xl , q) has been normalized:

s(Xl , q) =
xT

l q
√

d
(7)

Step 3: Weighted summation of information. From αl , we can obtain the degree of
attention to l-th information when querying q and then weigh and sum each value of Value
according to Equation (8).

Attention(q, X) =
m

∑
l=1

αlXl (8)

Therefore, the weight value of user u‘s evaluation of m items is expressed as αul ,
l = 1, 2, . . . , m.

Furthermore, if the weights of x1, x2, . . . , xn are ω1, ω2, . . . , ωn, respectively, the for-
mula for calculating the weighted average x of these n numbers is shown in Equation (9):

x =
x1ω1 + x2ω2 + · · ·+ xnωn

ω1 + ω2 + · · ·+ ωn
(9)

Assuming that the upper limit of the neighborhood order of user node u is M, the
process of determining the transition probability threshold Pk

Θ(2 ≤ k ≤ M) for each order
is listed in Algorithm 1:

Algorithm 1: Calculation of transition probability threshold Pk
Θ for the of user node u in each

order

Input: User-Item initialization bipartite interaction graph
Output: Transition probability threshold Pk

Θ for each order
1. Calculate the transfer matrix Pk of each order, obtain the weight value α of each connecting
edge through the self-attention mechanism, and determine the first-order neighborhood range of
user node u.
2. for k from 2 to M do
3. Identify all k-order nodes in the bipartite interaction graph, that is, all nodes that can reach user
node u through k connecting edges.
4. For each k-order node, identify the nodes connected to it in the k− 1 order neighborhood, and
obtain the weight value α of the connecting edges between the two nodes.
5. Combine the weight value α with the transfer probability of k-order nodes to obtain the
weighted average value, which is the k-order transition probability threshold Pk

Θ.
6. end for
7. return Pk

Θ

The following content continues the setting of neighborhood information aggregation
methods in DCCF. If the component

[
Pk
]
ij ≥ Pk

Θ in the transfer matrix exists, then there
is a reachable path between node i and node j in the corresponding k-order neighbor-
hood. Taking user node u and item node i as examples, the aggregation method of their
corresponding neighborhood information is shown in Equations (10) and (11).

xN(u)−k
=

1√∣∣∣N(u)−k

∣∣∣ ∑
i∈N(u)−k

1√∣∣∣N(i)−k

∣∣∣ xi (10)

xN(i)−k
=

1√∣∣∣N(i)−k

∣∣∣ ∑
u∈N(i)−k

1√∣∣∣N(u)−k

∣∣∣ xu (11)

Future Internet 2023, 15, 215 7 of 19

where k is the order of the neighborhood, N(·)− k is the k-th order neighborhood of the
node, and |N(·)− k| is the number of neighboring nodes within the k-th neighborhood of
the node. In each order of neighborhood, the feature information of neighboring nodes is
weighted and accumulated. 1/

√
|N(u)− k| and 1/

√
|N(i)− k| are attenuation coefficients,

which play a normalization role. By integrating neighborhood information of each order
through mean aggregation, local neighborhood features of nodes are obtained.

xN(u)
=

1
k

(
xN(u)−1

+ xN(u)−2
+ · · ·+ xN(u)−k

)
(12)

xN(i)
=

1
k

(
xN(i)−1

+ xN(i)−2
+ · · ·+ xN(i)−k

)
(13)

Finally, the output of the local convolutional channel is shown in Equations (14) and (15).

xlocal
u = xu + xN(u)

(14)

xlocal
i = xi + xN(i)

(15)

where xu and xi represent the characteristics of user node u and item node i, respectively. In
addition, xN(·) represents local neighborhood features. Combining node features and local
neighborhood information of nodes, the calculation results of local convolutional channels
are obtained.

3.3. Global Convolutional Channel

The fuzzy C-means clustering algorithm has strong scalability and can handle large-
scale data. Compared to the K-means clustering algorithm, this algorithm integrates the
essence of fuzzy theory and can provide more flexible clustering results. However, the
fuzzy C-means clustering algorithm randomly selects the initial clustering centers, and
different clustering centers will affect the convergence of the membership function and
still fall into local optima. The K-means++ clustering algorithm is improved on the basis
of the K-means clustering algorithm to ensure the uniformity of the clustering centers. If
the K-means++ clustering algorithm is used to determine the initial clustering center of
the fuzzy C-means clustering algorithm, and then the fuzzy C-means clustering algorithm
is used for clustering, it not only solves the problem of easily falling into local optima
but also improves the clustering effect, thereby constructing a more comprehensive global
interaction graph.

In this section, we continue the setting of the global interaction graph and the in-
formation aggregation method within the global neighborhood in DCCF. In the global
convolutional channel, a global interaction graph Gglobal is constructed using clustering
based on the vector features of user nodes and item nodes. By using a fuzzy C-means
clustering algorithm optimized based on K-means++ for clustering, if two nodes are filtered
into the same category, a connecting edge is added between the two nodes to obtain a
global interaction graph Gglobal .

In the local convolutional channel, the neighborhood feature information of each
node is obtained. In order to reflect the structure of the nodes, the features of the nodes
themselves are concatenated with the first-order neighborhood features:

XC = concat(X, LX) (16)

where L is the Laplacian matrix of adjacency matrix A. Based on this, a node feature
matrix XC with first-order neighborhood information is obtained, and during the clustering
process, user nodes and item nodes are treated as nodes of the same type for further
classification. When using the fuzzy C-means clustering algorithm, the fuzzy index ρ is set

Future Internet 2023, 15, 215 8 of 19

to 2, and the iteration limit index eps is set to 0.0005. The process of constructing the global
interaction graph Gglobal is listed in Algorithm 2:

Algorithm 2: Construction of global interaction graph Gglobal

Input: XC with first-order neighborhood feature information
Output: Global interaction graph Gglobal
1. Randomly select one node from all nodes as the first clustering center, and use the K-means++
clustering algorithm to obtain k clustering centers.
2. Based on XC with first-order neighborhood feature information, calculate the distance between
each node and k cluster centers, calculate the membership degree according to Equation (3),
obtain the initial membership matrix of the fuzzy C-means clustering algorithm, and calculate the
objective function value according to Equation (1).
3. Obtain the final membership matrix using the fuzzy C-means clustering algorithm.
4. for each node in XC do
5. Based on the feature vector XC[node] of the current node node, the final membership matrix is
used to obtain the membership degree of each cluster node belonging to each cluster center.
6. Sort according to the degree of membership, and classify the current node node into the
category with the highest degree of membership.
7. Add all other nodes belonging to the category as neighboring nodes in the global neighborhood
Gglobal [node] of current node node.
8. end for
9. returnGglobal

The clustering results obtained from the algorithm process also require secondary
filtering, that is, for the neighborhoods of all nodes, a fixed number of neighboring nodes
with the closest feature performance are selected for each node within its category. Taking
user node u and item node i as examples, their information aggregation in the global
neighborhood is shown in Equations (17) and (18):

xN(u)−global
=

1√∣∣∣N(u)−global

∣∣∣ ∑
i∈N(u)−global

1√∣∣∣N(i)−global

∣∣∣ xi (17)

xN(i)−global
=

1√∣∣∣N(i)−global

∣∣∣ ∑
u∈N(i)−global

1√∣∣∣N(u)−global

∣∣∣ xu (18)

where xN(u)−global
and xN(i)−global

represent the global neighborhood characteristics of user
node u and item node i, respectively. N(·)− gloabl represents the global neighborhood
of the node, |N(·)− global| represents the number of neighboring nodes in the global
neighborhood, and 1/

√
|N(·)− global| is the attenuation coefficient, which plays a normal-

ization role. Then, the original features of the nodes and the global neighborhood features
are added to obtain the output of the global convolutional channel:

xglobal
u = xu + xN(u)−global

(19)

xglobal
i = xi + xN(i)−global

(20)

3.4. Time Factor Weighting

In the traditional collaborative filtering model, the similarity between users and the
real score of users are usually taken into account when predicting the score, while the
time factor is often ignored. In practical applications, users may no longer be interested in
items they were previously interested in, especially as the impact on predictions gradually
decreases over time. Therefore, a time factor is introduced to weight the score in order to
more accurately predict the user’s next visit.

Future Internet 2023, 15, 215 9 of 19

Among commonly used weighting functions, the Ebbinghaus forgetting curve and
logistic function are widely used in research. Wang Y.G. et al. [16] introduce the time factor
TF1, as shown in Equation (21), to improve the recommendation effect by considering
possible changes in user interest during different time periods. Yan H.G. et al. [17] combine
the Ebbinghaus forgetting curve with TF1 to address the issue of long user history intervals,
balance the scoring time difference, simulate changes in human interest, and optimize the
time factor TF1 to TF2, as shown in Equation (22).

f1(t) =
1

1 + e−(Ti−T0)
(21)

f2(t) =
1

1 + e−(
Ti−T0

Tn)
(22)

where Ti is the time corresponding to the user’s rating of item Ii, T0 is the time corre-
sponding to the user’s first item rating, and Tn is the total time the user has used the
recommendation system.

In time factor TF2, the consideration is to homogenize the time interval for each user’s
rating, assuming that the time interval for each user to rate the item is uniform. However,
in practical application scenarios, the time interval for user rating is not uniform because
user rating time exists in dense and non-dense areas [18]. That is to say, the level of user
memory for evaluation items over a period of time is not only related to the length of the
interval but also to the number of items evaluated by the user during that period. If the
number of item ratings accounts for a large proportion of the total number of item ratings
from the first time that user rated an item to the time that user rated item Ii, it is considered
that the user has a high level of memory during this period, and the time weight of the
scoring intensive area should be appropriately increased.

Therefore, this paper modifies the time factor TF2 and obtains the time factor TF3,
denoted as function f3(t), as shown in Equation (23):

f3(t) =
1

1 + e
−[λ· Ti−T0

Tn +(1−λ)·
NTi−T0
NTd−T0

]
(23)

where λ is a hyperparameter, which is used to balance the coefficient proportion of the
time interval factor and item scoring density factor. Td represents the time corresponding
to the user’s last item rating, NTi−T0 represents the number of item ratings given by the
user received during the time period from T0 to Ti, and NTd−T0 represents the total number
of item ratings the user received during the use of the recommendation system.

We add a density factor of the item score in TF2 to make the time factor expression
more reasonable and record function f3(t) as function f (t).

3.5. Interactive Prediction

This section continues the specific calculation method for interactive prediction in
DCCF and introduces time factors to further modify the scoring prediction expression. By
updating the feature processes of the local convolutional channel and the global convolu-
tional channel, the local and global features of the nodes are obtained, respectively. The
final vector expression of the nodes is obtained by adding the two parts of information.

xF
u = xlocal

u + xglobal
u (24)

xF
i = xlocal

i + xglobal
i (25)

Future Internet 2023, 15, 215 10 of 19

At this point, by inner product xF
u and xF

i , user u’s rating for item i is obtained.

yDCFECF(u, i) =
(

xF
u

)T
xF

i (26)

Meanwhile, due to the introduction of the time factor, the scoring prediction expression
has been further modified, and the final user u’s rating for item i is shown in Equation (27).

ŷDCFECF(u, i) = yDCFECF(u, i)· f (t) =
(

xF
u

)T
xF

i · f (t) (27)

3.6. Model Optimization

The model training process uses the paired BPR loss function to optimize parameters
and trains in a way that maximizes the gap between positive samples and negative samples:

lossBPR = ∑
(u,i,j∈o)

− lnσ
(
ŷui − ŷuj

)
(28)

O = {(u, i, j)
∣∣(u, i) ∈ O+, (u, j) ∈ O−

}
represents training data, which includes both

positive and negative samples in a 1:1 ratio. Each historical interaction record between
users and different items in the training set is treated as a positive sample, while negative
samples are randomly selected from each user item set that has not had any interaction.
σ(·) is the sigmoid activation function and uses the Adam optimizer to update and opti-
mize parameters.

4. Evaluation and Analysis
4.1. Experimental Setup
4.1.1. Experimental Dataset

We selected three publicly available datasets commonly used to evaluate recommen-
dation algorithms for the experiments. In each dataset, select 80% as the training set and
the remaining 20% as the test set. The dataset information is shown in Table 1.

Table 1. Description of the datasets.

Datasets Number of Users Number of Items Number of
Interactions

MovieLens-100K 943 1682 100,000
Gowalla 29,858 40,981 1,027,370
Yelp2018 31,668 38,048 1,561,406

4.1.2. Contrast Model

We selected four different network structures models, GC-MC, NGCF, LR-GCCF, and
DCCF, as performance references for comparative experiments.

GC-MC: Transforms the historical interaction records between users and items into
a bipartite graph format and uses a single-layer graph convolutional network to obtain
vector representations of users and items.

NGCF: Using multi-layer graph convolutional networks to expand locally, obtain
higher-order information, and update vector representations of users and items.

LR-GCCF: Improvements have been made to the NGCF model, simplifying model
design and removing some components that affect recommendation performance.

DCCF: Introduce a transition matrix and set a transition probability threshold to deter-
mine the neighborhood range of nodes, use a single-layer network structure to complete
the calculation, and use K-means clustering to construct a global interaction graph.

Future Internet 2023, 15, 215 11 of 19

4.1.3. Evaluation Index

We select two commonly used indicators for evaluating recommendation algorithms:
normalized discounted cumulative gain (NDCG@K) and recall (Recall@K), where @K rep-
resents K different items in the recommended list returned by the model when evaluating
the results. Generally, K is between 10 and 20. In these experiments, we set K = 10.

NDCG@K evaluates the ranking of the recommendation list obtained by the model.
The following is the calculation rule: in the recommendation list, the higher the correla-
tion between candidate items and the current user, the higher the evaluation score. The
calculation method is shown in Equations (29) and (30).

DCG@K =
K

∑
i=1

r(i)
log2(i + 1)

(29)

NDCG@K =
DCG@K
IDCG@K

(30)

where i is the position number in the recommendation list. r(i) represents the score of the
item in the i-th position. DCG@K is the total score of the candidate items in the current
recommendation list considering the sorting order factor. IDCG@K is the normalization
parameter, representing the maximum value that DCG@K can achieve.

Recall@K is the recall index of a recommendation list, which represents the correct
proportion of model predictions in real-world interactions. The calculation method is
shown in Equation (31):

Recall@K =
TP

TP + FN
(31)

where TP represents the number of positive samples predicted as positive samples in the
recommendation model, and FN represents the number of positive samples predicted as
negative samples in the recommendation model.

4.1.4. Experimental Environment and Parameter Settings

Experimental configuration: the graphics card is RTX2080TI; the processor is Intel (R)
Xeon (R) Bronze 3104; memory is 32 GB; the operating system is Windows 10 LTSC; the
model is coded based on the deep-learning framework PyTorch 1.7.0; the programming
language is Python.

The paired BPR loss function is used to optimize all models in the experiment. In terms
of parameter settings, the training batch size is fixed at 1024. In the global convolutional
channel, it is necessary to construct the global interaction graph through clustering. Due to
differences in the size of the three datasets, the number of clusters on the three datasets is
set to {20, 100, 100}, and the learning rate is selected from {0.0001, 0.0005, 0.001, 0.005}. The
hyperparameter, which has a great impact on the performance of the model, adopts the way
of setting corresponding hyperparameter sensitivity experiments to verify its reasonable
value: in the local convolution channel, experiments are carried out when the highest
neighborhood order is {1, 2, 3, 4}, respectively; in the global convolutional channel, the
number of neighboring nodes is selected in {10, 20, 30, 40, 50}; in the time factor expression,
parameters λ are selected in {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

4.2. Experimental Analysis
4.2.1. Sensitivity Experiment of Hyperparameter

(1) The Highest Neighborhood Order in Local Convolutional Channels

We set the number of neighboring nodes in the global convolutional channel to 20
and the parameter λ value to 0.6. By adjusting the highest neighborhood order in the
local convolutional channel, we conducted experiments on three sets of datasets based
on evaluation indicators Recall@10 and NDCG@10. The experimental results are shown
in Figure 3.

Future Internet 2023, 15, 215 12 of 19
Future Internet 2023, 15, x FOR PEER REVIEW 14 of 21

1 2 3 4

0.2340

0.2345

0.2350

0.2355

0.2360

0.2365

0.2370

1 2 3 4

0.692

0.694

0.696

0.698

0.700

0.702

0.704

0.706

0.708

0.710

1 2 3 4
0.1178

0.1179

0.1180

0.1181

0.1182

0.1183

0.1184

0.1185

0.1186

0.1187

1 2 3 4
0.3031

0.3032

0.3033

0.3034

0.3035

0.3036

0.3037

0.3038

0.3039

0.3040

1 2 3 4
0.0324

0.0325

0.0326

0.0327

0.0328

0.0329

0.0330

0.0331

0.0332

0.0333

1 2 3 4

0.1208

0.1210

0.1212

0.1214

0.1216

0.1218

0.1220

R
ec

al
l@

1
0

The highest neighborhood order

MovieLens-100K Dataset

N
D

C
G

@
1

0

The highest neighborhood order

MovieLens-100K Dataset

R
ec

al
l@

1
0

The highest neighborhood order

Gowalla Dataset

N
D

C
G

@
1

0
The highest neighborhood order

Gowalla Dataset

R
ec

al
l@

1
0

The highest neighborhood order

Yelp2018 Dataset

N
D

C
G

@
1

0

The highest neighborhood order

Yelp2018 Dataset

Figure 3. Model performance under different neighborhood orders.

From Figure 3, it can be seen that the performance of the model gradually improves

with the increase in neighborhood order. Except for the MovieLens-100K dataset, it per-

forms best when the highest neighborhood order is three. Therefore, the highest neigh-

borhood order of the local convolutional channel is set to three.

(2) The Number of Neighboring Nodes in Global Convolutional Channels

We set the highest neighborhood order of the local convolutional channel to three

and the parameter value to 0.6. We conducted experiments by adjusting the number

of neighboring nodes in the global neighborhood of the global convolutional channel. The

experimental results are shown in Figure 4.

Figure 3. Model performance under different neighborhood orders.

From Figure 3, it can be seen that the performance of the model gradually improves
with the increase in neighborhood order. Except for the MovieLens-100K dataset, it per-
forms best when the highest neighborhood order is three. Therefore, the highest neighbor-
hood order of the local convolutional channel is set to three.

(2) The Number of Neighboring Nodes in Global Convolutional Channels

We set the highest neighborhood order of the local convolutional channel to three
and the parameter λ value to 0.6. We conducted experiments by adjusting the number of
neighboring nodes in the global neighborhood of the global convolutional channel. The
experimental results are shown in Figure 4.

From Figure 4, it can be seen that on the three datasets, the DCFECF model has the best
performance for the evaluation indicators Recall@10 when the number of neighboring nodes
is 40, 30, and 30, respectively; for evaluation indicators NDCG@10, the best performance
is achieved when the values are 40, 20, and 30, respectively. It can be seen that the model
performs better when the number of neighboring nodes in the global neighborhood is
around 30. Excessive neighborhood expansion may extract unnecessary node information.
Therefore, the number of neighboring nodes in the global convolutional channel is set to 30.

Future Internet 2023, 15, 215 13 of 19
Future Internet 2023, 15, x FOR PEER REVIEW 15 of 21

10 20 30 40 50

0.232

0.233

0.234

0.235

0.236

0.237

0.238

0.239

0.240

10 20 30 40 50
0.694

0.696

0.698

0.700

0.702

0.704

0.706

0.708

0.710

10 20 30 40 50

0.1174

0.1176

0.1178

0.1180

0.1182

0.1184

0.1186

0.1188

0.1190

0.1192

10 20 30 40 50

0.3032

0.3034

0.3036

0.3038

0.3040

0.3042

0.3044

10 20 30 40 50

0.0324

0.0325

0.0326

0.0327

0.0328

0.0329

10 20 30 40 50
0.1190

0.1195

0.1200

0.1205

0.1210

0.1215

0.1220

R
ec

al
l@

1
0

Number of neighboring nodes

MovieLens-100K Dataset

N
D

C
G

@
1

0

Number of neighboring nodes

MovieLens-100K Dataset

R
ec

al
l@

1
0

Number of neighboring nodes

Gowalla Dataset

N
D

C
G

@
1

0

Number of neighboring nodes

Gowalla Dataset

R
ec

al
l@

1
0

Number of neighboring nodes

Yelp2018 Dataset

N
D

C
G

@
1

0

Number of neighboring nodes

Yelp2018 Dataset

Figure 4. Model performance under different numbers of neighboring nodes in the global neighbor-

hood.

From Figure 4, it can be seen that on the three datasets, the DCFECF model has the

best performance for the evaluation indicators Recall@10 when the number of neighboring

nodes is 40, 30, and 30, respectively; for evaluation indicators NDCG@10, the best perfor-

mance is achieved when the values are 40, 20, and 30, respectively. It can be seen that the

model performs better when the number of neighboring nodes in the global neighborhood

is around 30. Excessive neighborhood expansion may extract unnecessary node infor-

mation. Therefore, the number of neighboring nodes in the global convolutional channel

is set to 30.

(3) The Value of Parameter in the Time Factor Expression

We set the highest neighborhood order of the local convolutional channel to 3 and

the number of neighboring nodes in the global convolutional channel to 30. We adjusted

the value of parameter in the time factor expression, and the experimental results are

shown in Figure 5.

Figure 4. Model performance under different numbers of neighboring nodes in the global neighborhood.

(3) The Value of Parameter λ in the Time Factor Expression

We set the highest neighborhood order of the local convolutional channel to 3 and the
number of neighboring nodes in the global convolutional channel to 30. We adjusted the
value of parameter λ in the time factor expression, and the experimental results are shown
in Figure 5.

From Figure 5, it can be seen that on the three datasets, the DCFECF model exhibits
the best performance for the evaluation indicators Recall@10 when parameter λ values are
0.6, 0.6, and 0.6, respectively; for evaluation indicators NDCG@10, the best performance
is achieved when λ values are 0.7, 0.6, and 0.6, respectively. It can be seen that when the
parameter λ value is around 0.6, the DCFECF model performs better. In addition, the
performance of the model is greater when the value of parameter λ is 1 than when the
value is 0. From Equation (23), it can be seen that when λ is set to 1, only the time interval
factor is considered, and when λ is set to 0, only the rating item density factor is considered.
This indicates that when only one factor is considered, the time interval factor has a greater
impact on the user’s memory level, while the rating item density factor has a smaller impact
on the user’s memory level. When the value of λ is around 0.6, the coefficient ratio of the
time interval factor is higher, while the coefficient ratio of scoring item density factor is
lower, which is consistent with the experimental results that the time interval factor has a

Future Internet 2023, 15, 215 14 of 19

significant impact on users’ memory level. By taking an appropriate value for parameter λ
and balancing the coefficient ratio of the two factors, the filtering effect of the time factor
on the model prediction results can be better. This indicates that it is reasonable to consider
both the time interval factor and the density factor of scoring items and set parameter λ to
balance the proportion of the two factors.

Future Internet 2023, 15, x FOR PEER REVIEW 16 of 21

0.0 0.2 0.4 0.6 0.8 1.0
0.228

0.230

0.232

0.234

0.236

0.238

0.240

0.0 0.2 0.4 0.6 0.8 1.0
0.685

0.690

0.695

0.700

0.705

0.710

0.0 0.2 0.4 0.6 0.8 1.0
0.1160

0.1165

0.1170

0.1175

0.1180

0.1185

0.1190

0.1195

0.1200

0.0 0.2 0.4 0.6 0.8 1.0

0.300

0.301

0.302

0.303

0.304

0.305

0.0 0.2 0.4 0.6 0.8 1.0
0.0300

0.0305

0.0310

0.0315

0.0320

0.0325

0.0330

0.0335

0.0 0.2 0.4 0.6 0.8 1.0

0.118

0.119

0.120

0.121

0.122

0.123

R
ec

al
l@

1
0

MovieLens-100K Dataset

N
D

C
G

@
1

0

MovieLens-100K Dataset
R

ec
al

l@
1

0

Gowalla Dataset

N
D

C
G

@
1

0

Gowalla Dataset

R
ec

al
l@

1
0

Yelp2018 Dataset

N
D

C
G

@
1

0

Yelp2018 Dataset

Figure 5. Model performance under different values of in the time factor expression.

From Figure 5, it can be seen that on the three datasets, the DCFECF model exhibits

the best performance for the evaluation indicators Recall@10 when parameter values

are 0.6, 0.6, and 0.6, respectively; for evaluation indicators NDCG@10, the best perfor-

mance is achieved when values are 0.7, 0.6, and 0.6, respectively. It can be seen that

when the parameter value is around 0.6, the DCFECF model performs better. In addi-

tion, the performance of the model is greater when the value of parameter is 1 than

when the value is 0. From Equation (23), it can be seen that when is set to 1, only the

time interval factor is considered, and when is set to 0, only the rating item density

factor is considered. This indicates that when only one factor is considered, the time inter-

val factor has a greater impact on the user’s memory level, while the rating item density

factor has a smaller impact on the user’s memory level. When the value of is around

0.6, the coefficient ratio of the time interval factor is higher, while the coefficient ratio of

scoring item density factor is lower, which is consistent with the experimental results that

the time interval factor has a significant impact on users’ memory level. By taking an ap-

propriate value for parameter and balancing the coefficient ratio of the two factors, the

filtering effect of the time factor on the model prediction results can be better. This indi-

cates that it is reasonable to consider both the time interval factor and the density factor

of scoring items and set parameter to balance the proportion of the two factors.

Figure 5. Model performance under different values of λ in the time factor expression.

4.2.2. Comparative Experiment

Figure 6 shows the results of comparative experiments conducted on three datasets
using Recall@10 and NDCG@10 as evaluation indicators. DCFECF performed the best on
all three datasets, and among the four benchmark comparison models, the DCCF model
performed the best. The NGCF model uses a multi-layer graph convolutional network to
aggregate higher-order neighborhood information in the local structure, which consistently
performs better than the GC-MC model using a single-layer graph convolutional network.
The LR-GCCF model is simplified on the basis of the NGCF model. The activation function
and parameter matrix are removed, and the model performance is improved. Both DCFECF
model and DCCF model use the single-layer graph convolution network to calculate,
suppress the over-smoothing problem, effectively filter neighborhood information, and
use clustering to construct global interaction graph, which overcomes the problem that
interaction information is limited to the local neighborhood, and has better performance
than NGCF model, GC-MC model, and LR-GCCF model. Compared to the DCCF model,

Future Internet 2023, 15, 215 15 of 19

the DCFECF model achieved a maximum improvement of 2.3% and 4.1% on three datasets
based on two evaluation indicators, indicating that improvements to the DCCF model can
further improve the algorithm recommendation performance.

Future Internet 2023, 15, x FOR PEER REVIEW 17 of 21

4.2.2. Comparative Experiment

Figure 6 shows the results of comparative experiments conducted on three datasets

using Recall@10 and NDCG@10 as evaluation indicators. DCFECF performed the best on

all three datasets, and among the four benchmark comparison models, the DCCF model

performed the best. The NGCF model uses a multi-layer graph convolutional network to

aggregate higher-order neighborhood information in the local structure, which consist-

ently performs better than the GC-MC model using a single-layer graph convolutional

network. The LR-GCCF model is simplified on the basis of the NGCF model. The activa-

tion function and parameter matrix are removed, and the model performance is improved.

Both DCFECF model and DCCF model use the single-layer graph convolution network to

calculate, suppress the over-smoothing problem, effectively filter neighborhood infor-

mation, and use clustering to construct global interaction graph, which overcomes the

problem that interaction information is limited to the local neighborhood, and has better

performance than NGCF model, GC-MC model, and LR-GCCF model. Compared to the

DCCF model, the DCFECF model achieved a maximum improvement of 2.3% and 4.1%

on three datasets based on two evaluation indicators, indicating that improvements to the

DCCF model can further improve the algorithm recommendation performance.

0.2069

0.2281
0.2307

0.2351
0.2386

0.6836

0.6877

0.6896

0.6948

0.7011

0.0991
0.1015

0.1138

0.1169

0.1195

0.2655

0.2719

0.2842

0.2986

0.3108

0.0276

0.0301

0.0324
0.0328

0.0332

0.1035

0.1126

0.1153

0.1199

0.1227

GC-MC NGCF LR-GCCF DCCF DCFECF
0.195

0.200

0.205

0.210

0.215

0.220

0.225

0.230

0.235

0.240

0.245

R
ec

al
l@

1
0

Performance of the model under MovieLens-100K Dataset

 Recall@10

GC-MC NGCF LR-GCCF DCCF DCFECF
0.680

0.685

0.690

0.695

0.700

0.705

N
D

C
G

@
1

0

Performance of the model under MovieLens-100K Dataset

 NDCG@10

GC-MC NGCF LR-GCCF DCCF DCFECF
0.090

0.095

0.100

0.105

0.110

0.115

0.120

0.125

R
ec

al
l@

1
0

Performance of the model under Gowalla Dataset

 Recall@10

GC-MC NGCF LR-GCCF DCCF DCFECF
0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

N
D

C
G

@
1

0

Performance of the model under Gowalla Dataset

 NDCG@10

GC-MC NGCF LR-GCCF DCCF DCFECF

0.026

0.028

0.030

0.032

0.034

R
ec

al
l@

1
0

Performance of the model under Yelp2018 Dataset

 Recall@10

GC-MC NGCF LR-GCCF DCCF DCFECF
0.100

0.105

0.110

0.115

0.120

0.125

N
D

C
G

@
1

0

Performance of the model under Yelp2018 Dataset

 NDCG@10

Figure 6. Comparative experiment results.

Figure 6. Comparative experiment results.

4.2.3. Ablation Experiment

(1) The Ablation Experiment on the Method of Calculating Transfer Probability Threshold

We deconstruct the structure of the DCFECF model, which only preserves the method
of obtaining the transition probability threshold. We use the K-means clustering algorithm
in the DCCF model to construct a global interaction graph without introducing time factors.
The model with this structure is called DCFECF_1. The transition probability threshold in
the DCCF model is still set at 0.5. The experimental results based on evaluation indicators
Recall@10 and NDCG@10 on three datasets are shown in Tables 2 and 3.

Future Internet 2023, 15, 215 16 of 19

Table 2. Recall@10 performance under the method of calculating transfer probability threshold.

Model
Recall@10

MovieLens-100K Gowalla Yelp2018

DCCF 0.2328 0.1142 0.0315
DCFECF_1 0.2360 0.1168 0.0321

Table 3. NDCG@10 performance under the method of calculating transfer probability threshold.

Model
NDCG@10

MovieLens-100K Gowalla Yelp2018

DCCF 0.6907 0.2939 0.1176
DCFECF_1 0.6997 0.3013 0.1202

From these tables, it can be seen that the performance of the DCFECF_1 model with the
introduction of the transition probability threshold calculation method is always better than
that of the DCCF model. This indicates that the transition probability threshold calculation
method proposed in the DCFECF model can obtain different order transition probability
thresholds based on data samples. Compared with the fixed transition probability threshold
set in the DCCF model, it is more in line with practical application scenarios and can filter
neighborhood information more effectively.

(2) The Ablation Experiment of Clustering Algorithm

We deconstruct the structure of the DCFECF model by not using the method of
obtaining the transition probability threshold (which is a fixed value and still set to 0.5)
and do not introduce a time factor. For clustering algorithms, we name the model that
only uses the K-means++ clustering algorithm DCFECF_2. The model that only uses the
fuzzy C-means clustering algorithm is DCFECF_3. The model using the fuzzy C-means
clustering algorithm optimized based on the K-means++ clustering algorithm is DCFECF_4.
The experimental results based on evaluation indicators Recall@10 and NDCG@10 on three
datasets are shown in Tables 4 and 5.

Table 4. Recall@10 performance under introducing different clustering algorithms.

Model
Recall@10

MovieLens-100K Gowalla Yelp2018

DCCF 0.2326 0.1144 0.0315
DCFECF_2 0.2339 0.1156 0.0318
DCFECF_3 0.2341 0.1155 0.0319
DCFECF_4 0.2364 0.1171 0.0322

Table 5. NDCG@10 performance under introducing different clustering algorithms.

Model
NDCG@10

MovieLens-100K Gowalla Yelp2018

DCCF 0.6917 0.2938 0.1175
DCFECF_2 0.6951 0.2970 0.1189
DCFECF_3 0.6954 0.2968 0.1192
DCFECF_4 0.7001 0.3021 0.1204

From these tables, it can be seen that because the K-means++ clustering algorithm is
an improvement on the K-means clustering algorithm, the performance of DCFECF_2 is al-
ways better than DCCF. Compared to the K-means clustering algorithm, the fuzzy C-means
clustering algorithm integrates the essence of fuzzy theory and can provide more flexible
clustering results, so the performance of DCFECF_3 is always better than DCCF. DCFECF_4

Future Internet 2023, 15, 215 17 of 19

uses the K-means++ clustering algorithm to determine the initial clustering center of the
fuzzy C-means clustering algorithm and then uses the fuzzy C-means clustering algorithm
for clustering, which can achieve better clustering performance compared to other models.
Therefore, it always has the best performance compared to other models, indicating that
the clustering algorithm proposed in DCFECF has better clustering performance than the
K-means clustering algorithm. The spatial complexity of the K-means clustering algorithm
is O(d(N + M + K)), while the spatial complexity of the fuzzy C-means clustering algorithm
optimized based on the K-means++ clustering algorithm is O(d(N + M)K), where d is the
vector embedding dimension, N + M is the total number of nodes, and K is the number
of clusters. In practical large-scale data scenarios, N + M is usually much larger than K,
indicating that the improved clustering effect also increases some spatial overhead.

(3) The Ablation Experiment of the Time Factor

We deconstruct the structure of the DCFECF model by not using the method of obtain-
ing the transition probability threshold but only using the K-means clustering algorithm
to construct a global interaction graph and introducing a time factor. The model that
introduces the time factor TF1 is the DCFECF1 model, the model that introduces the time
factor TF2 is DCFECF2, and the model that introduces the time factor TF3 is DCFECF3.
The experimental results are shown in Tables 6 and 7.

Table 6. Recall@10 performance under introducing the time factor.

Model
Recall@10

MovieLens-100K Gowalla Yelp2018

DCCF 0.2325 0.1141 0.0314
DCFECF1 0.2338 0.1146 0.0316
DCFECF2 0.2344 0.1155 0.0320
DCFECF3 0.2366 0.1173 0.0324

Table 7. NDCG@10 performance under introducing the time factor.

Model
NDCG@10

MovieLens-100K Gowalla Yelp2018

DCCF 0.6910 0.2936 0.1173
DCFECF1 0.6931 0.2949 0.1178
DCFECF2 0.6948 0.2971 0.1189
DCFECF3 0.7004 0.3019 0.1206

From these tables, it can be seen that the DCFECF model has better performance than
the DCCF model, indicating that introducing a time factor can improve the predictive
ability of the model. In addition, among the three DCFECF models that introduced time
factors, the DCFECF3 model achieved the best performance on all three datasets, indicating
that the improvement of the time factor expression in this paper is effective, and it is
reasonable to consider adding the item scoring density factor to the time factor, which can
further improve the predictive ability of the model.

5. Conclusions

This paper proposes a dual-channel feature enhanced collaborative filtering recom-
mendation algorithm (DCFECF) to solve the problem that in the DCCF model, the fixed
threshold of transition probability leads to a decrease in the filtering effect of neighborhood
information, the K-means clustering algorithm tends to make the clustering results fall
into local optimization, resulting in incomplete global interaction graph, and does not
consider the impact of time factors on the prediction results. In the local convolutional
channel, transforming the transition probability threshold from a fixed value to a dynamic
value can better filter neighborhood information and improve the predictive ability of the

Future Internet 2023, 15, 215 18 of 19

model; in the global convolutional channel, the K-means++ clustering algorithm is first
used to determine the clustering center, and then the fuzzy C-means clustering algorithm
is used to solve the local optimal problem, which can construct a more comprehensive
global interaction graph, simultaneously introducing the time factor to further modify the
predicted results; through experiments, the rationality and effectiveness of the DCFECF
model in improving the DCCF model were verified.

In future research, we will focus on two aspects, namely the expression of interaction
relationships between nodes and the construction of interaction graphs to modify the
DCFECF model. We will modify the attention mechanism [19], adaptively learn and fuse
weights, and further express the interaction relationships between nodes after determining
their neighborhood range, thereby improving recommendation performance. In addition,
we will design different custom rules to construct interaction diagrams [20], combine
different information, and construct more comprehensive global interaction diagrams,
making the model more interpretable.

Author Contributions: Y.O. designed the proposed method, performed the experiments, analyzed
the data, and wrote the paper. B.N. modified the paper and offered support. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 62072326.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, Z.G.; Li, W.Y.; Jiang, P.; Zhou, P. Survey of graph neural networks in session recommender systems. Comput. Eng. Appl.

2023, 59, 55–69.
2. Wu, Z.H.; Pan, S.R.; Chen, F.W.; Long, G.D.; Zhang, C.Q.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE

Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]
3. Zhou, J.; Cui, G.Q.; Hu, S.D.; Zhang, Z.Y.; Yang, C.; Liu, Z.Y.; Wang, L.F.; Li, C.C.; Sun, M.S. Graph neural networks: A review of

methods and applications. AI Open 2020, 1, 57–81. [CrossRef]
4. Li, Q.M.; Han, Z.H.; Wu, X.M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings

of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32, pp. 3538–3545.
5. Huang, W.B.; Rong, Y.; Xu, T.Y.; Sun, F.C.; Huang, J.Z. Tackling over-smoothing for general graph convolutional networks. arXiv,

2020; arXiv:2008.09864.
6. Wang, X.; Wang, R.J.; Shi, C.; Song, G.J.; Li, Q.Y. Multi-component graph convolutional collaborative filtering. In Proceedings of

the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 6267–6274.
7. Miao, Y.X.; Song, C.H.; Niu, B.N.; Kang, R.X. Dual-Channel Graph Collaborative Filtering Recommendation Algorithm. Comput.

Eng. 2022, 48, 121–128. [CrossRef]
8. Berg, R.V.D.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018.
9. Wang, X.; He, X.N.; Wang, M.; Feng, F.L.; Chua, T.S. Neural graph collaborative filtering. In Proceedings of the 42nd International

ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 165–174.
10. Chen, L.; Wu, L.; Hong, R.C.; Wang, M. Revisiting graph based collaborative filtering: A linear residual graph convolutional

network approach. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 27–34.

11. Ji, S.Y.; Feng, Y.F.; Ji, R.R.; Zhao, X.B.; Tang, W.W.; Gao, Y. Dual Channel Hypergraph Collaborative Filtering. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual, 6–10 July 2020; pp. 2020–2029.

12. Hassan, N.S.; Abdulazeez, A.M.; Zeebaree, D.Q.; Hasan, D.A. Medical images breast cancer segmentation based on k-means
clustering algorithm: A review. Asian J. Res. Comput. Sci. 2021, 9, 23–38. [CrossRef]

13. Xie, Z.Z. Personalized Recommendation Method Based on User Rating and Category Clustering. Master’s Thesis, Tianjin
University of Commerce, Tianjin, China, 2021.

14. Hechtlinger, Y.; Chakravarti, P.; Qin, J.N. A generalization of convolutional neural networks to graph-structured data. arXiv 2017,
arXiv:1704.08165.

15. Yin, B.J.; Zuo, R.G.; Sun, S.Q. Mineral prospectivity mapping using deep self-attention model. Nat. Resour. Res. 2022, 32, 37–56.
[CrossRef]

https://doi.org/10.1109/TNNLS.2020.2978386
https://www.ncbi.nlm.nih.gov/pubmed/32217482
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.19678/j.issn.1000-3428.0062453
https://doi.org/10.9734/ajrcos/2021/v9i130212
https://doi.org/10.1007/s11053-022-10142-8

Future Internet 2023, 15, 215 19 of 19

16. Wang, Y.G.; Liu, K.Q. Collaborative Filtering Recommendation Algorithm for Clustering Optimization. Comput. Eng. Appl. 2020,
56, 66–73.

17. Yan, H.C.; Wang, Z.R.; Li, W.F.; Gu, J.T. Time-Based Fuzzy Cluster Collaborative Filtering Recommendation Algorithm. Comput.
Eng. Sci. 2021, 43, 2084–2090.

18. Zhang, Q.S.; Zhu, M. Collaborative Filtering Algorithm Combining Time-Weighted Trust and User Preferences. Comput. Eng.
Appl. 2022, 58, 112–118.

19. Fan, Z.W.; Liu, Z.W.; Zhang, J.W.; Xiong, Y.; Zheng, L.; Yu, P.S. Continuous-Time Sequential Recommendation with Temporal
Graph Collaborative Transformer. In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, Virtual, 1–5 November 2021; pp. 433–442.

20. Liu, Z.W.; Meng, L.; Jiang, F.; Zhang, J.W.; Yu, P.S. Deoscillated Adaptive Graph Collaborative Filtering. Proceedings of
Topological, Algebraic, and Geometric Learning Workshops, Virtual, 29 April 2022; Volume 196, pp. 248–257.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Collaborative Filtering Model Based on Graph Convolution Network
	Clustering Algorithm

	DCFECF Model
	Model Prediction Process and Framework
	Local Convolutional Channel
	Global Convolutional Channel
	Time Factor Weighting
	Interactive Prediction
	Model Optimization

	Evaluation and Analysis
	Experimental Setup
	Experimental Dataset
	Contrast Model
	Evaluation Index
	Experimental Environment and Parameter Settings

	Experimental Analysis
	Sensitivity Experiment of Hyperparameter
	Comparative Experiment
	Ablation Experiment

	Conclusions
	References

