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Abstract: Anonymization and data masking have effects on data-driven models. Different anonymiza-
tion methods have been developed to provide a good trade-off between privacy guarantees and data
utility. Nevertheless, the effects of data protection (e.g., data microaggregation and noise addition)
on data integration and on data-driven models (e.g., machine learning models) built from these
data are not known. In this paper, we study how data protection affects data integration, and the
corresponding effects on the results of machine learning models built from the outcome of the data
integration process. The experimental results show that the levels of protection that prevent proper
database integration do not affect machine learning models that learn from the integrated database to
the same degree. Concretely, our preliminary analysis and experiments show that data protection
techniques have a lower level of impact on data integration than on machine learning models.

Keywords: anonymization; masking; data protection; data integration

1. Introduction

When personal data are used, we need to take into account privacy requirements. Cur-
rent national and international regulations require companies to take privacy requirements
seriously; see, e.g., GDPR, under which companies can be fined when disclosure of sensitive
data takes place. Data cannot be shared freely with third parties when there is sensitive
information. Nevertheless, it is not only the data that needs to satisfy privacy requirements,
but also data-driven models built from these sensitive data. Privacy-by-design [1] states
that privacy is not an add-on to systems processing data, but that privacy needs to be taken
into account as a fundamental requirement of all the processes.

Privacy technologies [2–4] have been developed to provide solutions that permit the
sharing of data as well as building data-driven models that are compliant with our privacy
requirements. There exist several privacy models, computational definitions of privacy,
and alternative data protection mechanisms to implement the privacy models. Masking
methods are tools that allow the data to be protected so that they can be shared with third
parties without compromising sensitive data. Masking methods modify the original data,
providing a sanitized version of a file or database, so that these sensitive data are not
disclosed, and disclosure risk is minimized. As masking methods modify the original data,
data utility is a major concern. Masking methods are typically parametric so that we can
control the privacy level, or at least the perturbation level.

The effects of masking methods on machine learning and statistics have been exten-
sively studied [5–7]. A typical analysis consists of evaluating how different privacy levels
affect the performance of data-driven models. This includes discovering which range of
parameters results in an acceptable performance (e.g., accuracy or error) and which range
of parameters causes the model to show unacceptable performance. Additionally, masking
methods [8] have been compared in terms of performance for similar protection. Most of
these comparisons are computational, testing the performance of the methods for particular
data sets and particular machine learning algorithms.
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There is an increasing need to build more complex data-driven models. There is a
need to use data from multiple databases, and once these data are integrated, data-driven
models are built from the resulting databases. The effects of masking methods on data
when these data are to be integrated is not known. In this paper, we study this problem.
More specifically, we want to know

• to what extent data integration is possible when data have been masked, and
• even if data integration cannot overcome the errors caused by masking methods and

produces faulty databases, we want to know whether these databases are of high
enough quality for data-driven models to be built.

To achieve this goal, we conduct a series of controlled experiments. More precisely,
given a database, we produce two different partial databases, which are protected separately
and later integrated. Then, data-driven models are built from the integrated database. The
results of the process are analyzed. We study the effects of different masking methods
on different databases. We also consider the performance of alternative machine learning
models. This paper is an extended version of a conference paper [9]. The paper is completely
rewritten and we extend the experiments with additional databases, masking methods,
parameterizations, and machine learning models. In fact, the software used for preparing
this paper is also new, as previous experiments were performed in R and these ones were
carried out in Python. A description of the software and a link to it are included below.

The structure of the paper is as follows. In Section 2, we describe the main concepts we
need in our paper. In Section 3 we present the methodology used. We formalize the process
applied to a given database. We also describe the masking methods applied, the machine
learning algorithms considered, and the databases used in the experiments. In Section 4,
we present our main results and our analysis. The paper finishes with conclusions and
research directions.

2. Preliminaries

Data protection mechanisms are used when we need to share data with third parties.
There are three main types of mechanisms [3,4]: perturbative methods, non-perturbative
methods, and synthetic data generators.

Perturbative methods build a copy of the database in which the original data have been
modified by introducing some kind of error. There are several algorithms with this goal.
Examples include microaggregation, noise addition and multiplication, rank swapping,
PRAM (Post RAndomisation Method), and transformation-based methods. In this paper,
we use this type of method for protecting data. Different methods provide different
guarantees and protection. For example, microaggregation is useful for providing k-
anonymity [10–12]. In contrast, noise addition using Laplacian noise is useful for providing
local differential privacy [13–15]. All methods are useful for providing privacy against
reidentification [16] attacks.

Non-perturbative methods build a copy of the database in which the original data
are replaced by data of lower quality. Here, data are not erroneous but may lack detail.
E.g., values can be replaced by intervals, or simply suppressed. Different methods may
provide different privacy guarantees (e.g., k-anonymity). Nevertheless, as the type of data
after protection is different to the type of data before protection, perturbative methods are
easier to use. For example, the original data may be numerical but protected data may
correspond to intervals. Therefore, we need to use machine learning algorithms that are
able to deal with intervals (or alternatively post-process the data to replace intervals with
values). For this reason, we have not used these methods here.

Synthetic data generators [17] are based on building models of the data, and then data
are replaced by artificial data generated by these models. Different methods exist, typically
based on different machine learning models (e.g., generative adversarial networks, decision
trees, support vector machines). We have not considered these approaches here, and we
leave the analysis of this type of method for future work.
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3. Methodology

As we have stated in the introduction, our main goal is to evaluate to what extent
masking methods affect data-driven models built after data integration. Here, we under-
stand data-driven models as models that have learnt from data using machine learning
algorithms. In our analysis, we take two aspects into account. One is about the data inte-
gration process itself. That is, we want to analyze whether masking affects the integration
process itself. The second aspect relates to data-driven models built from integrated data.
That is, we want to analyze the quality of data-driven models built from data after the
integration process.

In order to assess both the data integration process and the data-driven model, we
have used the following methodology. This methodology is based on the one described in
our previous paper [9]. As we explain in the next section, in this paper we have a deeper
analysis as we compare more masking methods, more machine learning algorithms, and
more data sets.

This work is based on existing techniques in data protection, data integration and
machine learning models. In particular, we analyze data protection strategies on data
integration and their corresponding impacts passed on to machine learning models. A
detailed step-by-step description of the methodology is given below. We begin with a single
database, which we denote DB0. A fraction of the records of this database are vertically
partitioned into two different databases. These two databases are not disjoint, but they
share some attributes. The purpose of this is to allow us to consider database integration
and enable us to analyze the effects of masking methods on database integration.

In addition to the database DB0, the methodology also requires a masking method
ρ, a machine learning algorithm m, and a database integration method integrate. We will
denote by y the dependent attribute in the database, and y(x) is the value of this attribute
for record x in the database (without the attribute y itself).

Our methodology is as follows:

1. Partition DB0 horizontally into two parts, one for testing and the other for training.
We call the training part DB and the testing part DBt.

2. Take DB and partition it vertically into two databases, DB1 and DB2. These two
databases will share some attributes. We denote by nC the number of attributes that
are shared by both databases.

3. Let ρ be a masking method. Independently mask the two databases DB1 and DB2.
In this way, we produce two masked databases as follows: DB′1 = ρ(DB1) and
DB′2 = ρ(DB2).

4. Integrate DB′1 and DB′2 using the nC common attributes of these databases. We denote
by DB′ the resulting database. That is, DB′ = integrate(DB′1, DB′2) where integrate is
an integration mechanism for databases.

5. Let m denote a machine learning algorithm. Compute a data-driven model for DB
and another data-driven model for DB′ using the same machine learning algorithm.
We denote by m(DB) and m(DB′) these two different data-driven models. We use
m(DB)(x) to denote the application of this model to a record x from DB (not including
the attribute y).

6. Evaluate the integration of the two databases (that is, the resulting database DB′)
using DB.

7. Evaluate the performance of the models m(DB) and m(DB′) using the test database DBt.

In order to make this process concrete, some steps need further clarification. We will
describe them below.

First, the database integration process: for this purpose we have used distance-based
record linkage [18,19]. This is one of the most effective algorithms, and at the same time,
it is simple to apply. Given a record r1 in DB′1, we compute its distance to each record r2
in DB′2. Then, we select the most similar one r′(r1) to r1. Formally, this corresponds to
r′(r1) = arg minr2∈DB′2

d(r1, r2). Distance-based record linkage needs a distance function d.
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We have used the Euclidean distance, which uses and compares the common attributes in
both databases DB′1 and DB′2. So, d(r1, r2) uses only the common attributes of records r1
and r2 (i.e., nC attributes). It is important to note that for the database integration process,
we know how DB′1 and DB′2 have been generated, and we know which attributes in one
database correspond to which attributes in the other database. Therefore, in our case, the
database integration process does not need to take into account attribute alignment nor
schema matching. More complex situations can be envisioned in the context of data privacy,
in line with the above mentioned references and with [4] (Appendix A).

We have considered two different types of evaluations for the database integration
process. One relates to the result of the integration process itself. Note that both databases,
DB′1 and DB′2, are generated from a single database DB through its partition and the subse-
quent process of masking the two parts. Because of this, we can evaluate to what extent
the database DB′ = integrate(DB′1, DB′2) is correctly integrated by means of considering
whether the record linkage aligns the records r1 and r2 correctly. To do so, we count how
many times r′(r1) is the correct link in DB′2 for r1. As we will discuss in Section 4, the
number of correct links drops very quickly with respect to the data protection level. In other
words, most of the links we compute using distance-based record linkage are incorrect.

The other evaluation is related to the models built from the databases. Even if the
databases are not correctly integrated, we can consider whether the model we build is good
enough (or similar enough in terms of performance) compared with the model we build
using the original data; that is, a comparison between m(DB) for a record x (i.e., m(DB)(x))
and y(x). As we solely use numerical data, we use for this evaluation the prediction of the
models for the records in the testing database (i.e., DBt). We compute the sum of squared
errors of both m(DB) and m(DB′) and compare them. Formally, our evaluation of both
models uses the following expression, which is about zero when the error is similar for
both types of models. Note that we keep the sign in the difference (no squared numerator,
no absolute value in the numerator). Therefore, if the model built from the masked data
performs worse than the model built from the original data, the evaluation is positive.
This is what we would expect, and what we see in the experiments. Nevertheless, if the
performance of the model built from the masked data is better than the model built from the
original database, then the evaluation would be negative. We have observed this situation
only a few times in our experiments, which is consistent with other results in the literature.
For example, it has been observed when masking single databases (see, e.g., the work by
Sakuma and Osame [20] and by Aggarwal and Yu [21]). Because of this, we consider that it
is better to define the expression by keeping the sign. That is,

ev(DBt, DB′) =
∑x∈DBt(m(DB)(x)− y(x))2 − (m(DB′)(x)− y(x))2

|DBt|
(1)

If we consider the process as a whole, we also need to describe the masking methods
and the algorithms used to compute the machine learning model. We have used several
masking methods and several machine learning algorithms, which are described below.

3.1. Masking Methods

We have considered methods for microaggregation (MDAV and Mondrian algorithms),
noise addition (both Gaussian and Laplacian noise), two methods based on dimensionality
reduction (SVD and PCA), and another method based on non-negative matrix factorization.
We briefly describe the methods below. These masking methods are described in detail in
books on data privacy [3,4].

• Microaggregation: in order to protect a set of records, small clusters are built and
records are replaced by a cluster representative. In order to guarantee privacy, each
cluster needs to have at least k records. Thus, k is a parameter of the method. The
larger the k, the larger the privacy level, and the lower the utility of the data. Op-
timal microaggregation is often defined in terms of the error between the cluster
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representatives and the original records. Optimal microaggregation is an NP-hard
problem for multivariate data (see e.g., [22]). Because of this, several alternative
heuristic algorithms have been developed. We have used two alternative algorithms:
MDAV [23,24], and Mondrian [25]. The difference is related to the method of building
the clusters. We use the mean of the records in a cluster as the cluster representative.
Microaggregation provides k-anonymity by definition, as each record in the protected
data set is indistinguishable from at least k− 1 other records.

• Noise addition: in order to protect a record, noise is added to it. In other words, the
original numerical value x is replaced by x + ε, where ε follows a given distribution.
We use two different alternative distributions for protection. They are a normal
distribution with mean zero and standard deviation

√
(variance ∗ k), and a Laplace

distribution with mean zero and standard deviation as above. Naturally, k corresponds
to the parameter of the method. As in the case of microaggregation, the larger the
k, the larger the distortion. Therefore, the larger the k, the larger the protection and
the smaller the utility of the resulting protected data. Noise addition using Laplacian
noise is the standard approach to implementing differential privacy. In the case of
publishing a database, as we do here, this corresponds to local differential privacy.

• Transform-based protection: these methods reduce the quality of the data by transform-
ing the data into another space in which we can remove details. We have considered
the use of singular value decomposition (SVD), principal component analysis (PCA),
and non-negative matrix factorization (NMF) for this purpose. In the case of SVD
and PCA, we apply the decomposition, select the principal components, and then we
rebuild the matrix with only these selected components. The parameter of the method
is the number of components selected. We denote this k. In this case, the larger the
k, the better the reconstruction of the original data. Therefore, the smaller the k, the
larger the protection, and at the same time, the smaller the utility of the resulting
protected data. This approach is similar to non-negative matrix factorization. For
NMF, as above, the smaller the number of components k, the larger the protection and
the smaller the utility. While SVD and PCA can be applied to matrices with arbitrary
real numbers, NMF can only be applied to positive data. Because of this, data are
scaled into the [0,1] interval before the application of the NMF protection. The data
are re-scaled back after the NMF protection.

3.2. Machine Learning Algorithms

We have restricted our study to numerical data. Therefore, we used regression al-
gorithms. We used four regression algorithms among the ones supplied by the Python
package sklearn. We selected these methods because we consider them to be quite rep-
resentative regression methods, and we had already used them in a previous work of
ours [26] (on the effects of masking in some explainability tools). All methods were applied
using their default parameters. The methods considered are the following:

• linear_model.LinearRegression (linear regression): a linear approach to modeling
the relationship between a dependent variable and one or more independent variables.

• sklearn.linear_model.SGDRegressor (SGD regression): a linear regression model
fitted by minimizing a regularized empirical loss with stochastic gradient descent.

• sklearn.kernel_ridge.KernelRidge (kernel ridge regression): a regression model
combining ridge regression (imposing a penalty with l2 regularization) with the kernel
trick. It can model linear and nonlinear relationships between a dependent variable
and one or more independent variables.

• sklearn.svm.SVR (epsilon-support vector regression): a regression model using the
same principles (e.g., maximal margin) as the SVM for classification. One difference is
that a margin of tolerance (epsilon) is set.
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3.3. Implementation

We implemented our methodology in Python. We used our own implementations
of masking methods and of database integration (i.e., a distance-based record linkage
algorithm). These implementations are publicly available [27]. Machine learning algorithms
were selected from the ones available in sklearn.

3.4. Databases

We considered the following databases. Two of them are provided by the sdcMicro [28]
package in R, which provides tools for database protection. Among the tools, there are
masking methods and data sets that have been used to compare the performance of masking
methods with respect to disclosure risk and utility.

• CASC: this data set has been used in several papers on data privacy, and it is provided
by the sdcMicro package in R (it is called CASCrefmicrodata in the package). The
data set was created in the EU project CASC. See, e.g., Hundepool et al. [3] and the
sdcMicro package description for detailed information on this data set. The data set
consists of 1080 records and 13 numerical attributes.

• Tarragona: this data set is also provided by the sdcMicro package in R. There are
834 records described in terms of 13 numerical attributes.

• Concrete Compressive Strength: this data set is described by Yeh [29,30] and has
been used in several works related to regression models. It is provided by the UCI
repository. The data set consists of 1030 records and 9 numerical attributes. We
have selected this file because the data are numerical and because it has been used
for regression.

3.5. Parameters

The data sets were partitioned into test and training sets. Our partition randomly
assigns 80% of the records for training and the remaining 20% of the records for testing.

Next, we vertically partitioned training data into two databases. This corresponds to
building the two databases DB1 and DB2, which will share a set of attributes. The selection
of the attributes depends on the database. They are as follows:

• CASC: The number of common attributes for DB1 and DB2 considered is
nC = 1, 2, 3, 4, 5, 6. That is, we considered six different pairs of databases. These
databases were built as follows. For the first pair, DB1 includes attributes 0–5, and
DB2 includes attributes 5–11 (0–5 and 5–11 correspond to columns in the database,
with the first column denoted by zero). Databases DB1 for nC = 2, . . . , 6 are defined
in terms of attributes 0–6, 0–6, 0–7, 0–7, and 0–7. Databases DB2 for nC = 2, . . . , 6 are
defined with attributes 5–11, 4–11, 4–11, 3–11, and 2–11.

• Tarragona: The number of common attributes is the same as for the CASC data set,
and the databases were also constructed following the same pattern.

• Concrete: In this case, we also have nC = 1, . . . , 6. For nC = 1, we have DB1 with
attributes 0–5 and DB2 with attributes 5–7. For nC = 2, we have DB1 with attributes
0–6 and DB2 with attributes 5–7. For larger nC, we have DB1 with attributes 0–6, 0–7,
0–7, and 0–7, and DB2 with attributes 4–7, 4–7, 3–7, and 2–7.

Masking methods were applied considering different parameterizations. The follow-
ing parameterizations have been considered.

• Microaggregation (MDAV and Mondrian). The following values of k were considered:
k = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20}. For some experiments, we used larger
values. In that case, we used k = {2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 100, 200, 300,
400, 500}.

• Noise addition (Gaussian and Laplacian noise). We used noise with parameters in the
set {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.5}.

• SVD and NMF. In this case, we used parameters equal to {2, 3, 4, 5, 6, 7, 8}.
• PCA. We used one, two, and three principal components.
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Machine learning algorithms were used with their standard parameters. No tuning
was applied. As explained above, we used the sklearn Python package. Regression models
were used because all data were numerical. The dependent attribute for each database is
discussed above.

4. Experiment and Analysis

The experiments show that when we integrate two masked protected files, the number
of correct reidentifications degrades very quickly for most masking methods. That is, the
number of records that are correctly linked (i.e., one record in one file is associated with
the right record in the other file) is very small, even for parameters providing very low
protection. This holds for most masking methods except for the ones based on SVD and
NMF, which have, in general, quite large reconstruction rates when the number of singular
values is high and when the number of components is high.

Figure 1 illustrates the case of microaggregation (MDAV, Mondrian), and noise addi-
tion (Gaussian and Laplacian noise). When their parameters are equal to zero, there is no
protection. Here, we see that even with six common attributes, the number of reidentifica-
tions decreases very rapidly.
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Figure 1. Number of correct links for the Concrete data set (top) and the Tarragona data set (bottom)
when data are protected using MDAV (top left), Mondrian (top right), noise addition using Gaussian
distribution (bottom left), and noise addition using Laplacian distribution (bottom right). Each
figure includes curves for different numbers of common attributes (from 1 to 6).

Figure 2 represents the number of correct reidentifications for SVD and NMF-based
protection. We can see that there is a drop in the number of reidentifications in this case
as well. This drop is not so fast as it is for microaggregation. The figures also show that
using more attributes for integration does not mean that the database integration is better.
In the case of the Concrete data set, observe that for SVD, one and two attributes lead to
better reidentification levels than more attributes (for a number of singular values between
three and six). The same pattern appears in the Tarragona data set, and, to some extent,
also for NMF-based protection. In contrast, the experiments show that even when we have
a low number of correct reidentifications, the machine learning model produced from the
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integrated database can have similar performance to the one obtained with the original
database. We have these results for a significant number of protection levels.
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Figure 2. Number of correct links for the Concrete data set (top) and the Tarragona data set (bottom).
Data are protected using SVD and NMF-based protection. The number of correct links decreases
when protection is increased (i.e., singular values in SVD and components in NMF). Different curves
correspond to different numbers of attributes in the reidentification.

Figure 3 top displays the error obtained for machine learning models extracted from
the Concrete data set when these data are protected using Mondrian. In the figures, we have
a value of k up to 20, which accounts for significant protection. Note that in the experiments,
we use a training set of 824 records, which means that for k = 20, the k-anonymous file has
only 824/20 = 41 different records. Figure 3 bottom shows the difference between the error
when we apply the masking method and the error when we do not apply the masking
method (i.e., the mean error of the model trained with the original data set). Naturally,
larger values of k will result in more distortion of the protected file (fewer different records)
and produce a protected database that has low accuracy. In particular, for k equal to or
larger than 50 the error becomes extremely large. To illustrate this latter case, we provide in
Figure 4 the error for larger values of k. Results are also given for the Concrete database
protected using both MDAV (left) and Mondrian (right). In this case, the results correspond
to those obtained using a linear regression model. The figures provide the results of
different numbers of common attributes.
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Figure 3. Output model error (top) for the Concrete data set when data are protected using Mondrian.
Output model error difference (bottom) for the Concrete data set when data are protected using
Mondrian and when data are not protected. Three different models are considered: linear regression
(left), kernel ridge (middle), and support vector regression (right). Figures represent different
protection levels and different numbers of attributes in the database integration process.
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Figure 4. Output model error for the Concrete data set when data are protected using MDAV
(left) and Mondrian (right). Figures represent different protection levels and different numbers
of attributes in the database integration process. A larger discrepancy is shown in the figure for
3 common attributes in MDAV and for 2 common attributes in Mondrian.

Figure 3 shows that the error is about 1.1 with significant protection (k = 20 for
microaggregation using MDAV). For comparison and analysis, note that the range between
the maximum and minimum values of the output variable in the training set of this figure
(Concrete data set) is 80.27, and therefore, a maximum error of 1.5 represents the 1.8% of the
prediction output, and a maximum error of 1.0 represents the 1.2% of the prediction output.
For k > 60, the error becomes significantly large. As we have explained above, Figure 4
shows the results for MDAV and Mondrian with values of k up to k = 50 and k = 60.
Larger values of k produce results with still larger errors. In the case of the Tarragona data
set, we show that the range of outputs for the training set is 920,992.0, and then an error of
840 represents 0.91 % of the prediction output. The results of SGD are not displayed; this
regression algorithm behaves very badly returning large errors.

Figure 5 provides similar results (to Figure 3) for linear regression for different masking
methods, and different parameters for the same database, the Concrete data set. Errors in
the range [0, 2] are shown.
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Figure 5. Output model error for the Concrete data set when data are protected using microaggrega-
tion (left—MDAV and Mondrian), noise addition (middle—Gaussian noise and Laplacian noise),
and dimensionality reduction (right—NMF and SVD-based). Figures represent different protection
levels and different numbers of attributes in the database integration process. Figures correspond to
linear regression.

Figure 6 represents the mean and variance for ten executions of the error of the model
when data are protected using noise addition. The results correspond to those of the
Tarragona data set. Here, the 10 executions are computed on the same training set, but
masking noise is applied independently in the 10 runs. A noise parameter equal to zero
means no protection. Therefore, for the parameter equal to zero, the 10 executions produce
the same model. That is why the standard deviation is zero. This is not the case for non-zero
noise. We can see that other parameters have similar variances in the error.
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Figure 6. Mean output model error (left) and its variance (right), for 10 executions, for the Tarragona
data set when data are protected using noise addition. The machine learning model considered is
linear regression. Figures represent different protection levels and different numbers of attributes in
the database integration process.

In most of the results described in this work, we have not considered multiple parti-
tions of a database into different training and testing data sets, and the effects of this process.
This was considered for two masking methods (microaggregation and rank swapping,
using five and ten executions) in our previous work [9], and for microaggregation (using
20 executions) for the CASC data set in Figure 7. We have not considered here multiple
executions for all the experiments with all the parameterizations, as this is computationally
costly, and we preferred to consider instead more masking methods and more parameters.
The results reported here using single executions are consistent with those with multiple
executions (in both our previous work and in Figure 7).
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Figure 7. Results for the CASC data set masked using MDAV and for linear regression, comparison
for nC = 1, . . . , 6. Result of a single execution (left), mean results of 20 executions (middle), and
variance of 20 executions (right).

5. Conclusions and Future Work

This paper investigated how data masking methods impact the performance of data
integration and of machine-learning-based data-driven models. The experimental results
show that most of the masking methods we implemented provide good protection even
when two individually masked databases are integrated. As the protection increases, the
performance of data-driven models decreases. A trade-off of protection and data utility
can be achieved through parameterization. A limitation of this study, and of most studies
on the effects of masking methods, is that the level of protection depends on both the
concrete database and the user requirements. That is, there is no universal solution. In
any case, a take-away message of our research is that we can protect data so that correct
database integration is avoided while data-driven models can be built successfully, to a
certain extent, from the integrated data.

Based on the explorations in this work, there will be several directions for future
research. Firstly, in data integration, we can also consider the impact of reidentification
from the point of view of the importance of common attributes, in addition to the number
of common attributes. Secondly, more fine-tuning of machine learning algorithms can
be conducted for better data utility, given the same protection level. Third, we have
considered supervised machine learning for numerical data. Extensions for non-numerical
(e.g., categorical) data and for unsupervised machine learning (e.g., clustering) are also of
relevance. Another line of work is to consider over-representation of individuals [31] and
other biases, such as temporal bias [32] and spatial bias [33], applied to the data and see
if they affect the results; for example, whether over-representation of some types of users
affects the quality of database integration. Finally, our focus was on numerical data. The
extension of this work to masking methods for non-numerical data, as well as to protection
by means of synthetic data, is another research direction.
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