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Abstract: Biomedical named entity recognition (BioNER) is a preliminary task for many other tasks,
e.g., relation extraction and semantic search. Extracting the text of interest from biomedical documents
becomes more demanding as the availability of online data is increasing. Deep learning models have
been adopted for biomedical named entity recognition (BioNER) as deep learning has been found
very successful in many other tasks. Nevertheless, the complex structure of biomedical text data is still
a challenging aspect for deep learning models. Limited annotated biomedical text data make it more
difficult to train deep learning models with millions of trainable parameters. The single-task model,
which focuses on learning a specific task, has issues in learning complex feature representations
from a limited quantity of annotated data. Moreover, manually constructing annotated data is a
time-consuming job. It is, therefore, vital to exploit other efficient ways to train deep learning models
on the available annotated data. This work enhances the performance of the BioNER task by taking
advantage of various knowledge transfer techniques: multitask learning and transfer learning. This
work presents two multitask models (MTMs), which learn shared features and task-specific features
by implementing the shared and task-specific layers. In addition, the presented trained MTM is also
fine-tuned for each specific dataset to tailor it from a general features representation to a specialized
features representation. The presented empirical results and statistical analysis from this work
illustrate that the proposed techniques enhance significantly the performance of the corresponding
single-task model (STM).

Keywords: biomedical named entity recognition; deep learning; single-task model; ELMo; transfer
learning; multitask learning

1. Introduction

In today’s era, text data are publishing at a rapid rate and these online text data carry
valuable information. Nevertheless, a major share of these data corresponds to unstructured
forms, and manually dealing with such a large amount of free text is challenging and
problematic. Processing such a quantity of text data requires intelligent techniques based on
the problem domain. Natural language processing (NLP), a subfield of artificial intelligence,
is used to process unstructured text data, fulfilling the users’ needs. NLP enables computers
to comprehend, interpret, and manipulate human languages and has been applied to
various tasks, including topic discovery and modeling, sentiment analysis, and information
extraction, among others. Information extraction (IE) refers to extracting relevant data from
unstructured text. IE extends to numerous subtasks, one of which is known as named entity
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recognition (NER). Named entities refer to the proper nouns presented in the sentences.
NER recognizes text of interest and labels them into predefined categories such as person,
geographical location, organization, etc. NER is considered a sequence-labeling problem
that determines the output tag of the input words presented in the sentence [1–4].

IE has also become a critical activity in the biomedical domain, as biomedical text
is also publishing at an increasing rate. Biomedical named entity recognition (BioNER)
identifies the biomedical concepts and assigns them to predefined categories such as genes,
chemicals, diseases, etc., as shown in Figure 1. In practice, performing the BioNER task is
more challenging than a standard NER task as biomedical documents are different from
standard text data (e.g., newspaper articles) in several ways. Although there are certain
practices followed by researchers for writing biomedical concepts, still, no strict rules exist
for the biomedical domain. With open and growing biomedical literature, it becomes more
challenging to follow the same naming convention. Another issue concerns the classification
of the entities. Different human annotators, even with the same background, can sometimes
associate the same word with diverse medical concepts, e.g., “p53” corresponds to a protein
in the GENIA corpus. In contrast, the HUGA nomenclature annotates it as a gene “TP53” [5].

Figure 1. An illustration of the biomedical named entity recognition task.

It is also very common in biomedical texts to use different spelling variations for the same
entity. For example, “IL12”, “IL 12”, or “IL-12” refer to the same entity but adopt different
writing conventions [6]. Another challenging aspect for BioNER is learning synonyms
present in the text, e.g., PTEN and MMAC1 both represent the same gene entity but with
different synonyms.

Furthermore, long compound-word entities make the learning process for the BioNER
model more complicated, as these entities are expressed using different types of characters.
For instance, “10-Ethyl-5-methyl-5,10-dideazaaminopterin” and “12-o-tetradecanoylphorbol 13-
acetate” contain alphanumeric and special characters. Different tokenizers handle these
special characters differently. Therefore, applying different tokenizers may produce diverse
outputs for the same entity. Descriptive entities, e.g., “Pigment epithelium-derived factor”,

“Medullary thymic epithelial cells”, etc. make it challenging for entity boundary identification.
Biomedical entities may also comprise nested entities, e.g., “CIITA mRNA” symbolizes an
RNA mention; however, “CIIT” refers to DNA [7].

Additionally, a practice common in biomedical text writing is the use of acronyms for
entities, where an acronym may refer to different entities. For instance, “TCF” can refer
to “Tissue Culture Fluid” or the same acronym may apply to “T cell factor” [8]. Similarly,

“EGFR” can stand for “estimated glomerular filtration rate” or “epidermal growth factor receptor”.
Identifying an acronym for the specific entity depends on the context of the sentence; there-
fore, the BioNER system must learn how to distinguish them from each other. Additionally,
the capitalization feature of the entities in biomedical literature does not provide valuable
information about the entity.

In view of the limitations above, as mentioned earlier, the BioNER task is more chal-
lenging compared to the standard NER task. The early BioNER methods (e.g., dictionary-
based and rule-based approaches) are effective, but their performance is still limited
against open and growing biomedical literature. As compared to the dictionary-based
and rule-based methods, the classical machine learning algorithms have shown improved
results. The machine learning algorithms require an extensive handcrafted feature engi-
neering phase that has a direct impact on the performance of the models. The performance



Future Internet 2023, 15, 79 3 of 27

enhances with more discriminating features, while redundant and irrelevant ones may
degrade the performance.

The state-of-the-art techniques are based on deep learning methods, which somehow
eliminate the need for handcrafted features, while still producing the desired results. Deep
learning (DL) architectures consist of many layers, through which these systems learn the
features and complex structure of the data layer by layer. The implicit feature learning
ability of the DL models has been successful in different fields, e.g., computer vision [9],
speech recognition [10], and drug discovery [11], among others.

1.1. Multitask Learning

It has been observed that the performance of a deep learning model highly correlates
with the quantity of annotated data, i.e., the model performance improves with the quantity
of data available. Unfortunately, various biomedical tasks lack enough annotated text data,
and for this reason, in many cases, deep learning models cannot generalize well. Producing
manually annotated data is an expensive and time-consuming job. One solution to such
a barrier is to get the benefit of other associated methods that share common features. In
a single-task learning approach, various tasks cannot get any benefits from each other as
their features cannot be shared among them.

The multitask learning (MTL) approach allows different tasks to share their knowl-
edge among themselves using shared layers in their architecture, thus helping to improve
the performance of another task [12]. MTL is an inductive learning process that learns
to generalize by utilizing the knowledge of different tasks [13]. When the tasks are suffi-
ciently related, they can provide an inductive bias that forces models to learn generally
useful representations [14]. Two different methods are used in the MTL approach, i.e.,
hard parameter sharing and soft parameter sharing, which are shown in Figure 2. Hard
parameter sharing is the most common method used in MTL, where a complete sharing
(i.e., parameters) of hidden layers among different tasks is done. This article also focuses
on the hard-parameter-sharing approach. In soft parameter sharing, separate models are
created for different tasks. These models are then somehow enforced to loosely match the
parameters of the shared layers, most commonly done by regularizing the parameters of
the shared layers.

(a)
(b)

Figure 2. Hard-parameter- vs. soft-parameter-shared MTMs: (a) hard-parameter-shared MTM;
(b) soft-parameter-shared MTM.

The MTM can be seen as an implicit data augmentation technique as well. Jointly
training various models helps them to transfer their knowledge implicitly using a shared
layer(s) [15]. The MTL strategy, therefore, increases the size of the data available to the
MTM. The MTL approach helps the MTM to learn those features that cannot be learned in
the single-task learning approach for any specific task. In other words, it is difficult for an
STM to learn complex features of task B, but it is easier to learn when it is trained along
with task A. This is due to the fact that task A provides supervision to the MTM when it
comes to learning complex features of task B.
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MTL optimizes the model during its training to produce a generalized version of
the MTM. In single-task learning, a model is more prone to overfitting for a specific task,
whereas MTL decreases the possibility of trapping into overfitting as the model has to learn
the common representation for all tasks. Training more tasks brings more generalization for
MTMs. In MTL, a model focuses on more relevant features, as some tasks give information
about irrelevant and relevant features in high-dimensional and noisy data. Similarly, the
noise presented in the dataset has less impact in an MTL approach, since the noise is
averaged during the training. By using the MTL approach, we keep certain layers of the
model shared among various tasks while retaining some layers task-specific, this helps a
model to learn useful features for its current task. Training associated tasks simultaneously
allow the model to optimize the values of its parameters.

MTL has been widely applied in many domains, e.g., computer vision [16], speech
recognition [10], and drug discovery [11]. Collobert and Weston [17] used a CNN-based
MTM and trained multiple NLP tasks jointly such as POS tagging, NER, chunking, etc. [18]
showed that using the MTL approach, their model increased the performance for historical
spelling normalization. Peng and Dredze [19] used the MTL approach for different domains,
i.e., Chinese word segmentation and named entity recognition. Plank et al. [20] used an
auxiliary loss function for rare words and the primary loss function for the POS tagging task,
targeting 22 languages including Finnish, French, and English. Yang et al. [21] used the
MTL approach to perform different tasks simultaneously, including POS tagging, chunking,
and NER in English, Dutch, and Spanish. Zhang and Weiss [22] used POS tagging as a
regularizer of input representation for dependency parsing. Johansson [23] performed
the parsing of multiple treebanks in a shared-features representation approach and used
one treebank as input to another treebank. Søgaard and Goldberg [24] demonstrated that
auxiliary tasks should be used at the innermost layers so that the main task can effectively
learn from a shared representation. Hashimoto et al. [25] used a hierarchical model to learn
different NLP tasks at successively deeper layers jointly.

1.2. Transfer Learning

Transferring the learned information from one domain to another domain is referred to
as transfer learning [26]. Usually, a model is trained on a task in one domain, which is then
reused on another related domain or related task [27]. The MTL can also be seen as transfer
learning, but in MTL the tasks are learned simultaneously. In contrast, in transfer learning,
the tasks are learned sequentially. The transfer learning is done in two stages: pretraining
and domain adaptation. The pretraining stage involves the training of the base model,
which is then reused on the target task in the adaptation phase. The pretraining phase is
expensive, but it is usually required to be performed once. Therefore, it is best practice to
choose the source task that can exhibit general representations for many target tasks.

In transfer learning, the model is trained on an auxiliary task, which is then reused on
the main task. Similarly, the model can be trained on a source domain which can then be
reused on the target domain. For instance, the model can be trained on book reviews and
then reused on hotel reviews; in this case, the source and target domains are different, but
the source and target tasks are the same. Similarly, the source and domains can be the same
while the source and target tasks are different, e.g., the object detection model can be used
for image classification. In a third case, both the domains and the tasks are different, e.g.,
spam classifier is used for radiology text report classification.

In transfer learning, a pretrained model can also be used as a feature extractor or
model weight’s initialization. Feature extraction is a feature engineering process that is
performed using deep learning models instead of performing manually. When using a
pretrained model as a feature representation, some of the layers (usually the early/shallow
ones) are kept frozen. In this way, the base model works as an input feature for the target
model. Moreover, feature extraction is found to be effective for similar tasks in the transfer
learning approach. In this sense, the transfer learning technique can be considered a one-
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time feature engineering method that extracts input features (mostly low-level features,
e.g., dots or lines in an image) to other similar tasks.

Transfer learning also involves a fine-tuning method [28], where the weights of the
pretrained layers are used in the main task model, and then the whole model is fine-tuned.
In this case, the weights of the layers are not kept frozen. The idea is to relearn new features
rather than learn them from scratch. The naive example could be to learn how to count
numbers coming after five (5), so instead of relearning numbers again from one (1), we start
learning from the number six (6). The fine-tuning method actually helps a target model
to adopt a task-specific representation from the general-purpose representation of a base
model. This approach is useful when the objective is to implement a pretrained model for
various tasks.

Radford et al. [29] fine-tuned a pretrained transformer-based language model for task-
specific input transformations during an MTL approach. Oquab et al. [30] trained a model
on a huge dataset to extract the features for a dataset with few training instances. Al-Stouhi
and Reddy [31] empirically showed that the performance of a model could be improved
using transfer learning for an imbalanced labels dataset. Yang et al. [32] used a pretrained
POS tagging model for word segmentation. Zoph et al. [33] used a high-resource language
pair to pretrain a machine translation model, which was then applied to a low-resource
language pair. Yosinski et al. [27] performed experiments to compare the feature extractor
and the fine-tuning techniques. They found that, for the feature extractor, the performance
of the main task model depended on where the layers were cut. Researchers concluded
that keeping the top layers’ weight frozen could be helpful for similar tasks while keeping
the weights of the middle layers frozen lead to performance degradation because of the
complex coadaptations they learned. At last, keeping the weights of the lower layers frozen
did not show much performance degradation as these layers were more general. In contrast
to the feature extraction method, the authors found the fine-tuning method more effective,
and it did not require substantial changes in the base model to produce better results.

2. Proposed Methods
2.1. MTM-CNN Model

In this section, a multitask model (MTM-CNN) is proposed that consists of a convolu-
tional neural network (CNN) layer and BiLSTM layers as shown in Figure 3. The proposed
MTM-CNN model varies from the model introduced by [34,35] in different ways.

Crichton et al. [34] proposed a multitask model (MTM) based on a CNN to perform
BioNER. However, they only focused on the word-level features ignoring the character-
level ones. Although the word-level features give much information about the entities, the
character-level features help to extract common subword structures among the same entities.
Moreover, using only the word-level features can lead to out-of-vocabulary problems when
a specific word is not found in the pretrained word embedding. In addition, Wang et al. [35]
also performed BioNER using MTM with a single shared BiLSTM layer and found that the
word-level and character-level features enhanced the performance of the MTM.

Our proposed approach uses an orthographic-level representation of words, while
models presented by Crichton et al. [34] and Wang et al. [35] do not explicitly consider this
feature. Various studies have utilized words’ orthographic-level information for their mod-
els [36–38]. The words’ orthographic-level information provides some explicit information
to the model, which can help deep learning models to learn orthographic-level features
implicitly. This can also help the conditional random field (CRF) whose outputs highly
depend on handcrafted features [39]. In an MTM-CNN, the orthographic-level information
is used, speculating that the MTM-CNN can extract additional hidden features about the
current entity. In this section, the orthographic-level feature is referred to as case-level
features and both terms can be used interchangeably. The orthographic-level (case-level)
representation in the MTM-CNN considers the structure-level information of a word. The
case-level features considered in the experiments include the capitalization features of a
word, e.g., whether all letters in the specific word are capitalized or lower case, or if the
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specific word starts with a capital or lower-case letter, whether the word contains digits or
all alphabetic characters, etc.
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Figure 3. The proposed MTM-CNN (circles represent embeddings). Innermost indicates the task is
trained without task-specific BiLSTM. Outermost indicates the task is trained with task-specific BiLSTM.

Differently from Wang et al. [35], the proposed MTM-CNN utilizes a CNN (repre-
sented by the circled 1 in Figure 3) instead of BiLSTM, to extract character-level features.
Note that the model proposed by Crichton et al. [34] does not take into account the
character-level features. Character-level information encourages the model to pull out
generic subword structures among the same entities. Additionally, only considering the
word-level features can be prone to the out-of-vocabulary problem. Many of the state-
of-the-art approaches use a CNN at the character level [40,41] due to its unique feature
extraction ability. A CNN perceives global-level features from local-level ones and therefore
allows the CNN to pull out additional veiled features [34].

Third, the MTM-CNN implements stacked layers of BiLSTM units in contrast to [35].
The stacked BiLSTM units encourage each of them to perceive the hidden pattern of the
data exhibited at various time stamps. This helps the BiLSTM network to gain knowledge
of the features at a more abstract level. The first innermost BiLSTM layer (marked by the
circled 2 in Figure 3) is shared among all the tasks while the second layer of BiLSTM (shown
by the circled 3 in Figure 3) is task-specific. The MTM-CNN exploits CRF (represented by
the circled 4 in the figure) at the output layer for final sequence labeling. CRF performs
a tagging of the current token by considering neighboring tags at a sentence level [38].
Yang et al. [42] performed experiments with both CRF and Softmax and concluded that
CRF produced better results compared to Softmax.

Another of our contributions is the use of different auxiliary tasks for the BioNER
task, where two dissimilar auxiliary tasks—GENIA-POS tagging and CoNLL chunking
(other than BioNER)—are exploited in the experiments to investigate their impact on the
MTM-CNN. The auxiliary tasks are trained in the same way as the other BioNER tasks, i.e.,
with a task-specific BiLSTM layer (outermost).

Another important aspect of our work concerns analyzing the impact of auxiliary tasks
at different levels of MTMs. In the MTL approach, different tasks provide a supervision
signal to other tasks. It is important to inspect the proper supervision that can be at any level.
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Following this hypothesis, the auxiliary tasks are trained at the innermost (shared) BiLSTM
layer without any task-specific BiLSTM. Assuming that this approach makes the innermost
shared BiLSTM layer a complete feature representation of that task and propagates more
useful signals to the subsequent task-specific BiLSTM layer. The same hypothesis is applied
to the auxiliary BioNER tasks where they are trained without task-specific BiLSTM. During
the MTM-CNN training, each task is defined with its optimizer, and therefore the loss
function related to the specific task is optimized.

2.2. MTM-CW Model

The MTM-CNN model presented in Section 2.1 comprised stacked layers of BiLSTM
units. However, moving towards a deep LSTM network can cause the vanishing gradient
problem as well [43]. Furthermore, using a very deep architecture for some tasks could
also lead to catastrophic interference. In catastrophic interference, the neural network
starts forgetting what it has learned previously [44]. In other words, the performance of
the neural network drops notably for the previous instances given that it performs well
only on the current new instances. The catastrophic forgetting usually occurs at the upper
layers [45]. Additionally, the generalized features (learned in an MTL approach) allow
the MTMs to perform better on different tasks, but at the same time, they also cause the
catastrophic forgetting problem [46] . To address these issues, a new model called MTM-CW
is proposed in this section. The proposed multitask model with character and word input
representations (MTM-CW) propagates the input embedding information along with the
outputs of different shared layers to the subsequent layers as shown in Figure 4. This also
encourages a model for continual learning. This also allows successive layers to understand
the additional abstract structure from input embeddings and the encoded representation
of the previous layers to overcome the vanishing gradient problem and the catastrophic
interference in stacked LSTM networks. The skip/residual connections (circled 5 and 6) are
represented with dashed arrows in Figure 4 and these skip connections make this model
different from our previous proposed model.

 
Figure 4. Proposed MTM-CW Model where dashed arrows show skip connections. Circles represent
embedding.
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2.3. Multi-Task Model with Transfer Learning

The proposed approach uses multitask learning with transfer learning. The MTM
model is similar to the one proposed in [35,47], but it is extended with task-specific BiLSTM
as shown in Figure 5. The MTM uses word and character representations of the sentence
and is trained on different datasets. It is used as a base model and is reused as the starting
point of an STM (MTM→STM). The auxiliary task involves the training of an MTM on
various datasets, whereas the main task is the training of an STM for each specific dataset
that is initialized by the pretrained MTM. For transfer learning, we keep both models,
the auxiliary task and the main task same. More specifically, the base MTM is fine-tuned
for a specific dataset (MTM → STM), i.e., neither new layer(s) is introduced nor cut off
during fine-tuning of the base MTM. Introducing new task-specific layer(s) with randomly
initialized weights could decrease the model’s performance during the fine-tuning due to
the lack of guidance for the new task [48].

Our approach is based on the idea that during the training phase, the MTM learns
general features at common layers of the model. The MTL approach allows models to
learn those task-specific features, which can be more challenging when learning them
independently. In other words, the approach of learning rigorous features by model A
during training can be more complex, and so model A discovers these complex features
from another task during the MTL approach. When fine-tuning (transfer learning) is
performed, the main model uses task-specific features along with generalized features to
learn the main task. These generalized features at different levels further help the main
model to learn task-specific features. In other words, these generalized features are fine-
tuned into task-specific features. The purpose is to move from a generalized model (MTM)
to a specialized model (STM). Yosinski et al. [27] performed experiments to compare the
feature extractor and the fine-tuning techniques. They found that, for the feature extractor,
the performance of the main task model highly depended on the number of layers that
were eliminated. On the other hand, for the fine-tuning method, the authors did not find
such constraints and produced better results with the fine-tuning approach.
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Figure 5. Our proposed model used for fine-tuning (MTM→STM).
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Our experiments were conducted for three variants of the proposed method, where
the MTM was trained for a particular number of epochs and then the transfer learning was
applied, fine-tuning the MTM for a specific dataset. In the first experiment (MTM

10→STM),
the MTM

10
was trained for ten epochs to learn the standard features representation of

various tasks and then fine-tuned on a specific dataset. In the second experiment (MTM
20→

STM), the MTM
20

was trained for twenty epochs followed by fine-tuning it for a specific
dataset. In the last experiment, the MTM

cmp
was trained for complete epochs or till an early

stop occurred (the early stop was also used for the two previous experiments as well) after
which it was fine-tuned for a specific dataset (MTM

cmp→STM).

2.4. Embeddings from Language Models

This section introduces the experiments regarding ELMo (Embeddings from Language
Models). ELMo produces contextual-based embeddings, in contrast to word2vec [49] or
Glove [50], which generate static single vector embeddings. ELMo word representations
work on characters, which allows the network to use lexical knowledge to form reliable
representations for out-of-vocabulary tokens. Contrary to other static word embeddings,
ELMo produces word vectors at run time. ELMo uses a character-based CNN for input
words. The output is the raw word vector and is fed to the first layer of BiLSTM. The output
of the first layer forms the intermediate word vector which is also fed to the second layer of
BiLSTM, which outputs another intermediate word vector. The final ELMo representation
consists of the weighted sum of these two intermediate word vectors and the first raw
vectors from the CNN [51]. The character-based CNN produces the noncontextualized
word embedding based on the word’s characters.

The purpose of this experiment was to explore the performance of the BioNER using
pretrained static word embeddings vs. contextualized word embeddings. The contextual-
ized embedding representation was integrated into the model shown in Figure 6, where
the model used ELMo embedding with other input representations of the word.
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Figure 6. Integration of ELMo in the model.
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3. Experiments

Our experiments were performed on 15 datasets which were also used by Wang et al. [35]
and Crichton et al. [34]. The bioentities in these datasets were disease, species, cell component,
cell, gene/protein, and chemical. Every dataset included training, validation, and test sets.
Detained descriptions of the datasets used in the experiments can be found in Appendix A . We
followed the experimental setup analogous to Wang et al. (https://github.com/yuzhimanhua/
Multi-BioNER, accessed on 1 February 2023 ), where both training and validation datasets were
used for training the model.

We used the IOBES tagging format [52], where I stands for inside-entity when the
token occurs inside the entity span, O (outside-entity) represents tokens that do not belong
to the entity class, B represents the beginning of an entity, E (end-entity) indicates the last
token of the entity span, and S (single-entity) is used when the entity consists of a single
token. For performance evaluation of the model, we used the (macroaveraged) F1-score
metric (i.e., each class was considered equally important), as it is the most widely adopted
for named entity recognition tasks [34,35,53]. As it is usual for named entity recognition
tasks, the evaluation basically did not take into account the recognition of single tokens
but rather that of the whole entity. More specifically, we evaluated the model performance
using the macroaveraged F1-score since it allowed us to avoid biases towards the majority
class. The macroaveraged F1-scores reported in the following sections represent the average
scores of 10 runs. Henceforth, when mentioning F1-score, we mean the macroaveraged
F1-score. For the Tables presented in the later sections, we show the best results with
bold font.

Moreover, we utilized a domain-specific pretrained word embedding to avoid a high
rate of out-of-vocabulary words problem. The WikiPubMed-PMC word embedding was
used, which was trained on a huge quantity of data from PubMedCentral(PMC) articles and
PubMed abstracts as well as on English Wikipedia articles [54], whereas the character-level
embedding was initialized randomly, and the orthographic-level (case) embedding was
described by the identity matrix in which the existence of a word’s orthographic feature
was defined with one in the diagonal of a matrix.

We also investigated different hypotheses extending the experiments on our proposed
models. The first hypothesis concerned the effect of auxiliary tasks on the main task. The
MTM-CNN was trained with similar BioNER auxiliary tasks while, in another experiment,
the proposed model was additionally trained along with the dissimilar auxiliary tasks
which were GENIA-POS tagging and CoNLL chunking.

We also investigated the appropriate layers where effective supervision and complete
feature representation from the auxiliary task could be accomplished (see Table 4). For this
reason, the auxiliary tasks were trained at the earlier layers (innermost layer in Figure 3)
as well as at the later layers (outermost layer in Figure 3). Training at the earlier layers of
the model did not include a task-specific BiLSTM layer for the auxiliary tasks while the
main task was extended with a task-specific BiLSTM. The empirical results and statistical
analysis showed that auxiliary tasks were more beneficial when used at the inner layer. This
indicated that there was hierarchical learning between different tasks in the MTL approach.

The experiments for the Embeddings from Language Models (ELMo) implementation
was based on AllenNLP (https://github.com/allenai/allennlp, accessed on 1 February 2023)
and used a pretrained ELMo model trained on PubMed data. The LSTM unit size was 4096
and the output dimension was 512. In the experiments, the weighted average weights (the
pretrained model weight can be found here https://allennlp.org/elmo, accessed on 1 February
2023) of all three layers (CNN, 2*biLMs) were used for the contextualized representation of
the word, whereas for static word embedding, wiki-PubMed-PMC was utilized.

We also performed and discuss our statistical analysis in detail to find out the statis-
tical significance among different results with graphical representations for a better and
clear understanding. The statistical analysis was performed using Friedman’s test [55] to
determine the statistical significance of the difference among different models’ results.

https://github.com/yuzhimanhua/Multi-BioNER
https://github.com/yuzhimanhua/Multi-BioNER
https://github.com/allenai/allennlp
https://allennlp.org/elmo
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4. Results and Discussion of MTM-CNN

As a first step, a single-task model (STM-CNN) was implemented for all 15 datasets
mentioned earlier. Afterward, the MTM-CNN was trained with all 15 datasets in an MTL
approach. Table 1 depicts the comparison between the results of the MTM-CNN and its
counterpart the STM-CNN. Each experiment was run 10 times, and the average F1-score of
those 10 runs is reported in this section and the best results are shown in bold font.

Table 1. STM vs. MTM-CNN.

Datasets STM-CNN MTM-CNN

AnatEM 85.8 86.9
BC2GM 80.9 80.8
BC4CHEMD 88.6 87.3
BC5CDR 85.6 87.8
BioNLP09 87.0 88.7
BioNLP11EPI 81.4 84.7
BioNLP11ID 83.2 87.6
BioNLP13CG 81.2 84.2
BioNLP13GE 73.3 79.8
BioNLP13PC 86.3 88.8
CRAFT 83.8 83.1
Ex-PTM 72.7 80.9
JNLPBA 74.4 74.0
LINNAEUS 87.3 87.7
NCBI-disease 84.1 85.6
Average 82.4 84.5

We see that, for most of the datasets, the results improved markedly by using the MTM-
CNN with an absolute average difference of F1-score up to 2.1%, showing the importance of
the MTL approach in BioNER. More interestingly, the F1-score for BioNLP13GE increased
from 73.3 to 79.8. The BC2GM, BC4CHEMD, CRAFT, and JNLPBA showed a performance
degradation with the MTL approach. One possible reason could be the size of these datasets.
The size of these datasets was bigger than the rest of the other datasets. For this reason,
a performance increase was noticed for those datasets that had a small number of entity
annotations. This can be seen for Ex-PTM which had a small number of entities and showed
a noticeable improvement, increasing to 80.9 from 72.7 in F1-score, with the MTL approach.
These results suggested that the MTM-CNN improved the performance of those datasets
which did not have many examples. The results illustrated that the MTM-CNN could learn
complex features that were difficult to learn in an STM-CNN.

Table 2 shows the comparison of various STM-CNNs with respect to state-of-the-art
STMs. Conclusively, our STM-CNN showed an average F1-score gain of up to 4% compared
to that in [34], while against Wang et al. [35], our STM-CNN model depicted an average
F1-score increase pf up to 2%. For most of the datasets, the STM-CNN showed a perfor-
mance gain compared to other approaches while the model proposed by Wang et al. [35]
illustrated a performance increase on four of these datasets. A prominent increase can be
noticed for BioNLP09, where the STM-CNN raised the F1-score from 84.2 to 87.0 against
that of the model proposed by Wang et al. [35] The model proposed by Crichton et al. [34]
did not exhibit any improvement on any dataset; their model [34] is CNN-based and it also
does not consider the character-level information which may lead to the out-of-vocabulary
problem. This might be the reason that this model failed to show a performance gain
compared to the results of Wang et al. and the MTM-CNN.

The comparison of various MTMs is illustrated in Table 3. We observe that the MTM-
CNN model outperformed the model proposed by Crichton et al. [34] with an absolute
increase of the average F1-score of up to 4%. It is worth noticing that for BC2GM, the
F1-score rose to 80.8 from 73.2 and for BioNLP11ID, the F1-score improved from 81.7 to 87.7.
Compared to the multitask model presented by Wang et al. [35], the MTM-CNN showed



Future Internet 2023, 15, 79 12 of 27

an average increase of F1-score of 0.8%. The most prominent increase in F1-scores was
noted for BioNLP11EPI (+1.6%), BioNLP11ID (+4.4%), BioNLP13CG (+1.8%), and JNLPBA
(+1.9%) against Wang et al. [35]

Table 2. Single-task model results comparison.

Datasets Wang et al. [35] Crichton et al. [34] STM-CNN

AnatEM 85.3 81.5 85.8
BC2GM 80.0 72.6 80.9
BC4CHEMD 88.7 82.9 88.6
BC5CDR 86.9 83.6 85.6
BioNLP09 84.2 83.9 87.0
BioNLP11EPI 77.6 77.7 81.4
BioNLP11ID 74.6 81.5 83.2
BioNLP13CG 81.8 76.7 81.2
BioNLP13GE 69.3 73.2 73.3
BioNLP13PC 85.4 80.6 86.3
CRAFT 81.2 79.5 83.8
Ex-PTM 67.6 68.5 72.7
JNLPBA 72.1 69.6 74.4
LINNAEUS 86.9 83.9 87.3
NCBI-disease 83.9 80.2 84.1
Average 80.4 78.4 82.4

Table 3. Results comparison for different multitask models.

Datasets Wang et al. [35] Crichton et al. [34] MTM-CNN

AnatEM 86.0 82.2 87.0
BC2GM 78.9 73.2 80.8
BC4CHEMD 88.8 83.0 87.4
BC5CDR 88.1 83.9 87.9
BioNLP09 88.1 84.2 88.7
BioNLP11EPI 83.2 78.9 84.8
BioNLP11ID 83.3 81.7 87.7
BioNLP13CG 82.5 78.9 84.3
BioNLP13GE 79.9 78.6 79.8
BioNLP13PC 88.5 81.9 88.8
CRAFT 82.9 79.6 83.2
Ex-PTM 80.2 74.9 81.0
JNLPBA 72.2 70.0 74.1
LINNAEUS 88.9 84.0 87.8
NCBI-disease 85.5 80.4 85.7
Average 83.8 79.7 84.6

4.1. Effects of Different Auxiliary Tasks

In the previous experiments, all the auxiliary tasks were the same, i.e., both auxiliary
and main tasks were the same. In order to see the effect of different tasks in the MTL
approach, the experiments were extended with various tasks, also considering the same
BioNER task but at a different level of layers in the MTM-CNN.

In this regard, three different approaches were adopted. In the first approach (MTM-
CNNF), during the training of the MTM-CNN, two additional but different auxiliary
tasks were introduced: these were GENIA-POS tagging and CoNLL chunking. In the
second approach, MTM-CNNFin

, the auxiliary tasks (GENIA-POS tagging and CoNLL
chunking) were trained at the innermost layer. This eliminated the task-specific BiLSTM
(layer denoted by a circled 3 in Figure 3) for these two auxiliary tasks. Using auxiliary
tasks at the innermost layer helped the outermost layer (circled 3) to learn from a complete
representation of the auxiliary tasks. The presented approach illustrated the performance
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improvement compared to the first approach, which therefore motivated the third approach
of auxiliary tasks of this section.

In the third approach (MTM-CNNin), the auxiliary tasks were the same BioNER tasks
used in the MTM-CNN but this time, the auxiliary tasks were trained at the innermost layer
(without task-specific BiLSTM) and the main task was used at the outermost layer (having
a shared BiLSTM layer, a connection from the circled 2 to the circled 4 in Figure 3)). For
instance, the MTM-CNNin was trained for AnatEM, then the rest of the datasets (BC2GM,
BC4CHEMD, etc.) were treated as auxiliary tasks for AnatEM and did not have any task-
specific BiLSTM. More specifically, in both the second and third approaches, the auxiliary
tasks did not have the task-specific BiLSTM layer, while the main tasks had the task-specific
BiLSTM layer.

Table 4 shows the results of approaches using different auxiliary tasks. It can be seen
that by introducing the GENIA-POS and CoNLL chunking auxiliary tasks, the results (MTM-
CNNF) improved for ten datasets against the MTM-CNN with an F1-score gain of up to 2.5%.
We see that the MTM-CNNF improved the F1-score for CRAFT from 80.9 to 83.6. When the
auxiliary tasks were used at the innermost layer (they did not have task-specific BiLSTM),
it was noticed that the results of the MTM-CNNFin

improved for twelve datasets (with an
increase in F1-score of up to 3%) compared to those of the proposed MTM-CNN. For CRAFT,
we noticed that the F1-score increased from 80.9 to 84.1 against the MTM-CNN. Similarly,
when the same BioNER auxiliary tasks were used at the innermost layer (last column) as in the
proposed MTM-CNNin, the results improved for nine datasets. Conclusively, the MTM-CNN
was found more effective when trained with auxiliary tasks other than the same BioNER tasks.

Table 4. Results comparison of proposed multitask learning approach with different auxiliary tasks
and at different levels of the main model.

Datasets MTM-CNN MTM-CNNF MTM-CNNFin MTM-CNNin

AnatEM 86.9 87.1 87.3 86.6
BC2GM 80.8 81.4 81.3 81.2
BC4CHEMD 87.3 88.6 88.4 87.9
BC5CDR 87.8 88.1 88.3 88.0
BioNLP09 88.7 88.7 88.7 88.9
BioNLP11EPI 84.7 84.6 84.9 84.5
BioNLP11ID 87.6 88.0 87.6 87.5
BioNLP13CG 84.2 84.4 84.5 84.6
BioNLP13GE 79.8 79.4 80.0 80.0
BioNLP13PC 88.8 88.7 89.0 88.7
Ex-PTM 83.1 81.4 81.5 81.1
CRAFT 80.9 83.6 84.1 83.5
JNLPBA 74.0 72.4 72.6 72.4
LINNAEUS 87.7 88.9 88.3 88.4
NCBI-disease 85.6 85.7 86.0 85.7
Average 84.5 84.7 84.8 84.6

4.2. Statistical Analysis of MTM-CNN

The performance of the models was analyzed statistically, and the Friedman test
was applied to the models’ outputs. The Friedman test is suitable when three or more
comparisons are drawn [55,56]. Figure 7 shows that the difference between the results
produced by the proposed models and their variants was statistically significant. All MTMs
results were significantly better than the STM-CNN results. The result of the MTM-CNNFin

(GENIA-POS and CoNLL used at the innermost layer) was found significantly better with
respect to all approaches except for the MTM-CNNF (GENIA-POS and CoNLL used at
the outermost layer).

The output ranks of the Friedman test were considered to analyze which models
were statistically superior to other model(s). Figure 8 shows the models according to their
statistical ranks where the leftmost one represents the best model which decreases from left
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to right. It can be seen that the proposed MTM-CNNFin
was significantly better than the

rest of the approaches. Using the auxiliary tasks at the innermost layer was found the most
effective, producing significantly better results with respect to most of the other approaches.

Figure 7. Post hoc pairwise analysis of Friedman’s test for the MTM-CNN.

Figure 8. Graphical representation of the Friedman test for the MTM-CNN. Models were drawn
according to their ranks starting with the best model from left to right.

5. Results and Discussion of MTM-CW

Table 5 shows the comparison of the MTM-CW with previous approaches [35]. A
substantial improvement can be observed in the F1-score for the MTM-CW compared
to these models. The MTM-CW elevated the F1-score for twelve and eleven datasets
compared with Wang et al. [35] and the MTM-CNN, respectively. We found that the MTM-
CW increased the F1-score to 87.1 from 83.2 for BioNLP11ID, compared with the model
presented by Wang et al. [35]. To observe whether skip connections (connections from
previous layers) truly contributed to the performance of the model, the skip connections
(numbered 5 and 6) were dropped (Figure 4). However, we see that the MTM-CWw/o

elevated the F1-score to 88.1 from 87.1 for BioNLP11ID when compared against the MTM-
CW. The MTM-CW without skip connections (MTM-CWw/o) made it similar to the MTM-
CNN (Section 2.1) but with two shared BiLSTM layers. It can be observed that few datasets
showed moderate performance increases, while for most datasets the performance dropped.
This supports the intuition of proposing the MTM-CW, where propagating the information
to the lower layers using skip connections positively impacted the model. Additionally, it
is worth noticing that even after removing those skip connections, the MTM-CWw/o still
yielded a better F1-score compared to state-of-the-art models. This shows that with the
increasing size of the training examples, more layers of LSTM should be practiced [43]. For
this reason, the proposed model showed a performance gain compared to Wang et al. [35].
Conclusively, the proposed MTM-CW and MTM-CWw/o showed an average performance
gain of 1.3% and 1.2%, respectively, against the model proposed by Wang et al. [35].
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Table 5. Multitask models comparison where CW represents character and word, respectively.

Datasets Wang et al. [35] MTM-CNN MTM-CW MTM-CWw/o

AnatEM 86.0 86.9 87.5 86.9
BC2GM 78.8 80.8 81.5 81.2
BC4CHEMD 88.8 87.3 89.2 87.4
BC5CDR 88.1 87.8 88.5 88.1
BioNLP09 88.0 88.7 88.5 89.3
BioNLP11EPI 83.1 84.7 85.3 85.0
BioNLP11ID 83.2 87.6 87.1 88.1
BioNLP13CG 82.4 84.2 84.9 84.6
BioNLP13GE 79.8 79.8 80.9 82.2
BioNLP13PC 88.4 88.8 89.1 89.0
CRAFT 82.8 83.1 85.2 83.4
Ex-PTM 80.1 80.9 81.7 82.4
JNLPBA 72.2 74.0 72.1 72.0
LINNAEUS 88.8 87.7 88.1 88.6
NCBI-disease 85.5 85.6 85.0 85.1
Average 83.7 84.5 85.0 84.9

Statistical Analysis of MTM-CW

To statistically evaluate the results obtained by the proposed MTM-CW, the Friedman
test was performed [56]. Figure 9 illustrates the post hoc Friedman test where p values
show the significance level. We found that the difference between results produced by all
the models was statistically significant. The results of the proposed model (MTM-CW)
were found statistically significant. The MTM-CW was also statistically significant against
the MTM-CNN and its variants except for the MTM-CNNFin

(GENIA-POS and CoNLL
used at the innermost layer).

Figure 9. Post hoc pairwise analysis of Friedman’s test for MTM-CNN vs. MTM-CW.

The statistical analysis was also extended with the pairwise comparison of different
models to see which model was statistically better than the others. The graphical repre-
sentation of the pairwise comparison is shown in Figure 10. The MTM-CW was found
statistically better than the rest of the approaches on its right side. It can be seen that the
MTM-CNN was statistically worse compared to the other models.

Figure 10. Graphical representation of the Friedman test for MTM-CW vs. MTM-CNN. The arrows
show models that are statistically significant with each other.
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6. Results and Discussion for Fine-Tuned MTM (MT M→ST M)

Table 6 displays the experimental results where the bold text shows the best F1-score.
Note that in Table 6, the STM and MTM we indicate are the models presented in Figure 5
(Section 2.3). In this table, a performance increment for several datasets can be observed
for the MTM compared to the STM, whereas a drop of F1-score is noticed for BC2GM,
BC4CHEMD, BC5CDR, and CRAFT. This suggests that the MTM did not always manage
to enhance the performance of the STM.

From Table 6, it can be seen that the fine-tuning (MTM
10→STM) showed a performance

increase for all datasets compared to the STM, except BC4CHEMD. The reason could be
related to the lesser sparsity presented in the BC4CHEMD dataset as it is a single-entity
dataset with a large number of chemical entities. The (MTM

10→STM) model learned more
prominent features in contrast to the MTL approach; when comparing it with the MTM, we
saw improvements in the F1-score for all datasets except for BioNLP09, BioNLP13GE, and
Ex-PTM. The results of the STM and MTM for these three datasets showed a substantial
performance gain with the MTM approach. This indicated that it was difficult to learn
complex features from these datasets independently in the STM and they could be learned
in the MTM. The training of MTM10 extracted useful features for these datasets but it might
have started to forget such features, or the noise presented in these datasets might have
caused a performance drop.

Table 6. Results comparison of our different fine-tuned approaches of the MTM (MTM→STM).

Datasets STM MTM MTM
10→ STM MTM

20→ STM MTM
cmp→ STM

AnatEM 86.7 87.5 87.9 88.0 88.0
BC2GM 81.7 81.6 82.1 82.2 82.0
BC4CHEMD 90.4 89.0 89.9 90.4 90.4
BC5CDR 88.5 88.4 88.8 89.0 89.1
BioNLP09 87.8 89.0 88.5 88.7 88.5
BioNLP11EPI 83.1 85.2 85.3 85.5 85.4
BioNLP11ID 86.3 87.5 87.6 87.8 87.9
BioNLP13CG 83.1 84.9 84.9 85.2 85.1
BioNLP13GE 76.4 80.3 80.1 80.1 80.2
BioNLP13PC 87.7 89.2 89.3 89.2 89.3
CRAFT 84.7 84.2 84.9 85.3 85.0
Ex-PTM 74.0 82.1 81.7 82.0 81.8
JNLPBA 72.2 72.8 73.0 72.1 71.9
LINNAEUS 87.6 88.4 88.8 88.2 88.8
NCBI-disease 84.9 86.2 86.2 85.9 86.2
Average 83.7 85.1 85.3 85.3 85.3

Continuing the experiments, the MTM model was trained for 20 epochs, (MTM20),
and fine-tuned (MTM

20→STM) for each specific dataset. Comprehensively, we saw that
among 15 datasets, JNLPBA was the only dataset for which (MTM

20→STM) did not show
an increase in F1-score compared to the STM; however, the degradation was comparable.
An overall performance increment could be observed for nine datasets compared with
the MTM, while for six datasets, the performance was degraded. Compared with the
(MTM

10→STM) approach, a performance improvement could be seen for ten datasets, while
the performance degraded for five datasets. Comparing the F1-score with that of the MTM,
the (MTM

20→STM) was unable to show any increase in the F1-score for the protein datasets
(BioNLP09, BioNLP13GE, Ex-PTM) while leveraging the performance for BioNLP11PEI.
The same performance decrease behavior was also noticed for JNLPBA which comprises
huge protein examples as well (see Table A1 in Appendix A). The performance degradation
for the LINNAEUS dataset might be due to the insufficient number of examples for the
entity class. This suggests that these datasets were more feasible with the MTL approach.
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Note also that (MTM
20→STM) had improved results for BC4CHEMD compared to those of

the STM and MTM.
In a third experiment, a fully trained MTM (MTMcmp) was fine-tuned for each dataset.

It was observed that (MTM
cmp
→STM) showed a performance gain for 11 datasets compared

to the MTM. When comparing the results with the STM, we found that JNLPBA was
the only dataset among others, which was unable to improve the F1-score. Furthermore,

comparing it with (MTM
10
→STM), the method illustrated a performance improvement for

13 datasets whereas comparing it with (MTM
20→STM), a performance gain was noticed

for 7 datasets. We further noticed that similarly to (MTM
20→STM) and (MTM

10→STM),
the (MTM

cmp→STM) also showed a performance drop for the protein datasets (BioNLP09,
BioNLP13GE, Ex-PTM, and JNLPBA) when evaluated against the MTM. However, unlike
in (MTM

20→STM), a performance improvement could be seen for the LINNAEUS and
NCBI datasets compared to that of the MTM. The (MTM

cmp→ STM) achieved the best
F1-score for BC4CHEMD, for which the MTM performed worse with respect to the STM.
Comparing it with the (MTM

10→STM) method, JNLPBA was the only dataset for which
(MTM

cmp→STM) did not show any performance gain. Additionally, evaluating it with
the (MTM

20→ STM) model, a performance drop was observed for BC2GM, BioNLP09,
BioNLP11EPI, BioNLP13CG, CRAFT, Ex-PTM, and JNLPBA whereas for AnatEM and
BC4CHEMD, the difference was negligible. We speculate that the reason for the drop in
F1-score was related to the shared layer in (MTM

cmp→STM) which had learned features that
became more task-specific and therefore favoring only specific datasets.

The results of the proposed method were also compared with the other MTMs pre-
sented in this work and are shown in Table 7, where it can be observed that the proposed
fine-tuned models (MTM→STM) had increased in performance compared to the other
methods. The proposed MTM-CW (see Section 2.2) had an increase in performance for a
single dataset while the proposed MTM-CNN (see Section 2.1) showed a performance gain
for only two datasets compared to all fine-tuned models.

Table 7. Results comparison of MTM→STM with state-of-the-art MTMs.

Datasets MTM-CNN MTM-CW MTM
10→ STM MTM

20→ STM MTM
cmp→ STM

AnatEM 86.9 87.5 87.9 88.0 88.0
BC2GM 80.8 81.5 82.1 82.2 82.0
BC4CHEMD 87.3 89.2 89.9 90.4 90.4
BC5CDR 87.8 88.5 88.8 89.0 89.1
BioNLP09 88.7 88.5 88.5 88.7 88.5
BioNLP11EPI 84.7 85.3 85.3 85.5 85.4
BioNLP11ID 87.6 87.1 87.6 87.8 87.9
BioNLP13CG 84.2 84.9 84.9 85.2 85.1
BioNLP13GE 79.8 80.9 80.1 80.1 80.2
BioNLP13PC 88.8 89.1 89.3 89.2 89.3
CRAFT 83.1 85.2 84.9 85.3 85.0
ExPTM 80.9 81.7 81.7 82.0 81.8
JNLPBA 74.0 72.1 73.0 72.1 71.9
LINNAEUS 87.7 88.1 88.8 88.2 88.8
NCBI 85.6 85.0 86.2 85.9 86.2
Average 84.5 85.0 85.3 85.3 85.3

Statistical Analysis of MTM→STM

The results were evaluated using Friedman’s statistical test as presented in Figure 11.
The figure shows that all the variants of MTM→STM produced statistically significant
results against their STM and MTM counterparts. The results were statistically significant
with the previously mentioned approaches, the MTM-CNN and MTM-CW. Nevertheless,
the MTM→STM did not generate significant results with each other.

The models are also shown according to their Friedman statistical ranks and are given
in Figure 12. The figure indicates that all the fine-tuned models produced higher Friedman
statistical scores. The MTM

cmp→STM generated the highest statistical rank indicating that
this model covered a wider range of features, benefiting datasets suitable for both the MTL
and STL approaches. The MTM

10→STM produced the lowest ranks among the fine-tuned
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models, which showed that the base model (MTM10) for that experiment did not learn
distinct features and therefore, using that model as a starting point for the STM did not
benefit the model.

Figure 11. Post hoc Friedman test output for MTM→STM.

Figure 12. Graphical representation of Friedman test ranks produced by MTM→STM. Models are
shown according to their ranks starting with the best model from left to right.

7. Results and Discussion for ELMo

The comparison of different models trained with various approaches of ELMo con-
textual embeddings is shown in Table 8. It can be seen that the STMEL (the STM trained
with ELMo embeddings) performed better compared with the MTMEL (the MTM trained
with ELMo embeddings) with average F1-score gain of 0.2%. It is observed that the STMEL

generated an F1-score of 91.3 for BC4CHEMD which dropped to 88.6 when the MTMEL was
used. It can be hypothesized that the performance drop from the STM to the MTM can be
due to the entity ambiguity and prevalence of unseen entity (the probability of confronting
a word never seen during training). We speculate that the performance of the MTMEL

dropped as it could not overcome the ambiguity problem that occurred during the MTL
approach. Additionally, the MTL approach also performed implicit data augmentation
which decreased the prevalence of the words (ELMo saw huge numbers of words in the
MTL approach). More specifically, the performance of the contextual embeddings dropped
for BioNER using MTL as it increased entity ambiguity and decreased prevalence. How-
ever, when performing the transfer learning approach (fine-tuning the MTMEL for each
specific dataset), the performance of the STM (MTM

cmp
EL→STMEL ) increased with an average

F1-score gain of 0.6%, as again, we can assume that the entity ambiguity decreased and
the prevalence increased for contextual embeddings during the STL approach. It is worth
noticing that the MTM

cmp
EL→STMEL increased the F1-score for BC4CHEMD to 91.1 from 88.6

obtained by the MTMEL .
We emphasize that the use of contextual embedding (ELMo) still enhanced the perfor-

mance of the model in the MTL approach which we can observe in Table 9. The results of
different earlier proposed models are compared with the ELMo-based MTM (MTMEL ). The
fourth column (MTM) shows the same as the MTMEL column but without the integration
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of the ELMo embeddings. We can instantly discover that by integrating the contextual
embedding, the performance of the MTM increased substantially. Furthermore, the results
of the MTMEL showed a noticeable increase compared to the other MTMs (the MTM-CNN
and MTM-CW proposed earlier).

Table 8. Results comparison of different models trained on ELMo embeddings.

Datasets STMEL MTMEL MTM
cmp
EL→ STMEL

AnatEM 89.5 88.9 89.5
BC2GM 83.3 82.3 83.1
BC4CHEMD 91.3 88.6 91.1
BC5CDR 90.1 89.3 90.0
BioNLP09 89.2 90.1 89.9
BioNLP11EPI 87.5 86.9 87.7
BioNLP11ID 87.7 87.8 88.0
BioNLP13CG 86.1 86.4 87.1
BioNLP13GE 80.8 81.7 82.1
BioNLP13PC 89.9 90.1 90.5
CRAFT 86.6 84.7 86.9
ExPTM 81.0 83.2 83.8
JNLPBA 72.9 73.3 72.8
LINNAEUS 88.4 88.5 88.2
NCBI 86.6 86.6 86.7
Average 86.1 85.9 86.5

Table 9. Results comparison of ELMo with SOTA MTMs.

Datasets MTM-CNN MTM-CW MTM MTMEL

AnatEM 86.9 87.5 87.5 88.9
BC2GM 80.8 81.5 81.6 82.3
BC4CHEMD 87.3 89.2 89.0 88.6
BC5CDR 87.8 88.5 88.4 89.3
BioNLP09 88.7 88.5 89.0 90.1
BioNLP11EPI 84.7 85.3 85.2 86.9
BioNLP11ID 87.6 87.1 87.5 87.8
BioNLP13CG 84.2 84.9 84.9 86.4
BioNLP13GE 79.8 80.9 80.3 81.7
BioNLP13PC 88.8 89.1 89.2 90.1
CRAFT 83.1 85.2 84.2 84.7
ExPTM 80.9 81.7 82.1 83.2
JNLPBA 74.0 72.1 72.8 73.3
LINNAEUS 87.7 88.1 88.4 88.5
NCBI 85.6 85.0 86.2 86.6
Average 84.5 85.0 85.1 85.9

In Table 10, we also compare the fine-tuning approach for ELMo with our earlier
fine-tuning approach (Section 6). We see that MTM

cmp
EL→STMEL achieved distinguishable

performance compared with our previous proposed approach. The MTM
cmp
EL→ STMEL

increased the F1-score for 13 out of 15 datasets.

Table 10. Results comparison of transfer Learning for different models with and without ELMo.

Datasets MTM
10→ STM MTM

20→ STM MTM
cmp→ STM MTM

cmp
EL→ STMEL

AnatEM 87.9 88.0 88.0 89.5
BC2GM 82.1 82.2 82.0 83.1
BC4CHEMD 89.9 90.4 90.4 91.1
BC5CDR 88.8 89.0 89.1 90.0
BioNLP09 88.5 88.7 88.5 89.9
BioNLP11EPI 85.3 85.5 85.4 87.7
BioNLP11ID 87.6 87.8 87.9 88.0
BioNLP13CG 84.9 85.2 85.1 87.1
BioNLP13GE 80.1 80.1 80.2 82.1
BioNLP13PC 89.3 89.2 89.3 90.5
CRAFT 84.9 85.3 85.0 86.9
ExPTM 81.7 82.0 81.8 83.8
JNLPBA 73.0 72.1 71.9 72.8
LINNAEUS 88.8 88.2 88.8 88.2
NCBI 86.2 85.9 86.2 86.7
Average 85.3 85.3 85.3 86.5
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Statistical Analysis of ELMo

The statistical analysis of the results produced by ELMo and other models was per-
formed using the Friedman test. The post hoc pairwise comparison is shown in Figure 13.
The difference between the results produced by the STMEL and the MTMEL were statisti-
cally not significant but their results were statistically significant with respect to the results
produced by the rest of the models. In Table 8, it can be observed that the MTMEL did not
gain much improvement compared to the STMEL , and for that reason, the difference of their
results were statistically not significant. It is still worth noting that the results of the STMEL

and the MTMEL were statistically significant compared to those of MTM
cmp
EL→STMEL . The

models with ELMo embeddings also produced statistically significant results compared to
our previously proposed approaches.

Further analyzing the ranks generated using the Friedman test, we observed that
MTM

cmp
EL→STMEL produced a higher statistical rank compared to the rest of the models as

illustrated in Figure 14. It also showed that the STMEL attained the second highest statistical
value, based on the Friedman test, followed by the MTMEL .

Figure 13. Post hoc Friedman test comparison of ELMo.

Figure 14. Graphical representation of the Friedman test ranks of ELMo. Models are shown according
to their ranks starting with the best model from left to right.

8. Conclusions

This work presented several knowledge transfer techniques to enhance the perfor-
mance of the BioNER task. The first technique presented followed the multitask learning
(MTL) approach. Training different models simultaneously encouraged multiple tasks to
transfer their knowledge implicitly using a shared layer(s). Thus, the size of the available
data accumulated into the multitask model (MTM). Following the results given in this
paper, it was found that the MTM indeed improved the performance of the BioNER task
over that of a single-task model (STM). Our proposed MTM-CNN depicted an absolute
increase in average F1-score of up to 0.8% and 4% compared to the model proposed by
Wang et al. [35] and that proposed by Crichton et al. [34], respectively. Similarly, the
proposed MTM-CW showed an average performance gain of 1.3% and 5.3%, respectively,
against the model proposed in [34,35].

The second proposed technique was based on transfer learning. Transfer learning was
utilized by applying pretrained MTMs trained for different epochs. These MTMs were
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used as the base model, which was then further fine-tuned for a specific task. The purpose
was to get a generalized base model which was then specialized for a specific dataset.
The presented results illustrated a performance gain compared to the MTL approach
and other state-of-the-art approaches including the STM. Comprehensively, the proposed
methodology showed an average F1-score gain of 1.6%. This work also used ELMo, which
provides contextual word embedding, to see its impact on the results. The results showed
that ELMo supported the learning ability of the model.

As a future work, the MTL approach will be extended to train it by combining dif-
ferent auxiliary tasks along with BioNER. This can include biomedical relation extraction,
biomedical question-answering tasks, etc. The rationale is to explore and understand the
underlying relationship between auxiliary tasks and main tasks. This can also help to
remove those auxiliary tasks that compromise the performance of the MTM. In this case,
the auxiliary task may distort the main task during MTM training. We also plan to use other
available word embeddings for our work to find out the best embeddings for the STM and
for the MTM. Another future research direction is related to the use of Transformer-based
models pretrained on biomedical documents such as BlueBERT [57] and BioBERT [58].
We will explore and analyze the effectiveness of available transformers considering all
15 datasets for the STM and MTM.
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Appendix A. Datasets

There were 15 datasets used in the different experiments of this work. The bioentities
in these datasets were chemical, species, cell, gene/protein, cell component, and disease.
A brief description of these datasets is given in Table A1. It is important to note that
performing human annotation on bioentities is more difficult than normal text data. The
biomedical concepts can be annotated differently depending on the background of the
annotators. Considering the annotation of biomedical entities, i.e., genes, proteins, and
RNA, the human interannotator agreement was 70% for these biomedical concepts [59].
This work used the preprocessed form of these datasets where the sentence was represented
in the CoNLL (https://www.clips.uantwerpen.be/conll2003/ner/, accessed on 1 February
2023) column-based format [60]. Each word of the sentence was separated by a newline
and the first column represented the word token of the sentence, and the second column
was the label for such token. The sentences were separated by an empty line. The datasets
used in this work contained separate training, development, and test sets. The name of the
entities and their distribution in the dataset (percentagewise) are reported in Table A2. The
values in the table represent the percentage of an individual entity (the O-outside tag is not
included) contributing to the train/dev/test file.

Appendix A.1. AnatEM

The Anatomical Entity Mention (AnatEM) corpus [61] is an extended version of the
original Anatomical Entity Mention (AnEM) corpus that also combines the Multi-level
Event Extraction (MLEE) corpus. The AnEM comprises 500 randomly chosen PubMed

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://www.clips.uantwerpen.be/conll2003/ner/
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abstracts and full text that are annotated for anatomical entity mentions. On the other hand,
MLEE comprises 262 PubMed abstracts on cancer’s molecular mechanisms linked to angio-
genesis. The AnatEM comprises these two corpora and is further extended by 100 other
documents following the AnEM document selection procedures. Similarly, 350 additional
documents were added related to the cancer topics. The selection of these additional docu-
ments followed the same process implemented in the MLEE. The final version of AnatEM,
therefore, consists of a total of 1212 documents.

Appendix A.2. BC2GM

The BC2GM (BioCreative‖Gene Mention) corpus contains a total of 20,000 sentences
coming from abstracts of biomedical publications [62]. The BC2GM covers genes, proteins,
and other similar entities. However, they are all combined into a single entity class, i.e., gene.

Appendix A.3. BC4CHEMD

The BC4CHEMD, BioCreative IV Chemical and Drug corpus consists of 10,000 ab-
stracts annotated for a single chemical entity containing chemical and drug names [63].

Appendix A.4. BC5CDR

The BioCreative V Chemical Disease Relation (BC5CDR) [64] comprises 1500 PubMed
articles, of which 1400 articles were selected from 150,000 chemical–disease interactions
that were annotated during the Comparative Toxicogenomics Database-Pfizer (CTD-Pfizer)
process. The rest of the 100 articles were newly curated and were included in the test set.

Table A1. Datasets description [34].

Dataset Contents Entity Counts

AnatEM Anatomy NE 13,701

BC2GM Gene/protein NE 24,583

BC4CHEMD Chemical NE 84,310

BC5CDR Chemical, disease NEs Chemical: 15,935; disease: 12,852

BioNLP09 Gene/protein NE 14,963

BioNLP11EPI Gene/protein NE 15,811

BioNLP11ID 4 NEs Gene/protein: 6551; organism: 3471
chemical: 973; regulon-operon: 87

BioNLP13CG 16 NEs

Gene/protein: 7908; cell: 3492;
chemical: 2270; organism: 1715; tissue: 587;
multitissue structure: 857;
amino acid: 135; cellular component: 569;
organism substance: 283; organ: 421;
pathological formation: 228;
immaterial anatomical entity: 102;
organism subdivision: 98;
anatomical system: 41; cancer: 2582;
developing anatomical structure: 35

BioNLP13GE Gene/protein NE 12,057

BioNLP13PC 4 NEs Gene/protein: 10,891; chemical: 2487;
complex: 1502; cellular component: 1013

CRAFT 6 NEs
SO: 18,974; gene/protein: 16,064;
cl: 5495; taxonomy: 6868; chemical: 6053;
GO-CC: 4180

Ex-PTM Gene/protein NE 4698

JNLPBA 5 NEs Gene/protein: 35,336; DNA: 10,589;
cell type: 8639l; cell line: 4330; RNA: 1069

LINNAEUS Species NE 4263

NCBI-Disease Disease NE 6881



Future Internet 2023, 15, 79 23 of 27

Table A2. Entities percentage distribution in training+development and test dataset.

Dataset Entities Name Train+Dev Set Test Set

AnatEM Anatomy 7.241 7.865

BC2GM Gene 10.505 10.526

BC4CHEMD Chemical 7.284 7.162

BC5CDR Chemical
Disease

6.061
5.971

5.622
5.740

BioNLP09 Protein 9.573 10.274

BioNLP11EPI Protein 7.662 7.840

BioNLP11ID

Regulon-operon
Chemical
Organism
Protein

0.047
7.036
4.421
4.575

0.131
0.700
3.801
4.134

BioNLP13CG

Gene_or_gene_product
Cancer
Amino_acid
Simple_Chemical
Organism
Cell
Tissue
Organ
Multi_tissue_structure
Cellular_component
Pathological_formation
Immaterial_anatomical
Organism_subdivision
Anatomical_system
Developing_anatomical_structure
Organism_substance

9.975
2.423
0.088
2.631
1.462
4.464
0.579
0.262
0.818
0.479
0.191
0.075
0.060
0.036
0.018
0.197

9.236
2.896
0.123
2.550
1.209
3.987
0.559
0.328
0.881
0.472
0.241
0.078
0.091
0.049
0.040
0.238

BioNLP13GE Protein 8.100 7.781

BioNLP13PC

Gene_or_gene_product
Simple_chemical
Complex
Cellular_component

13.447
3.272
3.190
0.889

13.268
3.571
3.232
0.879

CRAFT

SO
GGP
Taxon
CHEBI
CL
GO

4.330
4.240
1.280
1.210
1.330
0.960

3.860
4.320
1.160
1.250
1.190
0.990

Ex-PTM Protein 7.967 7.616

JNLPBA

Protein
DNA
Cell_type
Cell_line
RNA

11.190
5.130
3.140
2.780
0.504

9.740
2.810
4.860
1.470
0.300

LINNAEUS Species 1.153 1.350

NCBI-Disease Disease 8.220 8.356

Appendix A.5. BioNLP09

The BioNLP09 is a 2009 shared-event task to extract different events among different
classes [65]. The named entity was performed via the GENIA event corpus to facilitate the
event extraction task. The 10,000 sentences in the corpus were annotated for protein and
related entities into a single entity class, protein.

Appendix A.6. BioNLP 2011 Shared Task

The BioNLP 2009 shared task was extended and presented again in 2011. The BioNLP
2011 shared task covered various tasks including infection diseases (ID), epigenetics and
post-translational modifications (EPI), and exhaustive post-translational modifications
(Ex-PTM). The BioNLP11EPI events targeted the statements covering modifications in
protein and DNA, and their reverse reactions as well, covering 1200 abstracts [66]. Ex-PTM
covered more post-translational modifications in the protein-related literature, databases,
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and ontologies for a total of 360 PubMed abstracts [67]. The BioNLP11ID task enclosed the
biomolecular mechanisms of infections that comprised 30 full articles [68].

Appendix A.7. BioNLP 2013 Shared Task

The BioNLP 2013 shared task datasets, Cancer Genetics (BioNLP13CG), GENIA Event
Extraction (BioNLP13GE), and Pathway Curation (BioNLP13PC) were three tasks out of six
tasks in total [69]. The BioNLP13CG task aimed to extract the information associated with
cancer, e.g., cellular, tissue, etc. BioNLP13CG contains 600 abstracts from PubMed and is
annotated for more than 17,000 events [70], while the BioNLP13GE dataset consists of 34 full
articles gathered from PubMed Central [71,72]. The BioNLP13PC dataset was annotated
for about 16,000 events and contains 525 PubMed abstracts [73,74] that were collected,
covering specific pathway reactions based on the pathway models from BioModels and
Pathway DB [75].

Appendix A.8. CRAFT

The Colorado Richly Annotated Full Text (CRAFT) corpus contains 67 full-text ar-
ticles from PubMed Central Open Access Subset, which are manually annotated [76].
These articles accumulate over 21,000 sentences, over 560,000 tokens, and approximately
100,000 concept annotations that contain different biomedical ontologies.

Appendix A.9. JNLPBA

The JNLPBA corpus was developed for a joint workshop on NLP in Biomedicine and
its Applications, which comprised 2000 abstracts in the training set, while 404 abstracts in
the test set made approximately 22,400 sentences. JNLPBA was developed from the GENIA
corpus; however, unlike the GENIA corpus that consists of 36 classes, the JNLPBA only
includes 5 classes [77].

Appendix A.10. LINNAEUS

The LINNAEUS corpus contains 100 full-text papers, selected randomly from the
PMC open access set [78]. The entity mentions presented in the corpus were annotated
manually and normalized according to the NCBI taxonomy. The corpus contains species
mentions; however, 72% of these mentions do not contain direct species information, e.g.,
patients, child, etc.

Appendix A.11. NCBI-Disease

The NCBI-disease corpus has annotated disease mentions from 793 PubMed ab-
stracts [79]. The corpus consists of 790 unique disease mentions; 698 from MeSH (698) and
92 from OMIM. Furthermore, 91% of the unique concepts are single disease concepts, while
the rest contain a combination of concepts.
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