
Citation: Dai, Z.; Xu, G.; Liu, Z.; Ge,

J.; Wang, W. Energy Saving Strategy

of UAV in MEC Based on Deep

Reinforcement Learning. Future

Internet 2022, 14, 226.

https://doi.org/10.3390/fi14080226

Academic Editor:

Vijayakumar Varadarajan

Received: 14 June 2022

Accepted: 12 July 2022

Published: 26 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Energy Saving Strategy of UAV in MEC Based on Deep
Reinforcement Learning
Zhiqiang Dai *, Gaochao Xu, Ziqi Liu, Jiaqi Ge * and Wei Wang

Department of Computer Science and Technology, Jilin University, Changchun 130012, China;
xugc@jlu.edu.cn (G.X.); ziqi20@mails.jlu.edu.cn (Z.L.); wangw19@mails.jlu.edu.cn (W.W.)
* Correspondence: daizq19@mails.jlu.edu.cn (Z.D.); gejq18@mails.jlu.edu.cn (J.G.)

Abstract: Unmanned aerial vehicles (UAVs) have the characteristics of portability, safety, and strong
adaptability. In the case of a maritime disaster, they can be used for personnel search and rescue,
real-time monitoring, and disaster assessment. However, the power, computing power, and other
resources of UAVs are often limited. Therefore, this paper combines a UAV and mobile edge computing
(MEC), and designs a deep reinforcement learning-based online task offloading (DOTO) algorithm. The
algorithm can obtain an online offloading strategy that maximizes the residual energy of the UAV by
jointly optimizing the UAV’s time and communication resources. The DOTO algorithm adopts time
division multiple access (TDMA) to offload and schedule the UAV computing task, integrates wireless
power transfer (WPT) to supply power to the UAV, calculates the residual energy corresponding to
the offloading action through the convex optimization method, and uses an adaptive K method to
reduce the computational complexity of the algorithm. The simulation results show that the DOTO
algorithm proposed in this paper for the energy-saving goal of maximizing the residual energy of UAVs
in MEC can provide the UAV with an online task offloading strategy that is superior to other traditional
benchmark schemes. In particular, when an individual UAV exits the system due to insufficient power
or failure, or a new UAV is connected to the system, it can perform timely and automatic adjustment
without manual participation, and has good stability and adaptability.

Keywords: UAV; MEC; TDMA; WPT; convex optimization; deep reinforcement learning

1. Introduction

With the development of the economy, there has been an increase in activities such as
maritime trade, fishing, and drilling platforms, but marine accidents also occur frequently.
Due to the complex sea conditions, the location of ships and personnel in distress is not
fixed, and it is difficult to carry out search and rescue work. Moreover, it is difficult
to achieve the ideal rescue effect only by traditional methods such as ship cruising and
people watching. The Internet of Things (IoT) has been integrated into every aspect of
our lives [1,2]. Among them, unmanned aerial vehicles (UAVs) [3] have the advantages
of being unmanned and lightweight, with a quick response and strong adaptability. They
cooperate with ships and use video image technology during the day and infrared detection
technology at night [4–6], which can provide 24 h uninterrupted personnel search and
rescue, disaster monitoring, material delivery and other services for rescue work. Efficiency
will be greatly improved. Thus, in recent years, many countries have vigorously developed
UAVs that can perform maritime search and rescue missions. However, resources such
as the power and computing power of UAVs are often limited [7,8], which has become a
key problem to be solved in UAV applications. Therefore, this paper combines a UAV with
mobile edge computing (MEC) to provide a solution to the problem of UAV battery life.

MEC [9,10] is to set up an edge server with more sufficient computing power and
bandwidth near the user equipment to provide computing resources for UAVs and speed
up data processing. The computing task offloading of UAVs can adopt partial offloading

Future Internet 2022, 14, 226. https://doi.org/10.3390/fi14080226 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14080226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi14080226
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14080226?type=check_update&version=1

Future Internet 2022, 14, 226 2 of 19

or binary offloading methods [11]. Partial offloading [12] means that the computing data
can be split into two parts: one part is executed locally and the other part is offloaded
to the edge server for execution. Binary offloading [13] is suitable for the case where the
computing task cannot be split. The whole task is either executed locally or offloaded
to the edge server for execution. On the basis of reducing the energy consumption of
a UAV itself, by incorporating radio frequency (RF)-based [14] wireless power transfer
(WPT) [15] into MEC, it can continuously provide energy for the UAV. WPT uses an energy
transmitter to wirelessly broadcast energy to the UAV [16,17]. The UAV can use the energy
for computing or offloading, and the residual energy can also be converted into equipment
power, thereby extending the working time of the equipment. In the scenario of multiple
UAVs, this is generally achieved through the joint optimization of the UAV computing task
offloading decision, offloading time and other resources, which is transformed into a mixed
integer programming (MIP) problem for a solution [18–23]. The algorithms used mainly
include the coordinate descent method, heuristic algorithm, convex optimization method
and convex relaxation technique. However, in some cases, the computational complexity
of these algorithms may increase rapidly, which may affect the decision-making effect.
Moreover, traditional offline offloading strategies are not suitable for fast fading channels.
Therefore, they cannot meet the requirements of ultra-low delay.

Deep reinforcement learning [24,25] is suitable for dealing with variable state space
and high-dimensional data, and has a strong fitting effect and learning ability. It can
obtain the online offloading strategy according to the actual wireless channel environment
changes. The online algorithm is practical because the decision of each time block is made
under the condition of a random channel and unknown computing data [26]. Therefore,
this paper proposes a deep reinforcement learning-based online task offloading (DOTO)
algorithm that can prolong the working time of UAVs. The main contributions of this paper
are as follows:

(1) The MEC system that we consider consists of a multi-antenna AP with an edge server
placed on the ship and multiple UAVs with a single antenna. The AP can provide
wireless energy for the UAV and can also be used to receive UAV computing tasks. The
UAV computing task adopts the binary offload method, and the offload scheduling
is implemented based on the time division multiple access (TDMA) communication
protocol. In order to achieve the research goal of maximizing the residual energy
of the UAV, we propose an optimization scheme to jointly optimize the UAV time
and communication resources. The research objective is formalized as the problem of
maximizing the residual energy of UAV.

(2) The formalized problem of maximizing the residual energy is a non-convex problem
and difficult to solve. However, once the offloading decision is given, the problem can
be transformed into a convex problem, which can be solved by a convex optimization
method. Therefore, we split the target problem into two sub-problems: the time
resource allocation problem and task offloading problem. Firstly, we use the convex
optimization method to solve the time resource allocation problem, and then obtain
an online task offloading strategy that maximizes the residual energy of the UAV in
wireless fading environments based on the DOTO algorithm.

(3) To reduce the computational complexity of the DOTO algorithm, we propose a new
adaptive K quantization method, which reduces the quantization action of the algo-
rithm with the increase in the time block. Under the condition of ensuring the quality
of the offloading strategy, the exponentially increased delay due to the increase in the
number of devices is reduced so as to be almost unchanged.

(4) Simulation experiments show that the DOTO algorithm proposed for the research
objective of maximizing the UAV’s residual energy in MEC can provide users with an
online computing offloading strategy that is superior to other traditional benchmark
schemes. Moreover, when there is a UAV in the MEC system that exits the system
due to insufficient power or failure, or if a new UAV is connected to the system, the

Future Internet 2022, 14, 226 3 of 19

DOTO algorithm can still quickly converge to provide an effective online computing
task offloading strategy for the MEC system in time.

The remainder of the article is organized as follows. The second section discusses
related work. The third section introduces the system model. The fourth section provides
the problem formulation and solution. The fifth section describes the DOTO algorithm. The
sixth section provides the simulation results. The seventh section gives the conclusions.

2. Related Work

MEC has the characteristics of strong real-time performance, ultra-high bandwidth
and ultra-low delay [27]. It provides a solution to the problem of the limited computing
and battery life of wireless devices such as UAVs. Thus, it is a very promising technology.
By jointly optimizing communication and computing resources, the computing power
and battery life of wireless devices can be effectively improved [18]. In the literature [19],
scholars have jointly optimized communication resources, computing task offloading, CPU
and other resources. The problem is solved by using the distributed convex optimization
method and alternating direction multiplier method. In the literature [20], scholars use
the coordinate descent method (CD) in a non-gradient optimization algorithm. The CD
algorithm will fix the dimensions of other variables when looking for the optimal solution,
and only search in the direction of one variable. It is a simple but very efficient algorithm.
However, the disadvantage is that if there is a strong correlation between multiple variables,
the search will be very slow, and the corresponding search results will be poor. In the litera-
ture [21], scholars proposed a heuristic algorithm with low complexity and adopted convex
optimization technology for the resource allocation problem. However, in the process of
offloading strategy optimization, with the increase in wireless devices, the search space
grows exponentially, and the convergence time of the algorithm decreases significantly.
In the literature [22], a heuristic search algorithm based on convex relaxation is studied,
which makes it continuous from 0 to 1 by relaxing integer variables. In the literature [23], a
positive semi-definite relaxation method is employed by adopting quadratic constrained
quadratic optimization. However, the method based on convex relaxation needs many
iterations to find the qualified local optimal solution. The search time is long, and it is not
suitable for fast fading channels requiring ultra-low delay.

In the wireless fading environment, the optimal offloading decision of the wirelessly
powered MEC system will be affected [28]. Moreover, the traditional offline offloading
decision is no longer applicable in practical scenarios, because it cannot make timely and
correct uninstallation decisions. TDMA can divide time into small blocks wherein wireless
channels do not interfere with each other, and, combined with MEC, can well overcome
the effects of wireless fading [29]. In the literature [30], based on TDMA, scholars solved
the problem of minimizing the total energy consumption of MEC by jointly optimizing
the energy transmission beam, CPU frequency and computing task offload ratio of edge
servers. In the literature [31], a two-stage algorithm and a three-stage alternative algorithm
are proposed for solving the computation rate maximization problems in a UAV-enabled
MEC wireless-powered system.

At the same time, in order to continuously provide energy for wireless devices, RF-
based WPT technology can be integrated into the MEC. WPT technology is simple, safe,
highly adaptable to the environment, very convenient to use and widely used. In the
literature [8], scholars studied the problem of extending the battery life of wireless devices
through energy harvesting and resource allocation in the WPT-MEC system. Deep rein-
forcement learning can update the offloading strategy in real time according to wireless
channel changes [32,33]. An offloading strategy based on deep Q-network (DQN) was
proposed in [34] to optimize computation, but DQN is not suitable for the case of too
many wireless devices. In the literature [35], a cooperative multi-agent deep reinforcement
learning framework is investigated. By jointly designing the trajectories, computation task
allocation and communication resource management of UAVs, the sum of execution delay
and energy consumption is reduced. In the literature [36], scholars propose a novel deep

Future Internet 2022, 14, 226 4 of 19

reinforcement learning method to optimize UAV trajectory controlling and users’ offloaded
task ratio scheduling and improve the performance of the UAV-assisted MEC system. It
maximizes the system’s stability and minimizes the energy consumption and computation
latency of the UAV-assisted MEC system.

In previous studies, most researchers focus on the partial offloading mode. For energy-
saving goals, most of them focus on the energy consumption of the equipment itself, and
there is very little work using deep reinforcement learning methods. In contrast, we increase
the energy received by the wireless device on the basis of reducing the energy consumption
of the wireless device. We propose a new objective problem of maximizing the residual
energy of wireless devices in binary offload mode. Using deep reinforcement learning
technology, the optimal MEC online computing offloading strategy is finally obtained.

3. System Model

This paper considers a wireless-powered MEC network system, which is composed
of a multi-antenna AP integrated with an edge server and a set N = {1, . . . , N} of single-
antenna UAVs placed on the ship. The AP has a stable power supply and higher computing
power than the UAV. The AP can not only receive data from the UAV for calculation, but
also transmit power to the UAV through WPT. The computing tasks of the UAV can be
executed locally or offloaded to the MEC for computing, following by the transmission of
the returned results. At the same time, the wireless energy transmitted by the harvesting
AP can be used for local computing or task offloading, and the residual energy can be used
to charge the battery. The system model is shown in Figure 1.

Future Internet 2022, 14, x FOR PEER REVIEW 4 of 20

many wireless devices. In the literature [35], a cooperative multi-agent deep reinforcement
learning framework is investigated. By jointly designing the trajectories, computation task
allocation and communication resource management of UAVs, the sum of execution delay
and energy consumption is reduced. In the literature [36], scholars propose a novel deep
reinforcement learning method to optimize UAV trajectory controlling and users’ of-
floaded task ratio scheduling and improve the performance of the UAV-assisted MEC
system. It maximizes the system’s stability and minimizes the energy consumption and
computation latency of the UAV-assisted MEC system.

In previous studies, most researchers focus on the partial offloading mode. For en-
ergy-saving goals, most of them focus on the energy consumption of the equipment itself,
and there is very little work using deep reinforcement learning methods. In contrast, we
increase the energy received by the wireless device on the basis of reducing the energy
consumption of the wireless device. We propose a new objective problem of maximizing
the residual energy of wireless devices in binary offload mode. Using deep reinforcement
learning technology, the optimal MEC online computing offloading strategy is finally ob-
tained.

3. System Model
This paper considers a wireless-powered MEC network system, which is composed

of a multi-antenna AP integrated with an edge server and a set },...,1{ NN = of single-
antenna UAVs placed on the ship. The AP has a stable power supply and higher compu-
ting power than the UAV. The AP can not only receive data from the UAV for calculation,
but also transmit power to the UAV through WPT. The computing tasks of the UAV can
be executed locally or offloaded to the MEC for computing, following by the transmission
of the returned results. At the same time, the wireless energy transmitted by the harvest-
ing AP can be used for local computing or task offloading, and the residual energy can be
used to charge the battery. The system model is shown in Figure 1.

Figure 1. System model.

The UAV computing task adopts a binary offloading decision. In other words, all
tasks are executed locally, as shown in UAV 1 in Figure 1, or all of them are offloaded to

Figure 1. System model.

The UAV computing task adopts a binary offloading decision. In other words, all
tasks are executed locally, as shown in UAV 1 in Figure 1, or all of them are offloaded to
the AP for execution, as shown in Figure 1 for UAV 2 and UAV 3. The indicator variable
is represented by ui ∈ {0, 1}, where ui = 0 indicates that the task is computed locally,
and ui = 1 indicates that the computing task of the i−th UAV is offloaded to the AP for
execution. We use U = {1 , . . . , N} to represent the set of all UAVs, where N represents a
total of N UAVs in the system. U0 denotes the set of UAVs whose computing mode is local

Future Internet 2022, 14, 226 5 of 19

computing, and U1 denotes the set of UAVs whose computing mode is offloaded to the
edge server, so it is mutually exclusive with the two sets and has U0 ∪U1 = U.

3.1. Energy Transfer Model

In the system, we use TDMA to offload and schedule computing tasks. The system
time distribution is shown in Figure 2. The system time is divided into consecutive time
blocks with length T, which is set smaller than the channel mutual interference time—for
example, only on the scale of seconds [37]. At this time, wireless power transmission and
task offloading are performed in the same frequency band. Let cn denote the wireless
channel gain of the AP and the n−th UAV in the same time block. The communication
speed and energy acquisition between the AP and the UAV are both related to the wireless
channel gain. Since the mutual interference between wireless power transmission and
communication is avoided, the wireless channel gain remains constant within each time
block, but may change between different time blocks [38]. At the beginning of each time
block, the duration of AP transmitting energy to UAV is a T, a ∈ [0, 1]. Therefore, the
energy captured by the n−th UAV is:

En = µ P cn a T, n = 1, . . . , N (1)

where µ ∈ (0, 1) denotes the energy harvesting efficiency and P denotes the AP transmit
power. Using the harvested energy, each UAV needs to complete the computing task before
the end of a time block, and the calculation of the task is executed immediately from the
beginning of the time block. The offloading time of the j−th UAV is bj T, b ∈ [0 , 1]. Here,
we assume that the computing speed and transmit power of the AP are much larger than
those of resource-constrained UAVs, such as more than three orders of magnitude [28,30],
so we can safely ignore the time for AP computing tasks. Since the calculation result data
of UAVs are usually much smaller than those for the offloaded calculation task, we can also
safely ignore the calculation result download time.

Future Internet 2022, 14, x FOR PEER REVIEW 5 of 20

the AP for execution, as shown in Figure 1 for UAV 2 and UAV 3. The indicator variable
is represented by {0,1}iu ∈ , where 0iu = indicates that the task is computed locally,

and 1=iu indicates that the computing task of the -thi UAV is offloaded to the AP for
execution. We use {1 ,...,N}U = ， to represent the set of all UAVs, where N represents
a total of N UAVs in the system. 0U denotes the set of UAVs whose computing mode
is local computing, and 1U denotes the set of UAVs whose computing mode is offloaded
to the edge server, so it is mutually exclusive with the two sets and has UUU =∪ 10 .

3.1. Energy Transfer Model
In the system, we use TDMA to offload and schedule computing tasks. The system

time distribution is shown in Figure 2. The system time is divided into consecutive time
blocks with length T , which is set smaller than the channel mutual interference time—
for example, only on the scale of seconds [37]. At this time, wireless power transmission
and task offloading are performed in the same frequency band. Let nc denote the wire-

less channel gain of the AP and the th-n UAV in the same time block. The communi-
cation speed and energy acquisition between the AP and the UAV are both related to the
wireless channel gain. Since the mutual interference between wireless power transmission
and communication is avoided, the wireless channel gain remains constant within each
time block, but may change between different time blocks [38]. At the beginning of each
time block, the duration of AP transmitting energy to UAV is a T ,]1,0[∈a . Therefore,

the energy captured by the -thn UAV is:

 1,...,n nE P c aT n Nμ= =， (1)

where)1,0(∈μ denotes the energy harvesting efficiency and P denotes the AP trans-
mit power. Using the harvested energy, each UAV needs to complete the computing task
before the end of a time block, and the calculation of the task is executed immediately
from the beginning of the time block. The offloading time of the th-j UAV is jb T ,

]1 , 0[∈b . Here, we assume that the computing speed and transmit power of the AP are
much larger than those of resource-constrained UAVs, such as more than three orders of
magnitude [28,30], so we can safely ignore the time for AP computing tasks. Since the
calculation result data of UAVs are usually much smaller than those for the offloaded
calculation task, we can also safely ignore the calculation result download time.

Figure 2. System time allocation.

Since each time block is only occupied by WPT and task offloading, there is

1
1

≤+
∈Uj

jba (2)

Figure 2. System time allocation.

Since each time block is only occupied by WPT and task offloading, there is

a + ∑
j∈U1

bj ≤ 1 (2)

3.2. Local Computing Model

The UAV in the local computing mode can harvest energy from the AP and compute
its tasks simultaneously. Thus, the UAV can continue computing for the entire time block T.
Let O denote the number of cycles required by the processor to process one bit of task data,
and its size depends on the nature of the computing task. Let Ri denote the computing
task size (bit) of the i−th UAV, and the number of computing bits Rloc

i and Ri in the local
computing mode are equal. Moreover, the relationship between Rloc

i and CPU computing
speed fi is:

Rloc
i = Ri =

fi ti
O

, i ∈ U0 (3)

Future Internet 2022, 14, 226 6 of 19

Let ki denote the calculated energy efficiency coefficient of the processor, which de-
pends on the chip architecture of the UAV [18]. Therefore, the energy consumption model
of the i−th UAV is:

Eloc
i = ki f 3

i ti, i ∈ U0 (4)

In order to ensure the sustainable operation of the UAV, the energy consumed by the
UAV shall be constrained by the energy received from the AP:

Eloc
i = ki f 3

i ti ≤ µ P ci a T ≤ µ P ci T < ki f 3
max T, i ∈ U0 (5)

Therefore, the residual energy Eres
i of the i−th UAV in a single time block can be

expressed as:
Eres

i = Ei − Eloc
i = µ P ci a T − ki f 3

i ti, i ∈ U0 (6)

3.3. Offloading Computing Model

Let Rj denote the computing task size (bit) of the j−th UAV. Since communication
overhead is generated during the offloading process, the number of offload task bits
received by the AP can be expressed as:

Ro f f
j = θ Rj, j ∈ U1 (7)

where θ > 1 is the communication overhead coefficient, such as the message header
or encryption.

According to the Shannon formula of communication engineering knowledge, the
offloading transmission power Pj is

Pj =
G
cj
(2

θ Rj
bj T B − 1), j ∈ U1 (8)

where B denotes the communication bandwidth, Pj denotes the offload transmission power
from the j−th UAV to the AP, and G denotes the Gaussian noise power in the channel from
the j−th UAV to the AP. Therefore, the residual energy of the j−th UAV in a single time
block is:

Eres
j = Ej − Eo f f

j = µ P cj a T −
GbjT

cj
(2

θ Rj
bj T B − 1), j ∈ U1 (9)

4. Problem Formulation and Solution
4.1. Problem Formulation

The research goal of this paper is to maximize the residual energy of the UAV through
joint optimization, so it is necessary to maximize the energy acquisition and minimize the
energy consumption of the UAV. The energy acquired and consumed by the UAV is related
to the choice of its computing mode, wireless communication and system resource alloca-
tion. Therefore, for the WPT-MEC with multiple UAVs, the residual energy maximization
problem in each time block can be mathematically formalized as problem P1:

P1 : max
a,bj , fi ,ti ,U0,U1

∑
n∈U

En − ∑
i∈U0

∑
j∈U1

(Eloc
j + Eo f f

j)

s.t.S1 :
Rloc

i O
T
≤ fi ≤ min[fmax , (

µP ci a T
ki

)

1
3
], i ∈ U0

S2 : 0 ≤ ti ≤ T, i ∈ U0

S3 : Ei − Eloc
i ≥ 0, i ∈ U0

S4: a + ∑
j∈U1

bj ≤ 1, j ∈ U1 (10)

Future Internet 2022, 14, 226 7 of 19

S5 : 0 ≤ a ≤ 1

S6 : 0 ≤ bj ≤ 1, j ∈ U1

S7 : Ej − Eo f f
j ≥ 0, j ∈ U1

S8 : U0 ⊆ U, U1 = U\U0

Problem P1 describes the optimization objective of this paper in detail and lists the
relevant constraints. S1 denotes the CPU computing speed constraint in the UAV. S2
denotes the computing time constraint in the local computing mode. S3 denotes the
energy consumption constraint in the local computing mode. S4, S5 and S6 are system
energy transmission and offloading time constraints in TDMA mode. S7 denotes the UAV
energy consumption constraint in offload computing mode. S8 denotes a mutual exclusion
constraint between the two computing modes.

4.2. Problem Analysis and Solution

In problem P1, the objective function contains four unknown variables and the selec-
tion of combination mode, so the problem is non-convex. However, we can simplify the
problem by analyzing the problem P1.

In the local computing mode, it can be seen from Formula (3) that fi is inversely
proportional to ti; that is, the larger ti, the smaller fi. It can be seen from Formula (6) that

when fi is smaller, Eres
i is larger. Therefore, the conclusion of ti = T and fi =

Rloc
i O
T can be

drawn, which can eliminate the S1 and S2 constraints in the problem P1.
Because the goal of this paper is to maximize the residual energy of all UAVs, it is

necessary to maximize the energy harvesting time to fully utilize the entire time block.
The objective optimal solution should be obtained when the S4 equal sign holds—that is,
a∗ + ∑

j∈U1

bj
∗ = 1, where a∗ and b∗j are the optimal time allocation.

The P1 problem is an MIP non-convex problem, which is difficult to solve. However,
it can be seen through analysis that once U is given, the P1 problem can be simplified to
a convex problem, which can be solved by convex optimization technology. Therefore,
we divide the P1 problem into two sub-problems: one is the computing task offloading
decision problem, and the other is the time resource allocation problem P2:

P2 : max
bj

α ∑
n∈U

cn − [α ∑
n∈U

∑
j∈U1

cn bj + β ∑
i∈U0

ki Rloc3

i + ∑
j∈U1

bj

cj
Ψ(

1
bj
)]

s.t. S3 : Ei − Eloc
i ≥ 0, i ∈ U0

S5 : 1− ∑
j∈U1

bj ≥ 0, j ∈ U1 (11)

S6 : bj ≥ 0, j ∈ U1

S7 : Ej − Eo f f
j ≥ 0, j ∈ U1

where α = µ P T and β = O3

T2 are fixed parameters, function Ψ(x) = GT(2
θ Rj x

B T − 1).

4.2.1. Computing Task Offloading Decision Problem

There are N UAVs. Thus, there are 2N offloading strategies in total. We need to find
the optimal or satisfactory suboptimal offloading strategy. In Section 5, we will solve this
problem with the DOTO algorithm.

4.2.2. Time Resource Allocation Problem

Problem P2 can be proven to be a convex optimization problem. The fourth term
in the objective function F(x) = 1

xcj
ψ(x) of problem P2 is continuous in the range of

Future Internet 2022, 14, 226 8 of 19

x ∈ [0, 1]. It has first and second derivatives in x ∈ (0, 1), and F(x)′′ > 0 can be obtained
by derivation. Therefore, the fourth term in the objective function is a concave function,
and after adding the minus sign before the parentheses, the fourth term becomes a convex
function. The second term is a linear function of variables bj, and the remaining first and
third terms do not contain variables, so the objective function of P2 is a convex function. At
the same time, because the corresponding constraints are convex, problem P2 is a convex
optimization problem. We can use the Lagrangian method and the KKT condition in the
convex optimization method [39] to solve it. Moreover, the Lambert function is used [40].
After solving, it can be obtained as follows:

b∗j =
θ Rj ln 2

G T(W
(
− 1

e +
µP cn cj

e G

)
+ 1)

(12)

a∗ = 1− ∑
j∈U1

θ Rj ln 2

GT(W
(
− 1

e +
µP cncj

e G

)
+ 1)

(13)

Thus far, we have solved the optimal time allocation under the given task offloading
decision U.

5. The DOTO Algorithm
5.1. Algorithm Overview

In this section, we will design an online computing offloading strategy function Ω
based on deep reinforcement learning in WPT-MEC with a parameter of ω. Input the
wireless channel gain ct at the beginning of each time block, and the online computing
offloading strategy function can immediately output the optimal offloading decision. The
policy function is expressed as:

Ωω : c→ u∗ (14)

We introduce N auxiliary variable u = [u1, . . . , un], where ui = 0 (or ui = 1) denotes
that the computing mode of the n−th UAV is local computing, i.e., i ∈ U0 (or offloading
computing, i.e., i ∈ U1). For each group of offloading actions u, the optimal time resource
allocation and the corresponding maximum residual energy E can be obtained by solving
problem P2. After all the generated offloading actions are calculated, the group with the
largest residual energy is selected through comparison. The DOTO algorithm will gradually
learn the policy function from experience and constantly iterate and update to allow the
strategy function Ω to achieve the best effect. The structure of the DOTO algorithm is
shown in Figure 3.

The DOTO algorithm consists of two stages. The first stage is the iteration of the
offloading function, and the second stage is the update of the offloading policy. The two
stages are alternately performed until the training converges.

In the offload function iteration, we use DNN to generate the offload action, and the
DNN contains built-in parameters. Specifically, at the beginning of the t− th time block, the
wireless channel gain ct is input, and the DNN outputs a relaxed offloading action ũt based
on the current parameter ωt and the offloading strategy Ωωt . Each number in ũt is between
0 and 1. Then, ũt is quantized into K binary offload actions. By solving the P2 problem, a set
of decisions u∗t with the largest residual UAV energy that can satisfy all constraints among
the K offloading decisions is calculated. The optimal time resource allocation is (a∗t , b∗t).
The MEC system executes the offloading action u∗t , and the DOTO algorithm accepts the
reward E∗(ct, u∗t), and puts the state-action (ct, u∗t) into the experience replay pool. The
new offloading strategy generates a new optimal offloading decision u∗t+1 based on the new
input ct+1 in the next time block. With continuous training iterations, the DNN offloading
strategy will gradually improve until the training converges. We will describe these two
stages in detail below.

Future Internet 2022, 14, 226 9 of 19

Future Internet 2022, 14, x FOR PEER REVIEW 10 of 20

Figure 3. The structure of the DOTO algorithm.

5.2. Offload Function Iteration

At the th−t time block, the wireless channel gain is tc , where ,...2,1=t . When

1=t , the parameter tω of the DNN is randomly initialized according to the standard
normal distribution with zero mean. The DNN outputs the first offloading action accord-
ing to the formula ）（ tt cu

tωΓ=~ , which is expressed by the following formula:

},...,1),1,0(~~{~
,, Niuuu ititt =∈= (15)

In the hidden layer of the neural network, this paper chooses the ReLU function as
the activation function. To relax the offloading action of the output, the Sigmoid function
is used as the activation function in the output layer. In this paper, tu~ is quantified into

K groups of binary offloading actions by the KNN method, and each group has N bi-
nary data. Let the quantization function KΥ be:

},...,1,}1,0{{~: kk Kkuuu NtK =∈→Υ (16)

There are a total of N UAVs, so the value range of K is [1, 2]NK∈ . When K is
larger, the number of calculations for the residual energy problem will be greater, and the
computational complexity of the DOTO algorithm will be higher, but the quality of the
decision-making scheme will be better. Similarly, the smaller the K , the lower the com-
putational complexity and the worse the quality of decision-making scheme. In general,
setting a larger K can obtain more UAV residual energy at the cost of higher complexity.
However, if a large number of quantization actions are generated in each time block, it is
very unnecessary and the efficiency will be very low. Therefore, in order to balance the
quality of the algorithm decision-making scheme and the computational complexity, we
propose an adaptive K value setting method. The details are as follows:
(1) Initially, set the K value to N2 . During training, all alternatives generated by the

KNN quantization method are sorted by Euclidean distance.
(2) Each time block records the index value K corresponding to the maximum resid-

ual energy offloading action. Every Δ time block, compare the largest ΔK in the
Δ time block with the 1KΔ− in the 1Δ − time block, and select the largest 1K +
value as the next iteration.

Figure 3. The structure of the DOTO algorithm.

5.2. Offload Function Iteration

At the t− th time block, the wireless channel gain is ct, where t = 1, 2, When t = 1,
the parameter ωt of the DNN is randomly initialized according to the standard normal
distribution with zero mean. The DNN outputs the first offloading action according to the
formula ũt = Γωt(ct), which is expressed by the following formula:

ũt = {ũt,i|ũt,i ∈ (0, 1), i = 1, . . . , N } (15)

In the hidden layer of the neural network, this paper chooses the ReLU function as
the activation function. To relax the offloading action of the output, the Sigmoid function
is used as the activation function in the output layer. In this paper, ũt is quantified into
K groups of binary offloading actions by the KNN method, and each group has N binary
data. Let the quantization function YK be:

YK : ũt → {uk|uk ∈ {0, 1}N , k = 1, . . . , K } (16)

There are a total of N UAVs, so the value range of K is K ∈ [1, 2N]. When K is
larger, the number of calculations for the residual energy problem will be greater, and
the computational complexity of the DOTO algorithm will be higher, but the quality
of the decision-making scheme will be better. Similarly, the smaller the K, the lower the
computational complexity and the worse the quality of decision-making scheme. In general,
setting a larger K can obtain more UAV residual energy at the cost of higher complexity.
However, if a large number of quantization actions are generated in each time block, it is
very unnecessary and the efficiency will be very low. Therefore, in order to balance the
quality of the algorithm decision-making scheme and the computational complexity, we
propose an adaptive K value setting method. The details are as follows:

(1) Initially, set the K value to 2N . During training, all alternatives generated by the KNN
quantization method are sorted by Euclidean distance.

(2) Each time block records the index value K corresponding to the maximum residual
energy offloading action. Every ∆ time block, compare the largest K∆ in the ∆ time
block with the K∆−1 in the ∆− 1 time block, and select the largest K + 1 value as the
next iteration.

(3) In order to avoid excessive training loss caused by an overly small K value, when
K < N, we set the K value as N, i.e., the value range of K is K ∈ [N , 2N].

Future Internet 2022, 14, 226 10 of 19

The adaptive K value setting is expressed by the formula below:

K =

{
2N , t = 1

max(max(kt−1, . . . , kt−∆) + 1, N) , t mod ∆ = 0
(17)

After obtaining K offloading decisions at the t− th time block, we can calculate the
UAV residual energy corresponding to each offloading decision by solving the P2 problem.
Therefore, the optimal offloading decision u∗t corresponding to the maximum residual
energy is selected, which can be expressed as follows:

u∗t = arg max
ui∈{uK}

E∗(ct , ui) (18)

Finally, output the optimal offloading decision.

5.3. Offload Policy Update

In order to reduce the correlation between data and improve the learning efficiency,
we introduce the experience replay technology, which can effectively improve the gener-
alization ability of the algorithm and accelerate the convergence speed of the algorithm.
Firstly, we create an empty memory with limited capacity, and add the wireless channel
gain ct and optimal offloading decision u∗t to the experience replay pool in the t− th time
block. When the memory capacity of the experience replay pool is full, the old data samples
will be updated with the newly generated data samples. Therefore, the DNN will only
learn relatively new and better offloading decision samples.

At the next time block, we randomly select a batch of training data samples
{
(hρ, u∗ρ) |ρ ∈ It

}
from the experience replay pool to train the DNN, where It denotes the total number of time
blocks in the experience playback pool. In the DNN, we use the Sigmoid activation function,
so it is suitable to use the cross-entropy loss function at this time. The main characteristic of the
cross-entropy loss function is that when the error is large, the weight update is fast, and when the
error is small, the weight update is relatively slow. The formula is as follows:

Loss(ωt) = −
1
|It| ∑ρ∈It

{
(u∗ρ)

T log Γωt(ct) + (1− u∗ρ)
T log[1− Γωt(ct)]

}
(19)

where the parameter ωt of the DNN reduces the cross-entropy loss by using the Nadam
optimization algorithm [41,42]. After bias correction, the Nadam algorithm will set different
adaptive learning rates for different parameters, and the learning rate will have a certain
range, so that the parameters are relatively stable. Based on the advantages of the RMSprop
algorithm for dealing with non-stationary targets, Nadam also has the characteristics of
the Adagrad algorithm for dealing with sparse gradients. It is equivalent to Adam with
Nesterov momentum and has great advantages in solving problems with large-scale data
or parameters.

In general, the DNN continuously learns from optimal state actions (ct, u∗t), producing
increasingly superior offloading decision outputs over time. It continuously improves the
offloading strategy under the mechanism of reinforcement learning until it converges, thus
forming an online computing offloading strategy suitable for the MEC system. The DOTO
algorithm is shown in Algorithm 1.

Future Internet 2022, 14, 226 11 of 19

Algorithm 1 The DOTO algorithm

Input: ct: wireless channel gain at each time block t; M: the number of time
blocks; δ: training interval; K: the number of quantized actions;
Output: optimal offloading decision u∗t ;
1: Initialize the DNN with random parameters ω1 and empty memory;
2: for t = 1, . . . , M do
3: Generate a relaxed offloading action ũt = Γωt (ct);
4: Quantize ũt into K binary actions {uk} = YK(ũt);
5: Compute E∗(ct , uk) for all uk by solving P2;
6: Select the optimal offloading decision u∗t = arg max

ui∈{uK}
E∗(ct , ui);

7: Update experience replay pool by adding (ct, u∗t);
8: if t mod δ = 0 then
9: Randomly select training samples

{
(hρ, u∗ρ) |ρ ∈ It

}
;

10: Update ωt using the Nadam algorithm;
11: end
12: if t mod ∆ = 0 then
13: Update K by K = max(max(kt−1, . . . , kt−∆) + 1, N);
14: end
15: end

6. Simulation Results

In this section, we will use simulation experiments to evaluate the performance of the
DOTO algorithm. In order to be in line with reality, the parameters are set as follows in this
paper [8,20]. In all simulation experiments, the transmitter parameter of the AP server is set
to P = 50W, the UAV energy harvesting efficiency ηi is uniformly distributed in the [0.6, 0.8]
interval, and the distance di from each UAV to the AP is uniformly distributed in the range
of (5,8) meters, i = 1, . . . , N. The channel gain c̃i follows the free-space path loss model

c̃i = Ad(
3×108

4 π h di
)

de
, where Ad = 4.11 denotes the antenna gain,de denotes the path loss

index, generally de = 2.8, and h = 915 M H z represents the carrier frequency. In the t− th
time block, the wireless channel gain ct = [c1

t , c2
t , . . . , cN

t] of N UAVs can be obtained from
the Rayleigh fading channel model ci

t = c̃iα
t
i , where αt

i represents an independent random
channel fading factor and obeys the exponential distribution of unit mean. We use the
TDMA protocol for computing task offloading. To ensure the generality of the experiment,
the length of the time block is set to be less than the time of the channel interference—that
is, T = 1. It is assumed that the wireless channel gain remains constant in the same time
block, but changes in different time blocks. We assume that the computing efficiency ki
of all UAVs is equal, which is ki = 10−22, i = 1, . . . , N, and the period O = 200 cycles/bit.
The data communication bandwidth is B = 2 M H z, the noise power is G = 10−10, and
the offload task communication overhead coefficient θ = 1.1. The DNN model consists
of two hidden layers, an input layer and an output layer, and the training environment is
Tensorflow2. Below, we analyze the experimental results.

6.1. Performance of Algorithm

For the problem of the UAV offloading strategy in the MEC system presented in this
paper, the Coordinate Descent (CD) method randomly gives a set of offloading actions
for all UAVs. For the combination of each piece of equipment in offloading mode and
local calculation mode in sequence, the maximum residual energy of the UAV is calculated
by solving formula P2. After comparison, the computing mode with the largest residual
energy in the UAV is selected. When the mode conversion is performed for a device, the
offloading action of other devices is fixed. The CD algorithm is equivalent to searching in a
two-dimensional space at this time. The dimension is low and the result is good.

In this section, we evaluate the decision quality of the DOTO algorithm. Firstly, the
optimal offloading decision of each time block is found from all 2N offloading actions of
N UAVs. Then, we find the total residual energy of the UAV in the MEC system obtained

Future Internet 2022, 14, 226 12 of 19

within 10,000 time blocks under the three modes of the DOTO algorithm, CD algorithm
and optimal offloading decision. In Figure 4, we compare the ratio of the results of the
DOTO algorithm and the CD algorithm to the results of the optimal offloading decision.
The closer the curve in the figure is to 1, the better the algorithm’s performance. From the
results in Figure 4, it can be seen that when the number of UAVs in the MEC system varies
between 5 and 10, the DOTO algorithm performs better than the CD algorithm. When
the number of devices increases, the performance of the two modes decreases gradually.
However, the trend of performance degradation for the DOTO algorithm is more gradual
than that of the CD algorithm. When the number of devices increases, the performance gap
between the two algorithms is larger. When there are 10 UAVs, the DOTO algorithm can
still obtain 99.9% of the residual energy. However, the CD algorithm can obtain 99.2% of
the residual energy because, when the number of devices increases, the possible offloading
actions increase exponentially. At this time, the simple two-dimensional search of the CD
algorithm is unable to search for the global optimal solution, so the performance of the
algorithm becomes increasingly worse. The DOTO algorithm benefits from the powerful
fitting effect of the DNN, and even if the number of devices is large, the data sample
training is sufficient. Therefore, the performance of the algorithm is relatively better and
more stable.

Future Internet 2022, 14, x FOR PEER REVIEW 13 of 20

6.1. Performance of Algorithm
For the problem of the UAV offloading strategy in the MEC system presented in this

paper, the Coordinate Descent (CD) method randomly gives a set of offloading actions for
all UAVs. For the combination of each piece of equipment in offloading mode and local
calculation mode in sequence, the maximum residual energy of the UAV is calculated by
solving formula 2P . After comparison, the computing mode with the largest residual
energy in the UAV is selected. When the mode conversion is performed for a device, the
offloading action of other devices is fixed. The CD algorithm is equivalent to searching in
a two-dimensional space at this time. The dimension is low and the result is good.

In this section, we evaluate the decision quality of the DOTO algorithm. Firstly, the
optimal offloading decision of each time block is found from all N2 offloading actions
of N UAVs. Then, we find the total residual energy of the UAV in the MEC system ob-
tained within 10,000 time blocks under the three modes of the DOTO algorithm, CD algo-
rithm and optimal offloading decision. In Figure 4, we compare the ratio of the results of
the DOTO algorithm and the CD algorithm to the results of the optimal offloading deci-
sion. The closer the curve in the figure is to 1, the better the algorithm’s performance. From
the results in Figure 4, it can be seen that when the number of UAVs in the MEC system
varies between 5 and 10, the DOTO algorithm performs better than the CD algorithm.
When the number of devices increases, the performance of the two modes decreases grad-
ually. However, the trend of performance degradation for the DOTO algorithm is more
gradual than that of the CD algorithm. When the number of devices increases, the perfor-
mance gap between the two algorithms is larger. When there are 10 UAVs, the DOTO
algorithm can still obtain 99.9% of the residual energy. However, the CD algorithm can
obtain 99.2% of the residual energy because, when the number of devices increases, the
possible offloading actions increase exponentially. At this time, the simple two-dimen-
sional search of the CD algorithm is unable to search for the global optimal solution, so
the performance of the algorithm becomes increasingly worse. The DOTO algorithm ben-
efits from the powerful fitting effect of the DNN, and even if the number of devices is
large, the data sample training is sufficient. Therefore, the performance of the algorithm
is relatively better and more stable.

Figure 4. The ratio of the results of the DOTO algorithm and the CD algorithm to the results of the
optimal offloading decision.

Figure 4. The ratio of the results of the DOTO algorithm and the CD algorithm to the results of the
optimal offloading decision.

6.2. Adaptive K Value Setting Method

In this section, we study the impact of the adaptive K value setting method on the
performance of the DOTO algorithm.

In Figure 5, we show the K value index distribution in 10,000 time blocks when the
number of UAVs accessed in the MEC system is 5 to 10. At this time, the K value is mostly
0 or 1, but there are also some other values. When the number of UAVs increases, the
final value fluctuates more. However, more than 95% are within the N value and below.
Therefore, in the adaptive K value setting method, this paper finally sets the K minimum to
the N value. The experiments in Section 6.1 have demonstrated that the DOTO algorithm
with such an adaptive K value setting can obtain satisfactory suboptimal solutions.

Future Internet 2022, 14, 226 13 of 19

Future Internet 2022, 14, x FOR PEER REVIEW 14 of 20

6.2. Adaptive K Value Setting Method
In this section, we study the impact of the adaptive K value setting method on the

performance of the DOTO algorithm.
In Figure 5, we show the K value index distribution in 10,000 time blocks when the

number of UAVs accessed in the MEC system is 5 to 10. At this time, the K value is
mostly 0 or 1, but there are also some other values. When the number of UAVs increases,
the final value fluctuates more. However, more than 95% are within the N value and
below. Therefore, in the adaptive K value setting method, this paper finally sets the K
minimum to the N value. The experiments in Section 6.1 have demonstrated that the
DOTO algorithm with such an adaptive K value setting can obtain satisfactory subop-
timal solutions.

Figure 5. The index distribution of the K value of the maximum offloading action in KNN within
10,000 time blocks when the number of UAVs varies from 5 to 10.

In Figure 6, we show the influence of the adaptive K on the computational com-
plexity of the DOTO algorithm. It shows that the computational complexity of the DOTO
algorithm can be greatly reduced under the condition of ensuring the performance of the
algorithm. When the value of K is N2 , as the number of UAVs in the MEC system in-
creases, the time consumed by the offloading strategy will increase significantly. When
the number of access devices is 10, the average time required for each offloading decision
reaches 0.1203 s. At this time, the delay is too high, and it is no longer suitable for solving
practical problems. Moreover, when the number of devices continues to increase, the de-
lay will be more serious. When the adaptive K value setting is adopted, the average
calculation time of the DOTO algorithm is relatively stable, and there is no obvious
change. The required time is also approximately 0.017 s, which is short and can be well
applied to the actual model. The computational complexity of the DOTO algorithm is re-
duced from an exponential relationship to a linear relationship.

In Figure 7, we further demonstrate the effect of the adaptive K update interval Δ
on the computational complexity and residual energy of the DOTO algorithm. To make
the image more intuitive, we divide the data obtained at different update intervals Δ by
the smallest data among them. This converts the data into ratio form. The minimum com-
puting time and residual energy in the figure are obtained when the update interval Δ
is 5. Therefore, the data in the figure are all obtained by dividing the data when the update
interval is 5. It can be seen from Figure 7 that when the update interval Δ is larger, the
required calculation time is greater and the calculation complexity is higher. However,

Figure 5. The index distribution of the K value of the maximum offloading action in KNN within
10,000 time blocks when the number of UAVs varies from 5 to 10.

In Figure 6, we show the influence of the adaptive K on the computational complexity
of the DOTO algorithm. It shows that the computational complexity of the DOTO algorithm
can be greatly reduced under the condition of ensuring the performance of the algorithm.
When the value of K is 2N , as the number of UAVs in the MEC system increases, the
time consumed by the offloading strategy will increase significantly. When the number
of access devices is 10, the average time required for each offloading decision reaches
0.1203 s. At this time, the delay is too high, and it is no longer suitable for solving practical
problems. Moreover, when the number of devices continues to increase, the delay will be
more serious. When the adaptive K value setting is adopted, the average calculation time of
the DOTO algorithm is relatively stable, and there is no obvious change. The required time
is also approximately 0.017 s, which is short and can be well applied to the actual model.
The computational complexity of the DOTO algorithm is reduced from an exponential
relationship to a linear relationship.

Future Internet 2022, 14, x FOR PEER REVIEW 15 of 20

the residual energy obtained is also greater because, when the update interval Δ is
larger, the K value decreases more slowly. This means that more offloading actions will
be generated and problem 2P will be calculated more times. However, when the update
interval 20Δ ≥ , the computation time grows exponentially, while the residual energy
grows linearly and slowly. To balance performance and computational complexity, we
finally set 40Δ = .

Figure 6. When the number of UAVs is 5 to 10, the DOTO algorithm uses full enumeration (maxK)

and adaptive K modes to average the computing time per time block within 10,000 time blocks.

Figure 7. The corresponding calculation time and residual energy when adaptive K adopts differ-

ent update intervals Δ . Here, we set 8=N .

Figure 6. When the number of UAVs is 5 to 10, the DOTO algorithm uses full enumeration (Kmax)
and adaptive K modes to average the computing time per time block within 10,000 time blocks.

Future Internet 2022, 14, 226 14 of 19

In Figure 7, we further demonstrate the effect of the adaptive K update interval ∆ on the
computational complexity and residual energy of the DOTO algorithm. To make the image
more intuitive, we divide the data obtained at different update intervals ∆ by the smallest
data among them. This converts the data into ratio form. The minimum computing time and
residual energy in the figure are obtained when the update interval ∆ is 5. Therefore, the data
in the figure are all obtained by dividing the data when the update interval is 5. It can be seen
from Figure 7 that when the update interval ∆ is larger, the required calculation time is greater
and the calculation complexity is higher. However, the residual energy obtained is also greater
because, when the update interval ∆ is larger, the K value decreases more slowly. This means
that more offloading actions will be generated and problem P2 will be calculated more times.
However, when the update interval ∆ ≥ 20, the computation time grows exponentially, while
the residual energy grows linearly and slowly. To balance performance and computational
complexity, we finally set ∆ = 40.

Future Internet 2022, 14, x FOR PEER REVIEW 15 of 20

the residual energy obtained is also greater because, when the update interval Δ is
larger, the K value decreases more slowly. This means that more offloading actions will
be generated and problem 2P will be calculated more times. However, when the update
interval 20Δ ≥ , the computation time grows exponentially, while the residual energy
grows linearly and slowly. To balance performance and computational complexity, we
finally set 40Δ = .

Figure 6. When the number of UAVs is 5 to 10, the DOTO algorithm uses full enumeration (maxK)

and adaptive K modes to average the computing time per time block within 10,000 time blocks.

Figure 7. The corresponding calculation time and residual energy when adaptive K adopts differ-

ent update intervals Δ . Here, we set 8=N .

Figure 7. The corresponding calculation time and residual energy when adaptive K adopts different
update intervals ∆. Here, we set N = 8.

6.3. The Effects of Different Parameters

In this section, we study the effects of different parameters on the performance of the
DOTO algorithm, including the training interval, experience replay pool and training sample.

In Table 1, we show the performance of DOTO under different training intervals δ. The
DOTO algorithm converges faster with shorter training intervals, and thus more frequent
policy updates. However, it is not necessary to update the policy frequently. The results
in Table 1 also prove this point. Nonetheless, the training interval also should not be too
large. This will cause the algorithm not to converge. Since the DOTO algorithm no longer
converges when the training interval δ ≥ 40, the data results are meaningless and are thus
not displayed. After comprehensively considering the algorithm results and convergence
performance, this paper sets the training interval δ = 10.

In Tables 2 and 3, we show the performance of DOTO under different experience
replay pool sizes and training sample sizes. First, when the training sample size is 64,
128 and 256, we use different experience replay pool sizes to observe the performance of
the algorithm. Then, after selecting a suitable size of the experience replay pool, we find a
suitable training sample size according to the size of the experience replay pool. It can be
seen from Table 2 that when the experience pool is small, the convergence of the DOTO
algorithm fluctuates greatly. When the experience pool is larger, the convergence is slower.
After comprehensively considering the algorithm results and convergence performance,
we finally set the experience replay pool size to 1024.

Future Internet 2022, 14, 226 15 of 19

Table 1. The effect of training interval δ on algorithm performance. Here, we set N = 8.

Training Interval Ratio of Residual Energy to
Optimal Decision Convergence Performance

2 0.9985 convergence fluctuates greatly

5 0.9990 convergence fluctuates greatly

10 0.9991 convergence

20 0.9990 convergence

40 non-convergence

80 non-convergence

Table 2. The effect of experience replay pool size on algorithm performance. Here, we set N = 8.

Experience Replay
Pool

Training
Sample

Ratio of Residual
Energy to Optimal

Decision

Convergence
Performance

64 64 0.9987 convergence
fluctuates greatly

128
64 0.9986 convergence

fluctuates greatly

128 0.9984 convergence
fluctuates greatly

256

64 0.9988 convergence

128 0.9988 convergence
fluctuates greatly

256 0.9987 convergence
fluctuates greatly

512

64 0.9988 convergence

128 0.9989 convergence
fluctuates greatly

256 0.9989 convergence
fluctuates greatly

1024

64 0.9990 convergence

128 0.9991 convergence

256 0.9990 convergence

2048

64 0.9989 slow convergence

128 0.9991 slow convergence

256 0.9990 convergence

As shown in Table 3, when the training samples are too small, since DOTO cannot
effectively utilize all the data in the experience pool, the convergence performance of the
algorithm is reduced. When the number of samples is too large, old training data are often
used, resulting in poor convergence performance. After comprehensively considering the
algorithm results and convergence performance, we finally set the training sample size to 128.

Future Internet 2022, 14, 226 16 of 19

Table 3. The effect of training sample size on algorithm performance. Here, we set the experience
replay pool size to 1024 and N = 8.

Training Sample Ratio of Residual Energy to
Optimal Decision Convergence Performance

16 non-convergence

32 0.9985 convergence fluctuates greatly

64 0.9990 convergence

128 0.9991 convergence

256 0.9990 convergence

512 0.9988 convergence fluctuates greatly

1024 0.9985 convergence fluctuates greatly

6.4. Switching UAV On or Off

During the operation of the MEC system, individual UAVs may shut down due to
malfunction or loss of power. New UAVs may also be connected to the system. In this
section, the stability of the DOTO algorithm will be analyzed when individual devices are
turned off or new devices are connected during operation.

In Figure 8, we show whether the training loss converges quickly after turning the
device on or off. When the number of iterations is 400, one UAV is randomly turned off in
the MEC system with six UAVs, and two UAVs are newly connected in the system with
seven UAVs. At this time, the training loss fluctuates greatly, rising (or falling) rapidly,
but it converges again after around 100 iterations. This shows that the DOTO algorithm
automatically updates its own offloading strategy and converges to obtain the optimal
offloading strategy under the new environmental state.

Future Internet 2022, 14, x FOR PEER REVIEW 17 of 20

As shown in Table 3, when the training samples are too small, since DOTO cannot
effectively utilize all the data in the experience pool, the convergence performance of the
algorithm is reduced. When the number of samples is too large, old training data are often
used, resulting in poor convergence performance. After comprehensively considering the
algorithm results and convergence performance, we finally set the training sample size to
128.

Table 3. The effect of training sample size on algorithm performance. Here, we set the experience
replay pool size to 1024 and 8=N .

Training Sample Ratio of Residual Energy to
Optimal Decision

Convergence performance

16 non-convergence
32 0.9985 convergence fluctuates greatly
64 0.9990 convergence

128 0.9991 convergence
256 0.9990 convergence
512 0.9988 convergence fluctuates greatly
1024 0.9985 convergence fluctuates greatly

6.4. Switching UAV On or Off
During the operation of the MEC system, individual UAVs may shut down due to

malfunction or loss of power. New UAVs may also be connected to the system. In this
section, the stability of the DOTO algorithm will be analyzed when individual devices are
turned off or new devices are connected during operation.

In Figure 8, we show whether the training loss converges quickly after turning the
device on or off. When the number of iterations is 400, one UAV is randomly turned off
in the MEC system with six UAVs, and two UAVs are newly connected in the system with
seven UAVs. At this time, the training loss fluctuates greatly, rising (or falling) rapidly,
but it converges again after around 100 iterations. This shows that the DOTO algorithm
automatically updates its own offloading strategy and converges to obtain the optimal
offloading strategy under the new environmental state.

Figure 8. Training loss obtained by turning UAV on or off in the MEC system at iteration 400.

In Figure 9, we further show the more complex case where one of the UAVs is randomly
turned off and then turned on in an MEC system with 10 UAVs. Specifically, when the
number of training steps is 900, one UAV is randomly turned off. Moreover, when the
number of training steps is 1800, it is turned on and re-connected to the system. It can be

Future Internet 2022, 14, 226 17 of 19

seen from Figure 9 that the training is in a convergent state at first. However, after randomly
shutting down one device, the training loss fluctuates greatly and rises rapidly, reaching
convergence again after around 100 steps of training. When the number of training times is
less than 1800, we reopen the original device to access the MEC system. At this point, the
training loss fluctuates again and quickly converges to the state of the original 10 devices.
This shows that the DOTO algorithm has strong self-adjustment ability and can be well
suited for complex MEC online offloading situations.

Future Internet 2022, 14, x FOR PEER REVIEW 18 of 20

Figure 8. Training loss obtained by turning UAV on or off in the MEC system at iteration 400.

In Figure 9, we further show the more complex case where one of the UAVs is ran-
domly turned off and then turned on in an MEC system with 10 UAVs. Specifically, when
the number of training steps is 900, one UAV is randomly turned off. Moreover, when the
number of training steps is 1800, it is turned on and re-connected to the system. It can be
seen from Figure 9 that the training is in a convergent state at first. However, after ran-
domly shutting down one device, the training loss fluctuates greatly and rises rapidly,
reaching convergence again after around 100 steps of training. When the number of train-
ing times is less than 1800, we reopen the original device to access the MEC system. At
this point, the training loss fluctuates again and quickly converges to the state of the orig-
inal 10 devices. This shows that the DOTO algorithm has strong self-adjustment ability
and can be well suited for complex MEC online offloading situations.

Figure 9. The convergence performance of the training loss when randomly turning one UAV off
and then reopening it.

The above two experiments fully demonstrate that the DOTO algorithm has good
adaptability.

7. Conclusions
This paper studies the problem of maximizing the residual energy of maritime search

and rescue UAVs based on MEC. The research objective is formalized as a residual energy
maximization problem by jointly optimizing communication and time resources. After
analysis, the problem is found to be a non-convex problem, which is difficult to solve.
However, when the offloading decision is given, it can be transformed into a convex prob-
lem and solved by convex optimization techniques. Therefore, we divide the target prob-
lem into two sub-problems, namely the time resource allocation problem and the task of-
floading decision problem. For the time resource allocation problem, the relevant optimal
parameters can be obtained by using the convex optimization method. For the task of-
floading problem, the DOTO algorithm is proposed based on the idea of deep reinforce-
ment learning. To balance the performance and computational complexity of the algo-
rithm, an adaptive K value method is proposed. Simulation experiments show that the
DOTO algorithm can provide users with an online computing offloading strategy that is

Figure 9. The convergence performance of the training loss when randomly turning one UAV off and
then reopening it.

The above two experiments fully demonstrate that the DOTO algorithm has good
adaptability.

7. Conclusions

This paper studies the problem of maximizing the residual energy of maritime search
and rescue UAVs based on MEC. The research objective is formalized as a residual energy
maximization problem by jointly optimizing communication and time resources. After
analysis, the problem is found to be a non-convex problem, which is difficult to solve.
However, when the offloading decision is given, it can be transformed into a convex
problem and solved by convex optimization techniques. Therefore, we divide the target
problem into two sub-problems, namely the time resource allocation problem and the
task offloading decision problem. For the time resource allocation problem, the relevant
optimal parameters can be obtained by using the convex optimization method. For the
task offloading problem, the DOTO algorithm is proposed based on the idea of deep
reinforcement learning. To balance the performance and computational complexity of the
algorithm, an adaptive K value method is proposed. Simulation experiments show that the
DOTO algorithm can provide users with an online computing offloading strategy that is
superior to other traditional benchmark schemes. When there is a UAV in the MEC system
that exits the system due to insufficient power or failure, or a new UAV is connected to
the system, the DOTO algorithm can also quickly converge to provide a new and effective
online offloading strategy for the MEC system. There is no need for manual participation
in the whole process, resulting in good stability. Deep reinforcement learning provides a
new solution for MEC. In the future, we will explore the application of deep reinforcement
learning for the joint offloading of multiple APs. We will also focus on the balance between
the residual energy and computing rate of mobile devices.

Future Internet 2022, 14, 226 18 of 19

Author Contributions: Conceptualization, Z.D. and J.G.; methodology, Z.D. and G.X.; software,
Z.D. and Z.L.; validation, Z.D. and Z.L.; investigation, Z.D. and Z.L.; resources, J.G. and W.W.; data
curation, Z.D.; writing—original draft preparation, Z.D.; writing—review and editing, Z.D., J.G., Z.L.
and W.W.; visualization, Z.D.; supervision, G.X.; project administration, G.X. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Development Project of Jilin Province of China (No.
20200401076GX) and Jilin University of China.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abd Elaziz, M.; Abualigah, L.; Ibrahim, R.A.; Attiya, I. IoT Workflow Scheduling Using Intelligent Arithmetic Optimization

Algorithm in Fog Computing. Comput. Intell. Neurosci. 2021, 2021, 9114113. [CrossRef] [PubMed]
2. Dhelim, S.; Ning, H.; Farha, F.; Chen, L.; Atzori, L.; Daneshmand, M. IoT-Enabled Social Relationships Meet Artificial Social

Intelligence. IEEE Internet Things J. 2021, 8, 17817–17828. [CrossRef]
3. Martinez-Alpiste, I.; Golcarenarenji, G.; Wang, Q.; Alcaraz-Calero, J.M. Search and Rescue Operation Using UAVs: A Case Study.

Expert Syst. Appl. 2021, 178, 114937. [CrossRef]
4. Rozlosnik, A.; Infrarroja, S.T.; de Bustamante, S. Potential Contribution of the Infrared Industry in the Future of IoT/IIoT. In

Proceedings of the 14th Quantitative InfraRed Thermography Conference, Berlin, Germany, 25–29 June 2018; pp. 25–29.
5. Al-Turjman, F.; Zahmatkesh, H.; Al-Oqily, I.; Daboul, R. Optimized Unmanned Aerial Vehicles Deployment for Static and Mobile

Targets’ Monitoring. Comput. Commun. 2020, 149, 27–35. [CrossRef]
6. Avgeris, M.; Spatharakis, D.; Dechouniotis, D.; Kalatzis, N.; Roussaki, I.; Papavassiliou, S. Where There Is Fire There Is Smoke: A

Scalable Edge Computing Framework for Early Fire Detection. Sensors 2019, 19, 639. [CrossRef]
7. Liu, P.; Xu, G.; Yang, K.; Wang, K.; Li, Y. Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge

Computing Systems. KSII Trans. Internet Inf. Syst. (TIIS) 2018, 12, 5614–5633.
8. Li, L.; Xu, G.; Liu, P.; Li, Y.; Ge, J. Jointly Optimize the Residual Energy of Multiple Mobile Devices in the MEC–WPT System.

Future Internet 2020, 12, 233. [CrossRef]
9. Hu, X.; Wong, K.K.; Yang, K. Wireless Powered Cooperation-Assisted Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2018,

17, 2375–2388. [CrossRef]
10. Ahmed, A.; Ahmed, E. A Survey on Mobile Edge Computing. In Proceedings of the International Conference on Intelligent

Systems & Control, Coimbatore, India, 7–8 January 2016.
11. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE

Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]
12. Yu, Z.; Xu, G.; Li, Y.; Liu, P.; Li, L. Joint Offloading and Energy Harvesting Design in Multiple Time Blocks for FDMA Based

Wireless Powered MEC. Future Internet 2021, 13, 70. [CrossRef]
13. Huang, L.; Bi, S.; Zhang, Y.-J.A. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-

Edge Computing Networks. IEEE Trans. Mob. Comput. 2019, 19, 2581–2593. [CrossRef]
14. Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE

Commun. Surv. Tutor. 2014, 17, 757–789. [CrossRef]
15. Gao, H.; Ejaz, W.; Jo, M. Cooperative Wireless Energy Harvesting and Spectrum Sharing in 5G Networks. IEEE Access 2016, 4,

3647–3658. [CrossRef]
16. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices.

IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]
17. Wang, F.; Xing, H.; Xu, J. Real-Time Resource Allocation for Wireless Powered Multiuser Mobile Edge Computing with Energy

and Task Causality. IEEE Trans. Commun. 2020, 68, 7140–7155. [CrossRef]
18. Wang, Y.; Sheng, M.; Wang, X.; Wang, L.; Li, J. Mobile-Edge Computing: Partial Computation Offloading Using Dynamic Voltage

Scaling. IEEE Trans. Commun. 2016, 64, 4268–4282. [CrossRef]
19. Wang, C.; Liang, C.; Yu, F.R.; Chen, Q.; Tang, L. Computation Offloading and Resource Allocation in Wireless Cellular Networks

with Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2017, 16, 4924–4938. [CrossRef]
20. Bi, S.; Zhang, Y.J. Computation Rate Maximization for Wireless Powered Mobile-Edge Computing with Binary Computation

Offloading. IEEE Trans. Wirel. Commun. 2018, 17, 4177–4190. [CrossRef]
21. Tran, T.X.; Pompili, D. Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks. IEEE

Trans. Veh. Technol. 2018, 68, 856–868. [CrossRef]
22. Guo, S.; Xiao, B.; Yang, Y.; Yang, Y. Energy-Efficient Dynamic Offloading and Resource Scheduling in Mobile Cloud Computing.

In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San
Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

http://doi.org/10.1155/2021/9114113
http://www.ncbi.nlm.nih.gov/pubmed/34976046
http://doi.org/10.1109/JIOT.2021.3081556
http://doi.org/10.1016/j.eswa.2021.114937
http://doi.org/10.1016/j.comcom.2019.10.001
http://doi.org/10.3390/s19030639
http://doi.org/10.3390/fi12120233
http://doi.org/10.1109/TWC.2018.2794345
http://doi.org/10.1109/COMST.2017.2745201
http://doi.org/10.3390/fi13030070
http://doi.org/10.1109/TMC.2019.2928811
http://doi.org/10.1109/COMST.2014.2368999
http://doi.org/10.1109/ACCESS.2016.2579598
http://doi.org/10.1109/JSAC.2016.2611964
http://doi.org/10.1109/TCOMM.2020.3011990
http://doi.org/10.1109/TCOMM.2016.2599530
http://doi.org/10.1109/TWC.2017.2703901
http://doi.org/10.1109/TWC.2018.2821664
http://doi.org/10.1109/TVT.2018.2881191

Future Internet 2022, 14, 226 19 of 19

23. Dinh, T.Q.; Tang, J.; La, Q.D.; Quek, T.Q. Offloading in Mobile Edge Computing: Task Allocation and Computational Frequency
Scaling. IEEE Trans. Commun. 2017, 65, 3571–3584.

24. Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.; Lillicrap, T.; Hunt, J.; Mann, T.; Weber, T.; Degris, T.; Coppin, B. Deep
Reinforcement Learning in Large Discrete Action Spaces. arXiv 2015, arXiv:1512.07679.

25. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef]
[PubMed]

26. Bi, S.; Huang, L.; Wang, H.; Zhang, Y. Stable Online Computation Offloading via Lyapunov-Guided Deep Reinforcement Learning.
In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021.

27. Naouri, A.; Wu, H.; Nouri, N.A.; Dhelim, S.; Ning, H. A Novel Framework for Mobile-Edge Computing by Optimizing Task
Offloading. IEEE Internet Things J. 2021, 8, 13065–13076. [CrossRef]

28. You, C.; Huang, K.; Chae, H. Energy Efficient Mobile Cloud Computing Powered by Wireless Energy Transfer. IEEE J. Sel. Areas
Commun. 2016, 34, 1757–1771. [CrossRef]

29. Wang, X.; Giannakis, G.B. Power-Efficient Resource Allocation for Time-Division Multiple Access over Fading Channels. IEEE
Trans. Inf. Theory 2008, 54, 1225–1240. [CrossRef]

30. Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint Offloading and Computing Optimization in Wireless Powered Mobile-Edge Computing
Systems. IEEE Trans. Wirel. Commun. 2017, 17, 1784–1797. [CrossRef]

31. Zhou, F.; Wu, Y.; Hu, R.Q.; Qian, Y. Computation Rate Maximization in UAV-Enabled Wireless-Powered Mobile-Edge Computing
Systems. IEEE J. Sel. Areas Commun. 2018, 36, 1927–1941. [CrossRef]

32. Zhang, Y.; Liu, T.; Zhu, Y.; Yang, Y. A Deep Reinforcement Learning Approach for Online Computation Offloading in Mobile Edge
Computing. In Proceedings of the 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS), Hangzhou,
China, 15–17 June 2020.

33. Bi, S.; Huang, L.; Wang, H.; Zhang, Y. Lyapunov-Guided Deep Reinforcement Learning for Stable Online Computation Offloading
in Mobile-Edge Computing Networks. IEEE Trans. Wirel. Commun. 2021, 20, 7519–7537. [CrossRef]

34. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-Based Computation Offloading for IoT Devices with Energy
Harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]

35. Zhao, N.; Ye, Z.; Pei, Y.; Liang, Y.-C.; Niyato, D. Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted
Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2022, 1. [CrossRef]

36. Zhang, L.; Zhang, Z.-Y.; Min, L.; Tang, C.; Zhang, H.-Y.; Wang, Y.-H.; Cai, P. Task Offloading and Trajectory Control for
UAV-Assisted Mobile Edge Computing Using Deep Reinforcement Learning. IEEE Access 2021, 9, 53708–53719. [CrossRef]

37. Herbert, S.; Wassell, I.; Loh, T.-H.; Rigelsford, J. Characterizing the Spectral Properties and Time Variation of the In-Vehicle
Wireless Communication Channel. IEEE Trans. Commun. 2014, 62, 2390–2399. [CrossRef]

38. Mao, S.; Leng, S.; Yang, K.; Huang, X.; Zhao, Q. Fair Energy-Efficient Scheduling in Wireless Powered Full-Duplex Mobile-Edge
Computing Systems. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8
December 2017; pp. 1–6.

39. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
40. Calmet, J.; Benhamou, B.; Caprotti, O.; Henocque, L.; Sorge, V. (Eds.) Artificial Intelligence, Automated Reasoning, and Symbolic

Computation. In Prceeedings AISC 2002 and Calculemus 2002, Marseille, France, 1–5 July 2002; Springer: Berlin/Heidelberg,
Germany, 2002; Available online: https://link.springer.com/book/10.1007/3-540-45470-5 (accessed on 7 July 2022).

41. Tato, A.; Nkambou, R. Infusing Expert Knowledge into a Deep Neural Network Using Attention Mechanism for Personalized Learning
Environments. Available online: https://www.frontiersin.org/articles/10.3389/frai.2022.921476/full (accessed on 7 July 2022).

42. Dozat, T. Incorporating Nesterov Momentum into Adam; ICLR 2016 Workshop; 11 March 2016. Available online: https:
//openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf (accessed on 7 July 2022).

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.1109/JIOT.2021.3064225
http://doi.org/10.1109/JSAC.2016.2545382
http://doi.org/10.1109/TIT.2007.915717
http://doi.org/10.1109/TWC.2017.2785305
http://doi.org/10.1109/JSAC.2018.2864426
http://doi.org/10.1109/TWC.2021.3085319
http://doi.org/10.1109/TVT.2018.2890685
http://doi.org/10.1109/TWC.2022.3153316
http://doi.org/10.1109/ACCESS.2021.3070908
http://doi.org/10.1109/TCOMM.2014.2328635
https://link.springer.com/book/10.1007/3-540-45470-5
https://www.frontiersin.org/articles/10.3389/frai.2022.921476/full
https://openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf
https://openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf

	Introduction
	Related Work
	System Model
	Energy Transfer Model
	Local Computing Model
	Offloading Computing Model

	Problem Formulation and Solution
	Problem Formulation
	Problem Analysis and Solution
	Computing Task Offloading Decision Problem
	Time Resource Allocation Problem

	The DOTO Algorithm
	Algorithm Overview
	Offload Function Iteration
	Offload Policy Update

	Simulation Results
	Performance of Algorithm
	Adaptive K Value Setting Method
	The Effects of Different Parameters
	Switching UAV On or Off

	Conclusions
	References

