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Abstract: This paper addresses the regression modeling of local environmental pollution levels for
electric power industry needs, which is fundamental for the proper design and maintenance of
high-voltage transmission lines and insulators in order to prevent various hazards, such as accidental
flashovers due to pollution and the resultant power outages. The primary goal of our study was to
increase the precision of regression models for this application area by exploiting additional input
attributes extracted from satellite imagery and adjusting the modeling methodology. Given that
thousands of different attributes can be extracted from satellite images, of which only a few are
likely to contain useful information, we also explored suitable feature selection procedures. We show
that a suitable combination of attribute selection methods (relief, FSRF-Test, and forward selection),
regression models (random forest models and M5P regression trees), and modeling methodology
(estimating field-measured values of target variables rather than their upper bounds) can significantly
increase the total modeling accuracy, measured by the correlation between the estimated and the true
values of target variables. Specifically, the accuracies of our regression models dramatically rose from
0.12–0.23 to 0.40–0.64, while their relative absolute errors were conversely reduced (e.g., from 1.04 to
0.764 for the best model).

Keywords: regression modeling; electric power industry; satellite images; attribute selection; local
pollution modeling; stochastic variable; model refinement

1. Introduction

Over the past few decades, artificial intelligence in the form of machine learning
and deep learning has penetrated almost all areas of human activity. These techniques
have found application in such seemingly disparate areas as industry, education, science,
transportation, sports, or entertainment. Typically, it is advantageous to use deep learning
whenever there are sufficient quantities of training data available. Nevertheless, one can
still find application areas (or cases) where big training data simply are not available or
would be too costly to provide. In such cases, conventional machine learning methods may
be preferred, at least until sufficient quantities of data are collected for the application of
deep learning.

One such application area is the electric power industry, where the designers of new
high-voltage transmission lines are required to take into account local environmental pollu-
tion levels, which are affected by many factors, such as local orography and meteorology,
agricultural activity, transportation, factories, construction sites, etc. Measurement of local
pollution levels in line with the established power industry standards and procedures (e.g.,
STN 33 0405) can easily take one year or longer; it comprises a series of field measurements
of pollution deposits (each lasting six to eight weeks) followed by time-consuming labora-
tory analyses. Collecting big training data in this way would require simultaneous field
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measurements in thousands of different locations over several years, which is currently
unfeasible. As a result, application of deep learning methods in this area is significantly
constrained, and classical machine learning methods—those able to cope with smaller
training sets—seem to be more promising.

In general, the existing literature on insulator pollution can be divided into several
groups. The first contains studies such as [1–5], which try to relate the occurrence of
flashovers to the shape of the insulator, its level of pollution, and the chemical composition
of the deposits. The second group looks for suitable and safe techniques to determine
the degree of pollution of insulators, sometimes even during their operation under high
voltage. Thus, Ferreira et al. [6] proposed and validated a method for determining the
degree of pollution by spectral analysis of acoustic emissions in close proximity of polluted
insulators. Maraaba et al. [7] analyzed images of pollution using a digital camera in HSV
(hue, saturation, value) space. Wang et al. [8] proposed a noncontact method based on
spectral analysis of plasma formed from settled contamination after the application of a
short laser pulse (LIBS—Laser Induced Breakdown Spectroscopy) and Jin et al. [9] used an
information fusion of infrared, visible, and ultraviolet spectrum. Other researchers rely on
hyperspectral imaging and microwave radiation theory.

The third group tries to estimate the quantity and chemical composition of dust de-
posits that adhere to a given type of insulator in a given time, weather, location, and other
key factors. The International Council on Large Electric Systems (CIGRE) recommends five
ways of quantifying this type of pollution: by equivalent salt deposit density (ESDD), sur-
face conductivity, leakage current, pollution flashover voltage (PFV), or pollution flashover
gradient. Zhenghao He et al. [10] have established that high-voltage insulators are polluted
both by natural sources and by human activity. Their findings indicated that metal cations
mainly originate from human activity and accumulate on the bottom side of the insula-
tors. Chen and Zhang [11] proposed a dynamic model estimating the non-soluble deposit
density (NSDD) based on selected meteorological parameters. Qiao et al. [12] proposed a
similar model estimating the equivalent salt deposit density (ESDD) based on the so-called
grey system theory. The experimental work of Ferma et al. [13] showed a strong correlation
between the amount of deposits and the atmospheric concentrations of dust particles for
different European locations, so long as they were far from large sources of pollution. The
same research suggested that seasonal fluctuations in the concentration of air pollutants
were much higher in urban areas than in rural ones.

The vast majority of deposit and pollution models in the cited literature are only
partially theoretically motivated and chiefly rely on empirical studies. The main reason
is that these are complex scientific problems with many variable nonlinear factors, which
have so far defied a complete theoretical explanation. Artificial intelligence is currently the
most effective way of studying and solving such problems.

Our own work in this area started with the intuition that the levels of environmental
pollution as defined by STN 33 0405 (on the basis of pollution deposits trapped in deposit
collectors) should correlate well with standard indicators of atmospheric pollution, such as
PM10, already measured on a regular basis by the Slovak Hydrometeorological Institute
(SHMU) [14]. We hypothesized that with sufficient collected data, it would be possible to
train reasonably accurate machine learning models to be capable of estimating the levels of
pollution deposits from the atmospheric pollution indicators provided by the SHMU. This
could potentially save a lot of effort associated with time-consuming field measurements
according to STN 33 0405. Our initial attempts in this direction [15], however, ended in
failure. Neither nonlinear transformations of atmospheric pollution indicators, nor their
joint combinations have shown significant correlations with the levels of pollution deposits
from our field measurements. Analysis of these results and their possible causes, which we
briefly reiterate in the following sections, led us to search for new sources of information,
such as satellite imagery, which we expected would be more tightly related to the levels
of pollution deposits measured in the field. We also felt the need to redefine the target
attributes and directly estimate the field-measured levels of pollution deposits, rather than
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their upper bounds, as we had done earlier. As the results presented below demonstrate,
the combination of satellite imagery with this new methodology significantly increased the
accuracy of models.

The rest of this article is structured as follows: Section 2 describes potential improve-
ment directions that we considered before embarking on the course of action reported in
this paper. Section 3 describes the input and output data, and also lists possible reasons
for our earlier modeling failure. Section 4 provides a brief outline of the new approach.
Section 5 details the process of attribute selection and modeling, and also reports the
achieved estimation results. Section 6 contextualizes these results and evaluates their
statistical significance. Finally, Section 7 summarizes our findings and outlines directions
for future work.

2. Potential Model Improvement Directions

In spite of the above-mentioned problems and our unsuccessful early attempts to
model the upper bounds of target variables with sufficient precision for real-world applica-
tions, we identified several directions that might lead to higher modeling accuracy in the
future, namely:

1. A significant increase in the number (spatial density) of stations for field measure-
ments of pollution deposits, along with their long-term operation so as to obtain
longer time series for a more detailed analysis;

2. A change in approach: to shift from modeling the upper bound estimates of pol-
lution deposits to modeling their individual six-week field-measured values, from
which their upper bound estimates could be subsequently calculated by appropriate
statistical methods;

3. To add new types of relevant input attributes that are typically ignored by domain
experts in the fields of electric power and meteorology, but which could still capture
significant events affecting local pollution levels in the monitored locations;

4. To develop new statistical models of true probability distributions underlying the
input and output (target) variables. Analysis of these distributions, their deviations
from the expected distribution, and their detailed examination could help in iden-
tifying useful properties for their successful modeling and perhaps also reveal the
reasons why our previous models failed to achieve the desired accuracy.

Subsequent elaboration of these improvement directions revealed numerous issues
and challenges.

2.1. Increasing the Number of Field Measurements

A radical increase in the number of measuring stations and their denser spatial distri-
bution is problematic due to the need for long-term deployment of numerous specialized
measuring devices, which might be costly and require long-term investments. Nevertheless,
the need to develop accurate estimation models is now pressing, forcing us to look for
alternative approaches and cheaper sources of relevant information.

2.2. Modeling Field-Measured Values of Pollution Deposits Rather Than Their Upper Bounds

We consider it advantageous to shift from modeling the upper bound estimates of
target variables to direct modeling of their field-measured values, since, for many machine
learning techniques, the latter is a more natural and feasible task. Therefore, it might be
both easier and more accurate to directly model their field-measured values, and then
estimate their upper bounds by standard statistical methods.

This methodological shift also allows us to more precisely capture seasonal variation:
During a given six-week field measurement, it is reasonable to assume that seasonal factors
stay roughly constant, an assumption that clearly does not hold for the global yearly cycle.
As a result, individual deviations or anomalies of each variable in these six-week periods
are captured more precisely, which is a prerequisite for higher modeling accuracy.
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2.3. Define and Collect New Relevant Input Attributes

Additional relevant input attributes may be the key to increased modeling accuracy.
They can be defined in different ways, come from different sources, and be different in
their physical nature, e.g., laboratory analyses of pollution deposit samples, database of
main polluters such as the National Emission Information System (NEIS) [16], recordings
of acoustic emissions of polluted insulators, visual information extracted from satellite
images, etc. Laboratory analysis of collected pollution deposit samples is the standard and
established method, but is also very time-consuming and costly. Therefore, cheaper and
simpler alternatives of comparable quality are very much needed. One extremely useful
source of data that comes virtually free is satellite imagery. Since we already possess quite
extensive satellite imagery from Sentinel-2 satellites, we chose to use it for this purpose.
Our main motivation is that abrupt color changes in the vicinity of our field measurement
locations should correlate well with agricultural and other invasive interventions, such
as plowing, sowing, building, or surface mining activities, which tend to increase local
pollution levels.

2.4. Determine True Probability Distributions of Our Input and Output (Target) Variables

In general, the application of statistical approaches that take into account true statistical
distributions of both input and output variables is rather rare in machine learning. The
electric power industry standard STN 33 0405 states that the levels and relevant properties
of trapped pollution deposits should conform to the three-parameter Weibull distribution.
Although this cannot be ruled out at present, our preliminary experiments indicate that
other probability distributions might describe them even more precisely. We lack the
necessary number of samples to settle this issue now, but in the near future we expect
to obtain atmospheric pollution indicators with much finer granularity in time (on a
daily or even hourly basis), which should permit much more confident estimates of their
true underlying probability distributions. We expect that this would lead to a deeper
understanding of this difficult problem area and, eventually, to more reliable estimates of
local pollution deposits themselves. At present, however, we are forced to postpone this
line of research and exploration.

Having considered all of the above-mentioned issues and constraints, we decided
to proceed with a combination of the options elaborated on in Sections 2.2 and 2.3. In
other words, we tried to directly estimate the field-measured values of pollution deposits
rather than their upper bounds on the basis of new input attributes primarily derived from
satellite imagery.

3. Available Data

For this study, a measurement campaign lasting from June 2020 to May 2021 and
consisting of 400 six-week field measurements in 50 different geographical locations around
Slovakia (see Figure 1) provided the values of three target variables that together character-
ize the local environmental pollution levels (see Appendix A):

S—total pollution deposit
Sr—soluble fraction of pollution deposit
g02—electrical conductivity of soluble fraction

The campaign produced eight six-week measurements per variable per location. The
established procedure as per STN 33 0405 mandates fitting a Weibull distribution to the
eight values of each variable obtained at each location, and then estimating its upper bound
as the 99.5-th percentile of the fitted distribution. It means that, in a given location, there is
only a 0.5% chance that the variable will exceed its local upper bound. Based on these three
local upper bounds (for S, Sr, and g02), each location is assigned to one of four grades of
environmental pollution (I–IV) and, for each grade, appropriate parameters of insulation
and maintenance procedures are prescribed.
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Figure 1. Locations of field measurements in our 2020–2021 campaign around Slovakia.

We also had access to standard atmospheric pollution indicators regularly monitored
and evaluated by the Slovak Hydrometeorological Institute (SHMU) [14], which consist of
the yearly average of atmospheric concentrations of dust particles and selected gasses over
Slovakia. These are the same attributes that we had used in our previous work [15], and
we refer to them here as the SHMU input attributes. They comprise:

• PM2.5—yearly average of concentrations of dust particles with a diameter less than
2.5 µm;

• PM10—yearly average of concentrations of dust particles with a diameter less than
10 µm;

• O3—yearly average of ozone concentrations;
• NO2—yearly average of nitrogen dioxide concentrations;
• SO2—yearly average of sulfur dioxide concentrations.

In our previous work [15], we carried out several experiments in an attempt to reliably
estimate the upper bounds of target variables S, Sr, and g02 on the basis of SHMU input
attributes, but we failed to achieve reliable estimates. Neither nonlinear transformations
of these attributes, nor their joint combinations, resulted in a substantial increase in the
accuracy of our models. Possible reasons for this failure include:

• An insufficient number of data records (i.e., insufficiently representative data set), which
does not allow for generalizing the relationship between the inputs and the outputs;

• Missing input variables with dominant effect on target attributes, which makes the
behavior of target variables appear to be random;

• Unknown confidence intervals for input and output attributes that reduced the accu-
racy of the used models;

• An insufficient spatial density of the measured input and output values;
• An inherent difficulty of learning to reliably estimate upper bounds of random variables.

Overall, this seemed to indicate that the problem was much more difficult than it
originally appeared, and a fundamental change in approach along with new relevant input
attributes would be necessary to tackle it successfully. Therefore, this study exploits new
input attributes primarily derived from satellite imagery.
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The collection of Sentinel-2 satellite images used for this purpose aligned with the
timing of our field measurements. Each image covered an area of 100 km × 100 km and its
maximum spatial resolution was 10 m per pixel. (Spatial resolution actually depends on
the sampled spectral band—see Table 1). Since the lift-off of the second Sentinel-2B satellite
in 2017, temporal resolution of these images is one image per five days [17]. These images
can be either Level 1 (capturing the top of atmosphere reflectances) or Level 2 (bottom of
atmosphere reflectances). We used the B10 spectral band (cirrus cloud detection) from Level
1 images, and B1, B2, B3, B4, B6, B8, B11, and AOT spectral bands from Level 2 images [18].
We also used several normalized difference indices to indicate the prevalence of bare soils
(NDSI), flourishing vegetation (NDVI), water (NDWI), and moisture (NDMI) in a given
pixel [19]. (An overview of these spectral bands is provided in Table 1).

Table 1. List of used satellite spectral bands including normalized difference indices.

Name Scale Pixel Size Wavelength Description

AOT 0.001 10 m Aerosol optical thickness

B1 0.0001 10 m 443.9 nm Aerosols

B2 0.0001 10 m 496.6 nm Blue

B3 0.0001 10 m 560.0 nm Green

B4 0.0001 10 m 664.5 nm Red

B6 0.0001 20 m 740.2 nm Red Edge 2

B8 0.0001 10 m 835.1 nm NIR

L1 B10 cir 0.0010 60 m 1373.5 nm Cirrus

B11 0.0001 20 m 1613.7 nm SWIR 1

NDVI (normalized
difference vegetation

index)
0.0001 10 m NDVI = (B8 − B4)/(B8 + B4)

NDWI (normalized
difference water index) 0.0001 10 m NDWI = (B3 − B8)/(B3 + B8)

NDSI (normalized
difference soil index) 0.0001 20 m NDSI =

(B3 − B11)/(B3 + B11)

Moisture index 0.0001 20 m moisture index =
(B8 − B11)/(B8 + B11)

Since the low number of our field measurements (data records) did not permit the
application of deep learning (which could directly process raw images), we had to con-
struct the satellite input attributes manually. This first exploratory experiment considers
the reflectance values of pixels no further away than 500 m from each of the fifty chosen
measurement locations. Each image pixel in such a circular measurement area was rep-
resented by one time series of reflectance values for each spectral band captured by the
satellite in each six-week field-measurement period. Given that we used 13 spectral bands
(including the derived ones), a total of 13 time series of basic reflectance values for each
considered pixel and each six-week measurement period was obtained. Construction of
one such time series for one pixel is symbolically shown in Figure 2.

Figure 2 indicates that basic reflectance values themselves may not suffice—their dif-
ferences may actually carry more useful information. Therefore, from each basic reflectance
series, several derived ones were created. The first of them was the simple difference
series, which contained the difference of two consecutive values in the original reflectance
series. Since these differences can be negative, we also constructed an absolute difference
series, which only contained positive values. Then, a normalized difference series was
created, where the same difference was divided by the number of days separating the two
consecutive satellite photos. Finally, we also constructed an absolute value version of the
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normalized difference series, termed absolute normalized difference. In this way, five time
series for each spectral band and each pixel in the measurement area were created. Given
that there were 13 spectral bands, this process led to 5 × 13 = 65 time series per pixel.
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Considering the high number of pixels in each measurement area, we decided to
aggregate these time series by six basic statistical functions: average, minimum, maximum,
and three main quantiles (25%, 50%, and 75%). In order to get rid of individual pixels, we
aggregated the values twice: first along the time axis for each pixel separately, and then
spatially, for all pixels in a given measurement area. Since all possible combinations of
the six basic statistical functions were permitted, this produced 6 × 6 = 36 unique double
aggregation combinations. In other words, we calculated not only spatial average of time
averages, but also spatial average of time medians, minima and maxima, spatial minimum
of time averages and medians, as well as of time minima and maxima, etc. Overall, this
resulted in 36 × 65 = 2340 numbers, which captured (in a very condensed form) the overall
dynamics of various processes in each measurement area during one six-week measurement
period. These 2340 numbers were then passed on to the machine learning models as the
satellite input attributes.

4. Brief Outline of Our Approach

In general, our approach conformed to the CRISP-DM model, a de facto industry
standard process for data mining, schematically depicted in Figure 3.
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Our earlier research reported in [15] represents one iteration of the CRISP-DM cycle,
in which the target attributes were the long-term upper bounds of variables S, Sr, and g02,
and the input attributes were the SHMU input attributes described in Section 3. Since
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this iteration was not successful, the work described here can be taken to represent the
second iteration of the same CRISP-DM process, initiated by the return from the Evaluation
phase back to the Data Understanding phase, in which satellite imagery was identified as
a promising source of new and more informative input attributes, and the methodology
was changed to estimating the field-measured values of target variables rather than their
long-term upper bounds.

The construction of satellite attributes described in the previous section, then, com-
prises the first part of the Data Preparation phase, which ends with the attribute selection
described in the next section. The choice of suitable regression models and their subsequent
training jointly represent the Modelling phase. Finally, Section 6 (Discussion) and Section 7
(Conclusions) present the contextualized evaluation of the results.

The methodological shift to modelling the field-measured values of target variables
rather than their long-term upper bounds helps to capture their seasonal variation. This
raises an interesting question: how much of that variation is stable, i.e., could be reliably
predicted purely on the basis of time, even without satellite imagery? In order to answer
that question, we decided to pass to machine learning models the date of each six-week field
measurement. In the text, we call it the measurement date, but in fact it is the Day of Year
(1–365) referring to the day in the middle of the concerned six-week measurement period.
We would like to point out that this attribute does not uniquely identify individual field
measurements, because it has the same value for all 50 measurement locations in a given six-
week period (since all of the field measurements were recorded synchronously). Therefore,
there is no danger of overfitting regression models on the basis of this new attribute.

For the sake of completeness, we note that we also passed to machine learning models
the five SHMU input attributes, as well as geographical coordinates of each measurement
location (latitude, longitude). Thus, the total number of input attributes rose to 2348. Our
general hypothesis was that the attributes derived from satellite imagery would help to
significantly improve the accuracy of models.

In order to evaluate their accuracy, we combined n-fold cross validation with standard
regression criteria, namely: the correlation coefficient, the relative absolute error, and the
root relative squared error. Due to the limited number of available records, we used 40-fold
cross validation, which ensured sufficient stability of the estimated model accuracy. One
of the most serious drawbacks of this kind of validation is that it takes a lot of time, since
the training process has to be repeated 40 times. On the other hand, resultant estimates
represent the accuracy of trained models precisely, stably, and objectively.

5. Selection of Attributes, Modeling, and Results

Due to the large number of new attributes derived from satellite data, attribute se-
lection, and dimensionality, reduction of the input attribute space was needed. Prior to
this process, all input attributes were normalized to a uniform range: interval <0, 1>.
This ensured that all input attributes were equally treated, since some attribute selection
methods are sensitive to this aspect.

In the first round of experiments, neither the attribute selection based on correlation
coefficient (in which the attributes showing the highest absolute value of Pearson or
Spearman correlation with the target attribute were used), nor dimension reduction on the
basis of principal component analysis (PCA) ensured satisfactory results. Models trained as
such actually achieved lower or similar accuracy as before. This failure stemmed from the
fact that high correlation with the target attribute can indicate the impact of a given input
attribute, but only individually, in isolation from others, because their mutual correlation
is ignored. Therefore, combining such input attributes need not increase the resultant
model accuracy at all, if they are strongly correlated. On the other hand, the failure of
PCA stemmed from the opposite reason: it is an unsupervised method, and can give no
guarantee that its main components would be strongly correlated with the target attribute.

For these reasons, we had to select input attributes differently, by applying methods
that took into account their mutual correlations and could correctly gauge their joint effect
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on the target attribute. After some preliminary trials, we chose the relief method [20],
FSRF-Test [21], and forward selection [22], whose applications resulted in significant im-
provements in the accuracy of trained models. Selected attributes were incrementally
added in groups of five; therefore, the resultant models used 5, 10, 15, or 20 input attributes.
We illustrate these steps in Figure 4, which represents a more detailed elaboration of the
Data Preparation, Modeling, and Evaluation phases of the CRISP-DM model depicted in
Figure 3.
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In the following Tables 2–4, we present the best results that we achieved for the three
target attributes S, Sr, and g02, respectively, in terms of the correlation coefficient between
their true and predicted field-measured values, their relative absolute error and their root
relative squared error.

Table 2. Overview of trained regression models and their accuracy metrics for the field-measured
values of target variable S (total deposit).

Linear Model Gaussian Process SMO Regression M5P Tree Random Forest

Models using attributes SHMU, without Day of Year and without Satellites

Correlation coefficient 0.2195 0.2289 0.2377 0.1921 0.2243
Relative absolute error 0.960381 0.958122 0.838752 0.963788 0.996284
Root relative sq. error 0.975826 0.971225 1.013767 0.983825 1.007389

Models using attributes SHMU and Day of Year, without Satellites

Correlation coefficient 0.3044 0.3228 0.3221 0.3655 0.3810
Relative absolute error 0.953682 0.931039 0.81304 0.873916 0.867675
Root relative sq. error 0.952256 0.944247 0.990007 0.933188 0.960127

Models using attributes SHMU, Satellites (FSRF-TEST 20 attr), without Day of Year

Correlation coefficient 0.3962 0.3962 0.3936 0.4011 0.5015
Relative absolute error 0.929776 0.91984 0.776143 0.913888 0.834525
Root relative sq. error 0.918874 0.916169 0.971942 0.928474 0.863463

Model using attributes SHMU, Satellites (Relief 20 attr), without Day of Year

Correlation coefficient 0.2934 0.3322 0.2697 0.3291 0.3574
Relative absolute error 0.998795 0.958923 0.827651 0.952494 0.930419
Root relative sq. error 0.969389 0.945013 1.009543 0.972802 0.936803

Models using attributes SHMU, Satellites (Forward selection 20 attr), without Day of Year

Correlation coefficient 0.3754 0.3691 0.2771 0.2891 0.4214
Relative absolute error 0.977038 0.942754 0.808266 1.005264 0.851436
Root relative sq. error 0.934184 0.928854 0.999298 1.010215 0.905755
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Table 2. Cont.

Linear Model Gaussian Process SMO Regression M5P Tree Random Forest

Models using attributes SHMU, Satellites (Forward selection 10 attr), Day of Year

Correlation coefficient 0.4288 0.4475 0.4104 0.4263 0.3976
Relative absolute error 0.948856 0.89844 0.778747 0.922759 0.861133
Root relative sq. error 0.911549 0.892596 0.962801 0.916577 0.921097

Models using attributes SHMU, Satellites (Forward selection 5 attr), Day of Year

Correlation coefficient 0.4635 0.4508 0.4506 0.3769 0.4381
Relative absolute error 0.923401 0.896762 0.762388 0.924544 0.843924
Root relative sq. error 0.886452 0.890677 0.952388 0.948177 0.898847

Models using attributes SHMU, Satellites (FSRF-TEST 10 attr), Day of Year

Correlation coefficient 0.4363 0.4339 0.4242 0.4686 0.5400
Relative absolute error 0.900255 0.892416 0.761173 0.868294 0.806506
Root relative sq. error 0.899348 0.899034 0.956712 0.885832 0.84258

Models using attributes SHMU, Satellites (FSRF-TEST 5 attr), Day of Year

Correlation coefficient 0.3956 0.3884 0.3983 0.4255 0.5183
Relative absolute error 0.925902 0.911766 0.768899 0.885788 0.805674
Root relative sq. error 0.918372 0.919311 0.969704 0.905563 0.853435

Models using attributes SHMU, Satellites (Relief 10 attr), Day of Year

Correlation coefficient 0.4016 0.4063 0.3959 0.4021 0.3987
Relative absolute error 0.934508 0.910194 0.781673 0.908593 0.863821
Root relative sq. error 0.921802 0.913254 0.960806 0.921916 0.916560

Models using attributes SHMU, Satellites (Relief 5 attr), Day of Year

Correlation coefficient 0.3533 0.3364 0.3490 0.3028 0.3347
Relative absolute error 0.922774 0.915231 0.784270 0.912179 0.904339
Root relative sq. error 0.938938 0.941382 0.975032 0.972598 0.956348

Linear model Gaussian process SMO Regression M5P Tree Random forest

Table 3. Overview of trained regression models and their accuracy metrics for the field-measured
values of target variable Sr (soluble fraction of deposit).

Linear Model Gaussian Process SMO Regression M5P Tree Random Forest

Models using attributes SHMU, without Day of Year, and without Satellites

Correlation coefficient 0.2302 0.1822 0.1934 0.2314 0.1898
Relative absolute error 0.961795 0.974067 0.855066 0.960243 1.006067
Root relative sq. error 0.971534 0.981626 1.014425 0.971155 1.016997

Models using attributes SHMU, Day of Year without Satellites

Correlation coefficient 0.2582 0.2236 0.2305 0.2053 0.2643
Relative absolute error 0.952205 0.962065 0.857284 0.962442 0.913962
Root relative sq. error 0.964646 0.973101 1.006680 0.988054 1.005748

Models using attributes SHMU, Satellites (FSRF-TEST 20 attr) without Day of Year

Correlation coefficient 0.1428 0.1786 0.1742 0.065 0.3264
Relative absolute error 0.991643 0.970063 0.859727 1.034066 0.920992
Root relative sq. error 0.998483 0.984765 1.012168 1.097823 0.945923

Models using attributes SHMU, Satellites (Relief 20 attr) without Day of Year

Correlation coefficient 0.0927 0.0648 0.1264 0.0789 0.1826
Relative absolute error 1.016839 1.016156 0.877836 1.064591 0.967896
Root relative sq. error 1.014047 1.007755 1.023097 1.049356 1.005119
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Table 3. Cont.

Linear Model Gaussian Process SMO Regression M5P Tree Random Forest

Models using attributes SHMU, Satellites (Forward selection 20 attr) without Day of Year

Correlation coefficient 0.1883 0.1210 0.233 0.1469 0.1377
Relative absolute error 1.005077 0.986239 0.835902 1.031335 0.953701
Root relative sq. error 0.995576 1.000356 0.992946 1.015140 1.007062

Models using attributes SHMU, Satellites (Forward selection 10 attr), Day of Year

Correlation coefficient 0.2398 0.3101 0.3535 0.1445 0.2839
Relative absolute error 1.022736 0.948921 0.815373 1.054828 0.870082
Root relative sq. error 0.995421 0.951980 0.966335 1.135082 0.961922

Models using attributes SHMU, Satellites (Forward selection 15 attr), Day of Year

Correlation coefficient 0.2611 0.3029 0.3283 0.2056 0.2714
Relative absolute error 1.007581 0.959974 0.805193 0.998895 0.878738
Root relative sq. error 0.982944 0.955482 0.972581 1.021172 0.962601

Models using attributes SHMU, Satellites (FSRF-TEST 10 attr), Day of Year

Correlation coefficient 0.2888 0.323 0.3305 0.3005 0.3698
Relative absolute error 0.947149 0.919711 0.804691 0.937511 0.866946
Root relative sq. error 0.964184 0.945773 0.969808 0.960605 0.928711

Models using attributes SHMU, Satellites (FSRF-TEST 5 attr), Day of Year

Correlation coefficient 0.3299 0.3438 0.36 0.3284 0.3999
Relative absolute error 0.936913 0.913589 0.793238 0.938661 0.866407
Root relative sq. error 0.945296 0.937339 0.965524 0.945354 0.921331

Models using attributes SHMU, Satellites (Relief 10 attr), Day of Year

Correlation coefficient 0.2194 0.2357 0.2848 0.2272 0.3102
Relative absolute error 0.964405 0.956218 0.846194 0.963997 0.869070
Root relative sq. error 0.986047 0.975347 0.987452 0.988660 0.949752

Models using attributes SHMU, Satellites (Relief 5 attr), Day of Year

Correlation coefficient 0.2587 0.2837 0.309 0.2601 0.2705
Relative absolute error 0.957589 0.94709 0.826091 0.961476 0.897960
Root relative sq. error 0.970585 0.958345 0.981613 0.971070 0.971982

Linear model Gaussian process SMO Regression M5P Tree Random forest

Table 4. Overview of trained regression models and their accuracy metrics for the field-measured
values of target variable g02 (electrical conductivity).

Linear Model Gaussian Process SMO Regression M5P Tree Random Forest

Models using attributes SHMU, without Day of Year, and without Satellites

Correlation coefficient −0.0888 0.006 −0.0239 0.076 0.1191
Relative absolute error 1.013206 1.011356 0.996436 1.000262 1.041810
Root relative sq. error 1.014285 1.005392 1.018875 1.000869 1.044912

Models using attributes SHMU, Day of Year without Satellites

Correlation coefficient 0.4113 0.4373 0.4342 0.6206 0.6339
Relative absolute error 0.903762 0.894292 0.886614 0.755594 0.756144
Root relative sq. error 0.911274 0.897203 0.905929 0.782397 0.778181

Modeling using attributes SHMU, Satellites (FSRF-TEST 20 attr), without Day of Year

Correlation coefficient 0.4195 0.4314 0.405 0.3931 0.4062
Relative absolute error 0.904127 0.892004 0.914068 0.91234 0.910343
Root relative sq. error 0.908831 0.899933 0.919583 0.925257 0.924097
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Table 4. Cont.

Linear Model Gaussian Process SMO Regression M5P Tree Random Forest

Models using attributes SHMU, Satellites (Relief 20 attr), without Day of Year

Correlation coefficient 0.4135 0.3942 0.3798 0.3853 0.4601
Relative absolute error 0.903282 0.905045 0.910703 0.912017 0.881088
Root relative sq. error 0.912632 0.918536 0.935326 0.929368 0.889698

Models using attributes SHMU, Satellites (Forward selection 20 attr), without Day of Year

Correlation coefficient 0.3155 0.3276 0.3257 0.3426 0.4708
Relative absolute error 0.942383 0.931576 0.946136 0.910879 0.873131
Root relative sq. error 0.953646 0.946278 0.955216 0.951316 0.883867

Models using attributes SHMU, Satellites (Manual selection 3 attr), Day of Year

Correlation coefficient 0.5163 0.5245 0.5092 0.6275 0.6004
Relative absolute error 0.855031 0.848659 0.849584 0.76101 0.78007
Root relative sq. error 0.855314 0.849386 0.863360 0.77716 0.800759

Models using attributes SHMU, Satellites (Forward selection 5 attr), Day of Year

Correlation coefficient 0.5562 0.5565 0.5305 0.6058 0.6434
Relative absolute error 0.827117 0.82688 0.835880 0.788339 0.761934
Root relative sq. error 0.830543 0.829219 0.852279 0.795252 0.764349

Models using attributes SHMU, Satellites (FSRF-TEST 5 attr), Day of Year

Correlation coefficient 0.5635 0.5661 0.5354 0.5608 0.626
Relative absolute error 0.822849 0.82399 0.850483 0.825195 0.762599
Root relative sq. error 0.825459 0.822494 0.849352 0.830468 0.779014

Models using attributes SHMU, Satellites (Relief 5 attr), Day of Year

Correlation coefficient 0.4891 0.5099 0.4858 0.5494 0.6368
Relative absolute error 0.87403 0.861349 0.869334 0.822957 0.759978
Root relative sq. error 0.872218 0.858429 0.881012 0.837942 0.769692

Linear model Gaussian process SMO Regression M5P Tree Random forest

We compared several different model types and noted that the most encouraging
results were typically achieved by linear regression, gaussian processes, SMO regression
(support vector machine with improved sequential minimal optimization), M5P regression
tree (regression version of C4.5 with pruning and smoothing), and random forest (consisting
of 100 regression trees): see the Tables 2–4 above. In most cases, the top performer was
random forest. We attribute this to the fact that it internally employs ensemble learning
and that particular trees in it are trained independent of each other, which effectively
prevents overfitting.

6. Discussion

Among the attributes derived from satellite images, there was significant variability in
their contribution to the accuracy of the resultant regression models. Moreover, there were
significant differences in their contribution not only for different target attributes but also
for different attribute selection methods.

In general, the highest accuracy was typically achieved by random forest models,
which we plan to use in the near future when we obtain additional attributes, either
extracted from the NEIS system or derived from acoustic emissions of polluted insulators.
We also plan to use new satellite-derived attributes, since we do not think our present ones
were able to extract all of the useful information from satellite images.

From the perspective of attribute selection methods, the highest model accuracies
were achieved with FSRF-Test, which proved to be the most suitable in four cases (for S
and Sr target attributes). For the target attribute g02, the forward selection and the relief
methods achieved better results, each in one case.
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As for the number of selected input attributes, there is no clear universally optimal
number; it largely depends on the degree of relevance of input attributes to a given target
attribute. If highly relevant input attributes are available (e.g., from NEIS [16] or from
acoustic measurements), the number of required input attributes may significantly decrease,
while, paradoxically, the accuracy of the resultant model may increase.

For individual target variables S, Sr, and g02, before the introduction of the new
input attributes (i.e., without the measurement date and the satellite-derived ones), the
correlation of their estimated values with the true ones was 0.23, 0.23, and 0.12, respectively.
After adding the satellite-derived attributes, these correlations rose to 0.50, 0.33, and
0.46, respectively. The maximum correlations were achieved after the measurement date
(Day of Year, number of the middle day) was also added; the correlations then rose to
0.54, 0.40, and 0.64, respectively. Among the three modeled target variables, the highest
accuracy was achieved for g02, where the relative absolute error was 0.762 (down from
original 1.04) and the correlation coefficient was 0.64 (up from original 0.12). This striking
difference can also be observed in Figure 5: on the left are the results of our earlier attempts
to estimate the long-term upper bounds of g02 purely from the SHMU input attributes [15],
and on the right, the results of our present attempt to directly estimate the field-measured
values of g02 from satellite-derived attributes and the measurement date. In both cases, the
ideal situation in which the estimated values equal the predicted ones is represented by
the dashed diagonal line, while the solid green line represents the actual linear regression
function. Although it is evident that more work needs to be done before these models can
actually be used in practice, we consider these results a success and an important milestone.
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Finally, we would like to point out that we observed significant seasonality for all
target variables, which was clearly shown by their high correlations with the measurement
date. In fact, the effect of the measurement date alone nearly equaled the combined effect of
all our satellite-derived input attributes. This means that the local levels of environmental
pollution undergo relatively stable seasonal variations of a very general character, at least
as represented by the three target variables S, Sr, and g02.

Statistical Tests

We used statistical permutation tests in order to evaluate the statistical significance
of observed increases in model accuracy after adding the new input attributes. (In these
tests, the model accuracy was expressed by the Pearson correlation coefficient between
the estimated and the true values of target variables.) This type of nonparametric test is
used when there are two groups of samples (2-sample test), for which we want to test
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whether they have identical means or medians. In other words, we wanted to be sure that
the observed increases in model accuracy were real and not just random flukes.

To this end, the training and validation of random forest models were repeated
30 times with different random seeds (with seed values from 1 to 30 for pseudorandom
generator initialization). In each of the 30 repetitions, the same seed was used for the
creation of the random forest model and for its 40-fold cross validation. Thus, sufficient
objectivity of the results was ensured. The same group of seeds (1–30) was used for
models with and without the additional attributes. Vectors XA and XB represent the
accuracies (Pearson correlations) of the 30 trained regression models with and without
extra attributes, respectively. Statistical permutation tests were then performed with the
following parameters:

Test statistic: absolute difference of mean values (abs (mean (XA) − mean (XB)));
Number of permutations in the statistical test = 1,000,000;
Significance level alpha = 0.05;
Null hypothesis: XA and XB have the same mean value;
Alternative hypothesis: XA and XB do not have the same mean value.

The results of these statistical tests are shown in Table 5. In all cases, the p-value was
lower than the predetermined alpha value of 0.05. This indicates a statistically significant
increase in the accuracy of trained models after the addition of extra attributes. In one case
only, for target attribute g02, the p-value of 0.0125 was of the same order of magnitude as
(but still lower than) the predefined alpha level. We believe that, in this particular case,
the general seasonal variation captured by the measurement date carried nearly the same
amount of relevant information as the satellite-derived input attributes. Strictly speaking,
Table 5 does not show which of the two compared models in each pair was more accurate,
but as seen in previous Tables 2–4, models with more new attributes in the second column
(XB) were always more accurate than the models with fewer new attributes in the first
column (XA).

Table 5. Results of statistical permutation tests, which show that additional satellite-derived at-
tributes and the measurement date have ensured a significant increase in the accuracy of trained
regression models.

Target attribute S:

Used attributes for XA Used attributes for XB p-value

SHMU SHMU + Day of Year 0.000238
SHMU SHMU + Satellites 0.000179

SHMU + Day of Year SHMU + Day of Year + Satellites 0.000617
SHMU + Satellites SHMU + Day of Year + Satellites 0.000698

Target Attribute Sr:

Used attributes for XA Used attributes for XB p-value

SHMU SHMU + Day of Year 0.000297
SHMU SHMU + Satellites 0.000119

SHMU + Day of Year SHMU + Day of Year + Satellites 0.000917
SHMU + Satellites SHMU + Day of Year + Satellites 0.002740

Target Attribute g02:

Used attributes for XA Used attributes for XB p-value

SHMU SHMU + Day of Year 0.000249
SHMU SHMU + Satellites 0.000314

SHMU + Day of Year SHMU + Day of Year + Satellites 0.012501
SHMU + Satellites SHMU + Day of Year + Satellites 0.006714

Another notable fact concerns the differing strengths of correlation between the target
variables on the one hand, and the measurement date versus a selected group of satellite
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attributes (marked in the table as Satellites) on the other. In the case of target variable
S, the measurement date provides a lower increase in model accuracy than the satellite
attributes. This follows from the fact that the p-value for the first permutation test in Table 5
(SHMU versus SHMU + Day of Year) is higher than the one for the second permutation
test (SHMU versus SHMU + Satellites): the lower p-value means it is less likely that the
two compared models have identical means. Somewhat surprisingly, target variable g02
behaves differently: here, the measurement date provides a more significant increase
in accuracy (evidenced by the lower corresponding p-value) than the group of satellite
attributes. This means that although the target variables jointly capture various aspects of
local environmental pollution, each of them has its own individual behavior and dynamics,
significantly different from the other two. These differences can also be gauged from the
differing accuracies of the trained models for S, Sr, and g02, listed in Tables 2–4 above.

7. Conclusions and Future Work

By modeling individual field-measured values of target variables S, Sr, and g02 instead
of their long-term upper bounds, we were able to significantly increase the accuracy of
the trained regression models. This progress was made possible by the additional input
attributes that were capable of capturing seasonality and other significant local events
(e.g., building or surface mining activities), in combination with suitable model types and
appropriate methods of attribute selection.

The new input attributes consisted of the date of measurement along with a large
number of attributes derived from multispectral satellite imagery by various double combi-
nations of six basic statistical functions. Our experiments confirmed that these attributes
indirectly capture significant events and processes affecting local environmental pollu-
tion levels.

We tested the statistical significance of the increases in model accuracy after the
addition of extra attributes using a nonparametric permutation test, which confirmed that
the increase was significant. The magnitude of this increase was shown to depend on the
method of attribute selection and on the type of regression model as well.

We found out that the effect of adding the measurement date alone was similar in
size to the joint effect of all of the new satellite-derived attributes. This means that local
pollution levels exhibit some strong and relatively stable seasonal cycles. Nevertheless, the
experiments also confirmed that there was independent information in the satellite-derived
attributes, because the most accurate models were those combining the satellite attributes
with the measurement date. We believe that this combination would also prove to be the
most stable of all combinations investigated so far.

In the future, we would like to derive more input attributes from satellite images in
order to extract more information from them. We also plan to exploit daily or even hourly
values of the SHMU input attributes, which, by virtue of representing the variation of
local pollution levels more accurately, could further improve the accuracy of the models.
Another potential increase in model accuracy could come from the use of the NEIS database,
which contains information on main environmental polluters—industrial producers and
companies. Yet another interesting research direction is the modeling of the true statistical
distributions of local pollution levels, as embodied in target variables S, Sr, and g02,
which might lead to a more detailed knowledge of their behavior and, consequently,
to higher estimation accuracy. It is also possible that we might discover new domain
knowledge potentially useful, not only for the electric power industry, but also for ecology
and related disciplines.
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Appendix A. Outline of Slovak Technical Standard STN 33 0405 (Selection of Outdoor
Insulators According to the Level of Environmental Pollution)

This national standard was in use from 1990 to 2015. It was partly inspired by, but
more detailed than, IEC 815 (Guide for the Selection of Insulators in Respect of Polluted
Conditions, 1986). Since it was not replaced by any official successor standard, it continued
to be used even after its withdrawal as the standard and established procedure for the
selection of outdoor insulators for high-voltage transmission lines operating in the range of
1–750 kV in Slovakia.

As per the standard, local environmental pollution should be determined by the
capture of pollution deposits into special deposit containers. These containers should be
placed about two meters above ground level at transmission stations and other important
landmarks. At each location, there should be two or three such containers installed. The
maximum recommended period of deposit capture for one field measurement was two
months (the exact duration of each measurement should be recorded for each container).
At the end of the measurement, pollution deposits from all containers in the same location
should be first combined, then dried out and weighed. On the basis of this dry weight, the
amount of total pollution deposit (S) was to be determined. By its subsequent dissolution
in distilled water its soluble fraction (Sr) as well as the electric conductivity of its 0.2%
solution (g02) should also be determined.

The standard mandated 6 to 12 such field measurements at each evaluated location.
From each location, we obtain a series of 6 to 12 values for each variable S, Sr, and g02. To
each such series, a three-parameter Weibull distribution has to be fitted. After fitting, the
upper bound of each considered variable is determined as the 99.5th percentile of its fitted
Weibull distribution. These three upper bounds are then used to classify each location into
one of four degrees of environmental pollution: I (least polluted) to IV (most polluted).
For each pollution degree, appropriate types of insulators and maintenance procedures
are specified.
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