
����������
�������

Citation: Teixeira, D.; Malta, S.; Pinto,

P. A Vote-Based Architecture to

Generate Classified Datasets and

Improve Performance of Intrusion

Detection Systems Based on

Supervised Learning. Future Internet

2022, 14, 72. https://doi.org/

10.3390/fi14030072

Academic Editor: Izzat Alsmadi

Received: 2 February 2022

Accepted: 22 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Vote-Based Architecture to Generate Classified Datasets and
Improve Performance of Intrusion Detection Systems Based on
Supervised Learning
Diogo Teixeira 1,* , Silvestre Malta 1 and Pedro Pinto 1,2,3

1 Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal; smalta@estg.ipvc.pt (S.M.);
pedropinto@estg.ipvc.pt (P.P.)

2 Instituto Universitário da Maia, 4475-690 Maia, Portugal
3 INESC TEC—Institute for Systems and Computer Engineering, Technology and Science,

4200-465 Porto, Portugal
* Correspondence: diogoteixeira@ipvc.pt

Abstract: An intrusion detection system (IDS) is an important tool to prevent potential threats to
systems and data. Anomaly-based IDSs may deploy machine learning algorithms to classify events
either as normal or anomalous and trigger the adequate response. When using supervised learning,
these algorithms require classified, rich, and recent datasets. Thus, to foster the performance of
these machine learning models, datasets can be generated from different sources in a collaborative
approach, and trained with multiple algorithms. This paper proposes a vote-based architecture to
generate classified datasets and improve the performance of supervised learning-based IDSs. On a
regular basis, multiple IDSs in different locations send their logs to a central system that combines
and classifies them using different machine learning models and a majority vote system. Then, it
generates a new and classified dataset, which is trained to obtain the best updated model to be
integrated into the IDS of the companies involved. The proposed architecture trains multiple times
with several algorithms. To shorten the overall runtimes, the proposed architecture was deployed
in Fed4FIRE+ with Ray to distribute the tasks by the available resources. A set of machine learning
algorithms and the proposed architecture were assessed. When compared with a baseline scenario,
the proposed architecture enabled to increase the accuracy by 11.5% and the precision by 11.2%.

Keywords: machine learning; supervised learning; classified datasets; voting system; multitasking;
distributed; training time; accuracy; precision; IDS

1. Introduction

Cyberattacks are constantly performed against companies and institutions, and these
criminal activities may have different objectives, such as to disrupt services, steal confi-
dential information, or perform extortion [1]. The complexity and intelligence of attacks
evolves and, therefore, defense systems need to keep the pace to be effective [2]. To prevent
or mitigate the impact of these attacks, several tools and systems can be implemented, such
as firewalls, security information and event management (SIEM), access control lists (ACL),
intrusion detection system (IDS), and intrusion prevention system (IPS), among others.

An IDS is an important tool for a system administrator to prevent potential threats
to systems and data, as it aims to detect attacks against information systems and protect
these systems against malware and unauthorized access to a network or a system [3]. IDSs
monitor a network or system, and their detection method can be classified as a signature-
based or anomaly-based IDS. A signature-based IDS compares the monitored events against
a pre-programmed list of known threats/signatures and their indicators of compromise.
An anomaly-based IDS classifies the events either as normal or anomalous, according to an
expected behavior or pattern. In this method, the detection is triggered when the networks

Future Internet 2022, 14, 72. https://doi.org/10.3390/fi14030072 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14030072
https://doi.org/10.3390/fi14030072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-9487-8572
https://orcid.org/0000-0002-5274-3733
https://orcid.org/0000-0003-1856-6101
https://doi.org/10.3390/fi14030072
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14030072?type=check_update&version=1

Future Internet 2022, 14, 72 2 of 17

or systems’ behavior does not follow the normal behavior or defined pattern [4]. These
patterns and anomalies can be tested using machine learning algorithms.

Machine learning algorithms are used to train models using a given environment
or dataset. The learning process of machine learning algorithms can be divided into
three groups: unsupervised learning, supervised learning and reinforcement learning.
In supervised learning, the algorithm learns how to classify records from a labeled or
classified dataset. In unsupervised learning, the algorithm learns or draws inferences from
an unlabeled or unclassified dataset. In reinforcement learning, the algorithm interacts
with the environment to make decisions, and receives a reward for correct decisions and a
penalty for errors.

A company wishing to protect its networks, devices or services with an anomaly-
based IDS may use a supervised learning algorithm. However, for the algorithm to be
effective, it must count on a previously classified and updated dataset, which is not simple
to obtain or create. Classified datasets already available are not updated regularly, and
the use of automated tools to classify a dataset introduces errors and requires, to some
extent, human intervention. On the other hand, a dataset that only contains the company’s
own records will not allow the model or models to learn from different environments,
i.e., other companies. Thus, the effectiveness of these algorithms can be improved if
the supervised model uses richer datasets, containing records of different realities in a
collaborative approach, and is trained with multiple algorithms.

In this paper is proposed a centralized and vote-based architecture to generate classi-
fied datasets and improve the performance of supervised learning-based intrusion detection
systems. The proposed architecture is presented in Figure 1. The IDSs located in a set of
companies send their updated records, i.e., service logs (1), to a central system (master),
which applies them to multiple models based on different algorithms. Each model classifies
the record as an attack or not an attack, and then the classifications of records per model
are sent to a voting system to obtain the final classification of records and generate a new
and classified dataset. The updated datasets are trained to obtain an updated model to be
integrated into the IDS of the companies involved (2). All steps are carried out in a regular
basis, and each company sends a set of log records and receives a new model to improve
the IDS performance.

Company B

Company A

IDS_A

IDS_B

Master
Vote,
Train,

Select &
Deploy

Company N

IDS_N

Logs
(1)

Logs
(1)

Logs
(1)

Model ML
(2)

Model ML
(2)

Model ML
(2)

Figure 1. Proposed architecture.

Future Internet 2022, 14, 72 3 of 17

The architecture is ready to use multiple algorithms to classify new records, and its
voting system ensures that these records are classified according to a majority decision,
thus increasing the reliability of the classification process. The generation of a dataset
using recent and diverse records enables to enrich the dataset, improving the accuracy and
precision of IDS over time. This architecture assumes the intensive and scalable training of
models, and this takes time and resources. To cope with these requirements and distribute
the training tasks, the proposed architecture is deployed with Fed4FIRE+ [5], a federation
of testbeds with scalable processing resources.

This paper is organized as follows. In Section 2, the related work is presented. Section 3
details the proposed architecture and its operation. Section 4 presents the validation tests,
the results and the analysis of the results. In Section 5, the conclusions are presented.

2. Related Work

An IDS protects corporations and institutions against cyberattacks by monitoring
multiple events in different agents and triggering alerts or actions [6]. IDSs can be classified
into two different types: host-based intrusion detection system (HIDS) and network-based
intrusion detection system (NIDS). The HIDS has capabilities of monitoring and analyzing
the internals of a computing system. The NIDS operates in a network where packets are
captured and analyzed to enable the implementation of adequate protective measures.
Ref. [7] presented a detailed study of these two types. It was concluded that the best choice
is dependent on purpose, risk and features. Regarding their detection method, IDS can be
categorized as signature based or anomaly based. In [8], a performance evaluation of these
modes is presented. The conclusion presented shows that both methods have a limitation
to detect known and unknown attacks.

As cyberattacks are constantly evolving, so IDS must also progress to be efficient [9].
A set of research works are focused on improving the operation and performance of the
IDS. Authors in [10] proposed an architecture to reduce the false alarm rate of the attack
detection. Authors in [11] proposed to prevent distributed denial of service (DDoS) attacks
by using the configuration features and rule adjustments of OSSEC and described the
operation of an algorithm used to distinguish real from false DDoS alerts. In order to
protect a set of machines, Teixeira et al. [12] implemented a platform to override false-
positives and false-negatives of OSSEC IDS. The proposed platform is able to apply an
override action in multiple agents, saving human intervention time.

Voting-based systems are also a research line that is used to improve the detection
performance of an IDS. Authors in [13] proposed an ensemble adaptive voting algorithm.
The results show that the final accuracy is improved with the use of an adaptive voting
algorithm. Panda et al. [14] designed a voting system to detect errors and concluded that it
performs efficiently in terms of a high detection rate and low false positive rate. Authors
in [15,16] implemented a voting system that uses probability mechanisms to define the
final classification. Mahfouz et al. [17] proposed an ensemble classifier model that includes
a voting system to improve the detection accuracy and true positive rate and decrease the
false positive rate. Authors in [18] proposed a voting system to decrease false alarms. The
results show that, when compared different deep learning models, false alarms can be
reduced up to 75%.

Machine learning can be used to adapt an IDS to the dynamic and complex nature of
the attacks [19]. According to Haripriya et al. [20], the main objective of applying machine
learning algorithms in an IDS focuses on obtaining a low false alarm rate and a high
detection rate. As highlighted in [21], using machine learning techniques in an IDS can
reduce the occurrence of false positives. The authors also pointed out that one or more
models should be used to increase the performance of their detection. In [22], Vikram et al.
implemented unsupervised learning algorithms in an IDS. The results demonstrate better
efficiency compared to IDS without machine learning, with an area under curve (AUC)
score of 98.3%. In [23], Anthi et al. proposed a IDS that uses a supervised approach to
detect a range of popular network-based cyberattacks. The performance of the proposal is

Future Internet 2022, 14, 72 4 of 17

greater than 90% and can successfully distinguish between malicious or benign activity.
In [24], the authors developed a supervised machine learning system on IDS to classify
network traffic, whether it is malicious or benign, with a detection rate of 94.02%. In [25],
four algorithms are compared to implement on IDS, and all of them have accuracy greater
than 96%. In [26], Rani et al. proposed an efficient method with a uniform detection system
based on the supervised machine learning technique that obtained an accuracy of 99.9%.
In [27], the authors implemented collaborative multi-agent reinforcement learning to make
the detection more efficient. The results are better in comparison with the baseline approach.
In [28], Latif et al. proposed a dense random neural network (DnRaNN) technique to detect
attacks in an IoT environment. The authors obtained an accuracy of 99.14% when using
binary classification and 99.05% when using multiclass scenarios. In [29], Kunal et al.
presented and compared various machine learning methodologies applied in IDS. Thus, it
is demonstrated that the efficiency of the algorithms used will vary according to the final
objective. To the best of our knowledge, none of the works presented previously proposed
a vote-based architecture of multiple IDSs to generate new datasets and improve their
performance in a collaborative approach.

The implementation of machine learning algorithms requires time and resources to
train. As highlighted by Mo et al. [30], a long training time can add significant costs. Long
training running time of the models leads to the use of distributed systems for an increase
in parallelization and total amount of I/O bandwidth [31]. Federated testbed platforms
exist for implementation, validation, and testing. The most considerable are Fed4FIRE+ [5],
GENI [32] and SAVI [33]. These platforms have a large system capacity and a rich set of
experimentation services.

To distribute tasks and enable parallel processing, multiple tools can be used. Authors
in [34] surveyed and tested the following open-source Python-based libraries for parallel
processing: Ray [35], Ipyparallel [36], Dispy [37], Pandaral-lel [38], Dask [39], and Joblib [40].
Authors in [41] created a distributed framework that uses Ray to manage millions of tasks
simultaneously. The proposed framework is claimed to offer programming flexibility, high
throughput, and low latencies. In [42], Dispy was used to manage distributing parallel
tasks among several computer nodes to decrease the execution time of specific tasks.

3. The Proposed Architecture

In Figure 2, the general operation of the proposed architecture is presented. In a
set of companies there is an IDS collecting unlabeled service logs from multiple agents
of different service types (e.g., FTP, MySQL, and HTTP). These logs are sent in real time
for a master system (1). The logs are sent to classifiers (2) that classify the logs (with
a binary classification using “attack” or “ok”) using different machine learning models.
This classified logs are sent to the master (3), where a voting system classifies each record
according to the majority. Then, it is created a new dataset categorized by service type, and
these new datasets are sent to the trainers (4) to be trained by different algorithms. A new
machine learning model is generated for each training (5), and the best model is deployed
on the IDS of companies (6).

The operation of the master assumes a set of classifiers and trainers, whose number can
be adjusted according to need. The records obtained from multiple companies and constant
learning will allow the different agents of the companies to improve the performance of
detection operation. At same time, the service logs of each company are not known by
other companies, which guarantees the privacy and industrial secrecy of their data.

In the first iteration for a given service, the architecture has no previously generated
dataset and thus, it comprehends an initial operation with a previously categorized dataset.
This initial operation is depicted in Figure 3. An external and categorized dataset is sent to
the master for the first training (1). This dataset is sent to be trained by different algorithms
in trainers (2). The different machine learning models are generated according to the
multiple services. Then, the generated models are deployed into classifiers (3). The master

Future Internet 2022, 14, 72 5 of 17

compares the different models and the one with the best accuracy and precision is sent to
the companies’ IDS (4).

Classifiers Trainers

Model ML
(6)

Master

Company A

IDS_A

Agent_A1
FTP

Agent_A2
MySQL

Agent_A3
HTTP

 Company B

IDS_B
 Agent_B1

SNMP
 Agent_B2

DNS

 Agent_B3
HTTP

 Agent_B4
FTP

ClassifierA
Model_A

ClassifierB
Model_B

ClassifierC
Model_C

Logs
(1)

Trainer03Trainer02Trainer01

IDS_N

 Company N

 Agent_N

Logs
(1)

TrainerN

Dataset
(4)

Model ML
(6)

Logs
(1)

Model ML
(6)

Vote,
Train,

Select &
Deploy

...
Model

(5)

Classification
(3) Classification

(3)

Classification
(3)

Dataset
(4)

Model
(5)

Dataset
(4)Model

(5)

Log
(2)

Log
(2)

Log
(2)

Figure 2. General architecture.

After the first iteration, the proposed architecture is ready to operate on a regular basis.
The companies start by collecting the service logs and sending them to the master. Figure 4
details the process of logs collection from the IDSs of the companies. In each company, a
set of agents produces their service logs; each agent may produce logs for a specific service
(e.g., FTP, and MySQL). These logs are sent to the IDS of the company, which is composed
of multiple anomaly-based IDSs, using machine learning, with a model for each service
type. These models classify each service log according to the machine learning model in
this IDS, and may provide an action against an event (such as to block detected attacks).
At the same time, an unclassified version of these logs is sent to the master to generate an
enriched dataset and provide an updated model.

Future Internet 2022, 14, 72 6 of 17

Classifiers Trainers

Deploy All
Models (3)

Master

Classified Logs
(1)

ClassifierA
Model_A

ClassiferB
Model_B

ClassifierC
Model_C

Trainer03Trainer02Trainer01

Deploy
Best Model

(4)

Dataset
Categorized

(CICDDoS2019)

Train,
Select &
Deploy

Training
(2)

Company B

Company A

IDS_A

IDS_B

Figure 3. Initial operation.

Company A

IDS_A

Agent_A1
FTP

Agent_A2
MySQL

[FTP] Login Failed 10.10.10.10
[FTP] Login Failed 10.10.10.20
[FTP] Login OK 10.10.10.30
[FTP] Login Failed 10.10.10.40

[MySQL] Login Ok 10.20.20.10
[MySQL] Login Failed 10.20.20.20
[MySQL] Login OK 10.20.20.30
[MySQL] Login OK 10.20.20.40

Agent Logs
[FTP] Login Failed 10.10.10.10
[MySQL] Login Ok 10.20.20.10
[FTP] Login Failed 10.10.10.20
[FTP] Login OK 10.10.10.30
[FTP] Login Failed 10.10.10.40
[MySQL] Login Failed 10.20.20.20
[MySQL] Login OK 10.20.20.30
[MySQL] Login OK 10.20.20.40

 Company B

IDS_B

 Agent_B1
SNMP

 Agent_B2
FTP

[FTP] Login OK 10.100.100.10
[FTP] Login OK 10.100.100.20
[FTP] Login OK 10.100.100.30
[FTP] Login Failed 10.100.100.40

[SNMP] SASL LOGIN failed 10.70.70.10
[SNMP] SASL LOGIN failed 10.70.70.20
[SNMP] SASL LOGIN OK 10.70.70.30
[SNMP] SASL LOGIN failed 10.70.70.40

Agent Logs
[SNMP] SASL LOGIN failed 10.70.70.10
[FTP] Login OK 10.100.100.10
[FTP] Login OK 10.100.100.20
[FTP] Login OK 10.100.100.30
[SNMP] SASL LOGIN failed 10.70.70.20
[SNMP] SASL LOGIN OK 10.70.70.30
[SNMP] SASL LOGIN failed 10.70.70.40
[FTP] Login Failed 10.100.100.40

===
===
===
===
===
===
===
===

Classification
Attack-SNMP
OK-FTP
Attack-FTP
OK-FTP
Attack-SNMP
OK-SNMP
OK-SNMP
Attack-FTP

Classification
Attack-FTP
OK-Mysql
Attack-FTP
OK-FTP
Attack-FTP
Attack-Mysql
OK-Mysql
Attack-Mysql

===
===
===
===
===
===
===
===

Logs
(1)

Logs
(1)

Master
Vote,
Train,

Select &
Deploy

Collected Logs
[FTP] Login Failed 10.10.10.10
[MySQL] Login Ok 10.20.20.10
[FTP] Login Failed 10.10.10.20
[FTP] Login OK 10.10.10.30
[FTP] Login Failed 10.10.10.40
[MySQL] Login Failed 10.20.20.20
[MySQL] Login OK 10.20.20.30
[MySQL] Login OK 10.20.20.40

Collected Logs
[SNMP] SASL LOGIN failed 10.70.70.10
[FTP] Login OK 10.100.100.10
[FTP] Login OK 10.100.100.20
[FTP] Login OK 10.100.100.30
[SNMP] SASL LOGIN failed 10.70.70.20
[SNMP] SASL LOGIN OK 10.70.70.30
[SNMP] SASL LOGIN failed 10.70.70.40
[FTP] Login Failed 10.100.100.40

Figure 4. Unclassified logs collection from companies’ IDSs.

These unclassified logs are then received by the master, and its internal procedures
are depicted in Figure 5. When the master receives the unclassified logs from the IDS
of the companies (1), it uses a classification orchestrator to distribute the service logs by

Future Internet 2022, 14, 72 7 of 17

the classifiers (2) (i.e., Classifiers A, B and so on). Each classifier has different machine
learning models generated in the previous training for each service. The received logs are
categorized by the different models of the respective service, where each model sends the
classified log to the majority voting system (3). With an odd number of classifications, the
majority voting system outputs the logs with a classification voted by the majority (4). The
winning classified logs are sent to a dataset assembler, generating a dataset categorized
by service. When the dataset reaches a defined limit (e.g., more than 100,000 classified
records), the training orchestrator sends the generated dataset to a set of trainers (5) (i.e.,
Trainers 1, 2, and so on). In each trainer, the dataset is trained using a different algorithm
generating the respective models (6), which are then sent to the collector. The collector
replaces the models in the classifiers with the new generated models (7) and compares the
models to send to the IDS of companies the one with the best accuracy and precision (8).

Company B

TrainersClassifiers

Master

Majority
Voting System

Dataset
Assembler

Classifier A
Model_A

Classifier B
Model_B

Classifier C
Model_C

Log
(2)

Log
(2)

Classification
orchestrator

Log
(2)

Winning
Classified Log (4)

Trainer01
(Alg A)

Trainer02
(Alg B)

Trainer03
(Alg C)

Dataset
(5)

Training
orchestrator

Model_C
(6)

Model_B
(6)

Model_A
(6)Replace

Model_C
(7)

Replace
Model_B

(7)

Replace
Model_A

(7)

Company A

IDS_A

IDS_B

Unclassified
Logs
(1)

Deploy Best
Model

(8)

Per-Model
Classified

Logs
(3)

Collector
&

Comparator

Figure 5. Master internal procedures.

The master’s internal procedures for classification, voting and dataset generation are
depicted in Figure 6. The master sends the multiple logs received from the companies to
the classifiers (2) to be categorized by different algorithms. The machine learning models
classify the logs based on the training, and the respective classification of each model is
sent to the majority voting system (3), that will output these logs classified by the majority.
Then, the winning logs are sent (4) to a data assembler, where a classified dataset with
recent logs is generated. After generating the dataset, the master requests a new training of
the machine learning models (5) with the generated dataset. The models are then sent to
the collector and comparator (6); it replaces models in the classifiers (7) and deploys the
best models (8) in the IDS of the companies.

In particular, the training, selection and deployment stages comprehend three phases,
depicted in Figure 7. In phase 1, the new classified dataset is trained by different algorithms

Future Internet 2022, 14, 72 8 of 17

in the trainers to generate new machine learning models. In phase 2, the new models are
deployed in the classifiers. The new machine learning models are used in the voting system
that classifies the most recent records received from the companies as shown previously
in Figure 6. Finally, in phase 3, the model with better accuracy and precision is sent to the
IDSs of companies to increase their performance in detecting attacks.

Majority Voting System

Dataset Assembler

ClassifierA
Model_A

ClassifierB
Model_B

ClassifierC
Model_C

Logs Company A

[FTP] Login Failed 10.10.10.10
[MySQL] Login Ok 10.20.20.10
[FTP] Login Failed 10.10.10.20
[FTP] Login OK 10.10.10.30
[FTP] Login Failed 10.10.10.40
[MySQL] Login Failed 10.20.20.20
[MySQL] Login OK 10.20.20.30
[MySQL] Login OK 10.20.20.40

Classification of ClassifierA
[FTP] Login Failed 10.10.10.10 Attack-FTP
[MySQL] Login Ok 10.20.20.10 OK-Mysql
[FTP] Login Failed 10.10.10.20 Attack-FTP
[FTP] Login OK 10.10.10.30 OK-FTP
[FTP] Login Failed 10.10.10.40 Attack-FTP
[FTP] Login OK 10.100.100.10 OK-FTP
[FTP] Login OK 10.100.100.20 Attack-FTP
[MySQL] Login Failed 10.20.20.20 Attack-Mysql
[MySQL] Login OK 10.20.20.30 OK-Mysql
[MySQL] Login OK 10.20.20.40 Attack-Mysql
[FTP] Login OK 10.100.100.30 OK-FTP
[FTP] Login Failed 10.100.100.40 Attack-FTP

...

Classification of ClassifierB
[FTP] Login Failed 10.10.10.10 OK-FTP
[MySQL] Login Ok 10.20.20.10 Attack-Mysql
[FTP] Login Failed 10.10.10.20 Attack-FTP
[FTP] Login OK 10.10.10.30 OK-FTP
[FTP] Login Failed 10.10.10.40 Attack-FTP
[FTP] Login OK 10.100.100.10 OK-FTP
[FTP] Login OK 10.100.100.20 OK-FTP
[MySQL] Login Failed 10.20.20.20 Attack-Mysql
[MySQL] Login OK 10.20.20.30 OK-Mysql
[MySQL] Login OK 10.20.20.40 OK-Mysql
[FTP] Login OK 10.100.100.30 OK-FTP
[FTP] Login Failed 10.100.100.40 Attack-FTP

...

Classification of ClassifierC
[FTP] Login Failed 10.10.10.10 Attack-FTP
[MySQL] Login Ok 10.20.20.10 OK-Mysql
[FTP] Login Failed 10.10.10.20 Attack-FTP
[FTP] Login OK 10.10.10.30 OK-FTP
[FTP] Login Failed 10.10.10.40 Attack-FTP
[FTP] Login OK 10.100.100.10 Attack-FTP
[FTP] Login OK 10.100.100.20 OK-FTP
[MySQL] Login Failed 10.20.20.20 OK-Mysql
[MySQL] Login OK 10.20.20.30 OK-Mysql
[MySQL] Login OK 10.20.20.40 OK-Mysql
[FTP] Login OK 10.100.100.30 OK-FTP
[FTP] Login Failed 10.100.100.40 Attack-FTP

...

Classified Dataset - dataset_voteFTP
[FTP] Login Failed 10.10.10.10 Attack-FTP
[FTP] Login Failed 10.10.10.20 Attack-FTP
[FTP] Login OK 10.10.10.30 OK-FTP
[FTP] Login Failed 10.10.10.40 Attack-FTP
[FTP] Login OK 10.100.100.10 OK-FTP
[FTP] Login OK 10.100.100.20 OK-FTP
[FTP] Login OK 10.100.100.30 OK-FTP
[FTP] Login Failed 10.100.100.40 Attack-FTP

...

(2)(2)(2)

(3)
(3)(3)

Logs Company B

[SNMP] SASL LOGIN failed 10.70.70.10
[FTP] Login OK 10.100.100.10
[FTP] Login OK 10.100.100.20
[FTP] Login OK 10.100.100.30
[SNMP] SASL LOGIN failed 10.70.70.20
[SNMP] SASL LOGIN OK 10.70.70.30
[SNMP] SASL LOGIN failed 10.70.70.40
[FTP] Login Failed 10.100.100.40

All classifications
[FTP] Login Failed 10.10.10.10 Attack-FTP OK-FTP Attack-FTP
[MySQL] Login Ok 10.20.20.10 OK-Mysql Attack-Mysql OK-Mysql
[FTP] Login Failed 10.10.10.20 Attack-FTP Attack-FTP Attack-FTP
[FTP] Login OK 10.10.10.30 OK-FTP OK-FTP OK-FTP
[FTP] Login Failed 10.10.10.40 Attack-FTP Attack-FTP Attack-FTP
[FTP] Login OK 10.100.100.10 OK-FTP OK-FTP Attack-FTP
[FTP] Login OK 10.100.100.20 Attack-FTP OK-FTP OK-FTP
[MySQL] Login Failed 10.20.20.20 Attack-Mysql Attack-Mysql OK-Mysql
[MySQL] Login OK 10.20.20.30 OK-Mysql OK-Mysql OK-Mysql
[MySQL] Login OK 10.20.20.40 Attack-Mysql OK-Mysql OK-Mysql
[FTP] Login OK 10.100.100.30 OK-FTP OK-FTP OK-FTP
[FTP] Login Failed 10.100.100.40 Attack-FTP Attack-FTP Attack-FTP

...

Classified Dataset - dataset_voteMySQL
[MySQL] Login Ok 10.20.20.10 OK-Mysql
[MySQL] Login Failed 10.20.20.20 Attack-Mysql
[MySQL] Login OK 10.20.20.30 OK-Mysql
[MySQL] Login OK 10.20.20.40 OK-Mysql

...

(4)

Master
Vote,
Train,

Select &
Deploy

Figure 6. Master internal procedures for classification, voting and dataset generation.

The proposed architecture assumes the regular training of different machine learning
models, which is a time- and resource-consuming task. In order to be implemented, scalable
testbeds and parallel processing tools can be used.

Future Internet 2022, 14, 72 9 of 17

Phase 1
Phase 2

Phase 3

Trainer01 Trainer02 Trainer03

ClassifierC
Model_C

ClassifierB
Model_B

ClassifierA
Model_A Training of

dataset_voteFTP
with

 algorithm A

Training of
dataset_voteFTP

with
algorithm B

Training of
dataset_voteFTP

with
algorithm C

Classified Dataset - dataset_voteFTP
[FTP] Login Failed 10.10.10.10 Attack-FTP
[FTP] Login Failed 10.10.10.20 Attack-FTP
[FTP] Login OK 10.10.10.30 OK-FTP
[FTP] Login Failed 10.10.10.40 Attack-FTP
[FTP] Login OK 10.100.100.10 OK-FTP
[FTP] Login OK 10.100.100.20 OK-FTP
[FTP] Login OK 10.100.100.30 OK-FTP
[FTP] Login Failed 10.100.100.40 Attack-FTP

...

Master
Vote,
Train,

Select &
Deploy

Company B

Company A

IDS_A

IDS_B

Figure 7. New training, selection and deployment.

4. Results and Analysis

The proposed architecture was evaluated in a set of validation tests. The initial
operation requires a classified dataset and thus, datasets such as NSL-KDD [43] (based on
KDD’99 [44]), UNSW-NB15 [45], or CICDDoS2019 [46] can be used. These datasets were
built with records from 2009, 2015, and 2019, respectively. In the validation tests, the most
recent one, CICDDoS2019, was used. This dataset features 50 million records from 2019,
distributed by 14 different labels, according to Table 1.

Table 1. Number of instances in the CICDDoS2019 dataset.

Attribute (Class Label) Number of Instances

DDoS_WebDDoS 439

Benign (legitimate traffic) 56,863

DDoS_Portmap 186,960

DDoS_UDP-Lag 366,461

DDoS_NTP 1,202,642

DDoS_SYN 1,582,289

DDoS_LDAP 2,179,930

DDoS_SSDP 2,610,611

DDoS_UDP 3,134,645

DDoS_NetBIOS 4,093,279

DDoS_MSSQL 4,522,492

DDoS_DNS 5,071,011

DDoS_SNMP 5,159,870

DDoS_TFTP 20,082,580

After defining the dataset, a selection of the machine algorithms that will train the
dataset, in the trainers, was performed. The goal is to have an odd-numbered set of trainers,
each with a machine learning algorithm; for the current validation tests, three algorithms

Future Internet 2022, 14, 72 10 of 17

needed to be selected. The best three algorithms were selected from the following range:
decision tree classifier, random forest classifier, K-nearest neighbors, simple logistics, and
support vector machine. These five algorithms were compared in terms of accuracy,
precision and execution time when using the following four subsets of records from the
CICDDoS2019 dataset:

• Subset A—collected using 186,960 records categorized as DDoS_Portmap and 4734
as Benign. Oversampling over minority class was applied and resulted in a balanced
dataset with 373,920 records (186,960 DDoS_Portmap and 186,960 Benign);

• Subset B—collected using 782,590 records categorized as DDoS_UDP and 1071 as
Benign. Oversampling over minority class was applied and resulted in a balanced
dataset with 1,565,180 records (782,590 DDoS_UDP and 782,590 Benign);

• Subset C—collected using 1,289,043 records categorized as DDoS_SNMP and 925 as
Benign. Oversampling over minority class was applied and resulted in a balanced
dataset with 2,578,086 records (1,289,043 DDoS_SNMP and 1,289,043 Benign);

• Subset M—collected using 1,059,153 records (125,032 DDoS_DNS, 54,490 DDoS_LDAP,
112,410 DDoS_MSSQL, 101,756 DDoS_NetBIOS, 17,740 DDoS_NTP, 128,951 DDoS_SNMP,
65,155 DDoS_SSDP, 39,551 DDoS_SYN, 300,367 DDoS_TFTP, 77,466 DDoS_UDP, 14,280
Portmap and 21,955 Benign). Although this subset contains records from several
datasets and therefore has multi classification, it was adjusted to also have binary
classification (Attack, Benign).

Before the subsets were trained, a feature selection was made based on the most
important features. In parallel, to balance subsets A, B and C, oversampling techniques
were applied. For this, the imbalanced learn library from scikit-learn was chosen, using the
synthetic minority oversampling technique (SMOTE) method with the minority argument
to resample only the minority class and with the seed at 7. There was a part of the
subset (30%) that was not trained to later test the model created. In the end, the model
obtained the same accuracy values using the training dataset part and the test dataset part,
demonstrating that there was no overfitting. Underfitting was resolved naturally by using
the most important features.

Table 2 presents the accuracy obtained by each algorithm for each subset. From the
results obtained, it can be verified that the subsets with records by service (subsets A, B
and C) presented an accuracy ranging from 86% to 93%. In turn, the results of subset
M (records of multi services) presented a lower accuracy ranging from 79% to 81%. The
accuracy results show that the best three algorithms are the random forest classifier, the
simple logistics, and the decision tree classifier.

Table 2. Results of the accuracy of each algorithm for each subset.

Accuracy (%)

Algorithm Subset A Subset B Subset C Subset M Average

Random Forest
Classifier 93.25 91.54 92.93 81.26 89.75

Simple Logistics 92.38 91.16 91.27 80.93 88.94

Decision Tree
Classifier 91.48 91.22 92.51 80.56 88.94

K-Nearest
Neighbors 91.87 90.91 92.57 79.27 88.66

Support Vector
Machine 88.83 86.12 91.34 80.19 86.62

Table 3 presents the precision for each algorithm for each subset. From the results
obtained, it can be verified that the subsets with records by service (subsets A, B, and C)
presented a precision ranging from 88% to 93%. In turn, the results of subset M (records of

Future Internet 2022, 14, 72 11 of 17

multi services) presented a precision ranging from 80% to 82%. The precision results show
that the best three algorithms are the random forest classifier, the decision tree classifier,
and the simple logistics.

Table 3. Results of the precision of each subset for each tested algorithm.

Precision (%)

Algorithm Subset A Subset B Subset C Subset M Average

Random Forest
Classifier 91.96 91.46 92.61 81.75 89.45

Decision Tree
Classifier 90.31 91.88 92.83 80.54 88.89

Simple Logistics 91.36 91.45 90.78 80.35 88.49

K-Nearest
Neighbors 90.93 89.52 91.82 79.79 88.02

Support Vector
Machine 90.19 88.04 90.71 80.04 87.25

From the results presented in Tables 2 and 3, it is observed that the highest values
regarding accuracy and precision were obtained for the datasets with records per service
(Subset A to C).

Table 4 presents the elapsed runtime for each algorithm and per subset. To obtain
these results, each algorithm and subset was trained using a workstation featuring an
Intel® CoreTM i5-9400 CPU @ 2.90 GHz, with 32 GB of RAM. From the results obtained,
the decision tree classifier, the simple logistics, and the random forest classifier algorithms
trained in a shorter time, in average, than the K-nearest neighbors and support vector
machine algorithms.

Table 4. Elapsed runtime results for each algorithm and per subset.

Elapsed Runtime (s)

Algorithm Subset A Subset B Subset C Subset M Average

Decision Tree
Classifier 2 5 16 4 6.75

Simple Logistics 124 37 18 238 104.25

Random Forest
Classifier 161 782 1489 472 726.00

K-Nearest
Neighbors 426 6333 19,069 2988 7204.00

Support Vector
Machine 1034 17,919 47,896 1834 17,170.75

In order to test the performance of the proposed architecture, their components (the
master, the classifiers, and the trainers) were implemented in Fed4FIRE+ with Ray to dis-
tribute tasks by the available resources (other federated testbed platforms and distributed
tasks tools could be used in the case that they present similar specifications). From the
preliminary tests regarding models accuracy, precision, and elapsed runtime, the decision
tree classifier (DTC), the random forest classifier (RFC), and the simple logistics (SLog)
were selected to be deployed in the classifiers. The datasets are generated per service, as
they present higher results for accuracy and precision, and they are generated in the dataset
assembler, each 100,000 classified records. Five samples of the main CICDDoS2019 dataset
were prepared and tested in two scenarios: “baseline” and “proposed architecture”. The

Future Internet 2022, 14, 72 12 of 17

samples were obtained from the “DDoS_TFTP” service, and each sample (Sample #0 to
Sample #4) includes 200,000 random records, sequential in time (i.e., if the first sample is
collected from 14 to 16 h, the following is from 16 to 20 h).

Sample #0 was used for the initial operation. It was trained in the trainers using the
three algorithms selected, and generated three machine learning models. The accuracy
and precision results for Sample #0 using the three models are presented in Table 5. The
results show that the decision tree classifier was the best regarding accuracy and precision,
and thus, it was selected as the model to evaluate the next sample, i.e., Sample #1, in
both scenarios.

Table 5. Accuracy and precision for Sample #0.

Sample #0

Algorithm Accuracy (%) Precision (%)

Decision Tree Classifier 93.04 91.85

Random Forest Classifier 92.43 91.07

Simple Logistics 91.78 90.32

In the baseline scenario, the decision tree classifier model was deployed directly in
an IDS and tested with the remaining four different categorized samples to obtain their
accuracy and precision. In the proposed architecture scenario, the remaining procedures are
depicted in Figure 8. The three models were deployed in the classifiers, and the decision tree
classifier model was loaded into the IDS. This model was tested with Sample #1 to calculate
the accuracy and precision (1). Each sample was sent, unclassified, to the master (2), and
the classifiers categorized each sample; these samples were classified by the majority voting
system (3). The classified samples were sent to trainers (4), and each model was deployed
in the classifiers, with the best deployed in the IDS (5). The process was repeated for all
remaining samples, and the classifiers had the models generated by the training of the
previous sample. In the execution of the tests presented above, for each sample tested in
each architecture, the accuracy and precision of the model were obtained to compare the
results.

Table 6 presents the models used for each sample for the baseline and for the proposed
architecture. In the baseline, there are no new trainings, so the model used was always
the result of the training of Sample #0, that is, the decision tree classifier. In the proposed
architecture, with each new training, the best model is sent to the IDS, and thus, the
decision tree classifier was selected for Sample #1, the random forest classifier was selected
for Sample #2, and the decision tree classifier was selected for Samples #3 and #4.

Table 6. Models used for the baseline and the proposed architecture scenarios.

Baseline Proposed Architecture

Sample #1

Decision Tree Classifier

Decision Tree Classifier

Sample #2 Random Forest Classifier

Sample #3 Decision Tree Classifier

Sample #4 Decision Tree Classifier

Future Internet 2022, 14, 72 13 of 17

Fed4Fire+

TrainersClassifiers

 Training
(4)

Master

Tested
(1)

Trainer01
DTC

Trainer02
RFC

Trainer03
SLog

ClassifierA
Model_DTC

ClassifierB
Model_RFC

ClassifierC
Model_SLog

IDS

Deploy
Best Model

(5)

Sample #1..#4

Vote,
Train,

Select &
Deploy

Unclassified
Logs

(2)

Classify
Logs (3)

Figure 8. Proposed architecture scenario.

Tables 7 and 8 present, respectively, the accuracy and the precision values for each
sample tested, and their difference in percentage points (p.p.) and percentage, in the
baseline and in the proposed architecture scenarios.

Figure 9 draws the results of Tables 7 and 8. From these results, it can be verified
that in the proposed architecture, as the model is always trained with a dataset that was
categorized with the contribution of several algorithms, both the accuracy and the precision
improve over the time. After four consecutive iterations in the proposed architecture, the
accuracy increased by 9.82 p.p. or 11.51%, and the precision increased by 9.67 p.p. or
11.21%, when compared to the baseline scenario.

Table 7. Accuracy results of baseline and proposed architecture scenarios.

Baseline
(B)
(%)

Proposed
Architecture

(PA) (%)

PA-B
(p.p.)

PA-B
(%)

Sample #1 87.85 87.85 0 0

Sample #2 87.17 93.27 +6.10 +6.99

Sample #3 88.81 94.89 +6.08 +6.85

Sample #4 85.29 95.11 +9.82 +11.51

Future Internet 2022, 14, 72 14 of 17

Table 8. Precision results of baseline and proposed architecture scenarios.

Baseline
(B)
(%)

Proposed
Architecture

(PA) (%)

PA-B
(p.p.)

PA-B
(%)

Sample #1 91.76 91.76 0 0

Sample #2 89.49 95.39 +5.90 +6.59

Sample #3 90.22 95.77 +5.55 +6.15

Sample #4 86.27 95.94 +9.67 +11.21

Version February 20, 2022 submitted to Journal Not Specified 14 of 17

Table 7 and Table 8 presents, respectively, the accuracy and the precision values for 313

each sample tested, and their difference in percentage points (p.p.) and percentage, in the 314

Baseline and in the Proposed Architecture scenarios. 315

Table 7. Accuracy results of Baseline and Proposed Architecture scenarios

Baseline
(B)
(%)

Proposed
Architecture

(PA) (%)

PA-B
(p.p.)

PA-B
(%)

Sample #1 87.85 87.85 0 0
Sample #2 87.17 93.27 + 6.10 + 6.99
Sample #3 88.81 94.89 + 6.08 + 6.85
Sample #4 85.29 95.11 + 9.82 + 11.51

Table 8. Precision results of Baseline and Proposed Architecture scenarios

Baseline
(B)
(%)

Proposed
Architecture

(PA) (%)

PA-B
(p.p.)

PA-B
(%)

Sample #1 91.76 91.76 0 0
Sample #2 89.49 95.39 + 5.90 + 6.59
Sample #3 90.22 95.77 + 5.55 + 6.15
Sample #4 86.27 95.94 + 9.67 + 11.21

Sample #1 Sample #2 Sample #3 Sample #4

86

88

90

92

94

96

(%)

Baseline Accuracy
Baseline Precision
Prop. Architecture Accuracy
Prop. Architecture Precision

Figure 9. Results of accuracy and precision for the Baseline and the Proposed Architecture scenarios

Fig. 9 draws the results of Table 7 and Table 8. From these results, it can be verified 316

that in the proposed architecture, as the model is always trained with a dataset that was 317

categorized with the contribution of several algorithms, both the accuracy and the precision 318

improve over the time. After four consecutive iterations in the proposed architecture, the 319

accuracy increased by 9.82 p.p. or 11.51%, and the precision increased by 9.67 p.p. or 320

11.21%, when compared to the baseline scenario. 321

5. Conclusions 322

An IDS assists systems administrators by preventing and actuating on potential threats 323

to systems and data. Anomaly-based IDS can use machine learning algorithms to classify 324

events either as normal or anomalous. When using Supervised Learning, these algorithms 325

learn how to classify records from classified datasets. In order to improve the performance 326

Figure 9. Results of accuracy and precision for the baseline and the proposed architecture scenarios.

5. Conclusions

An IDS assists system administrators by preventing and actuating on potential threats
to systems and data. Anomaly-based IDSs can use machine learning algorithms to classify
events either as normal or anomalous. When using supervised learning, these algorithms
learn how to classify records from classified datasets. In order to improve the performance
of the classification algorithms, the datasets should be recent, contain data from different
sources in a collaborative approach, i.e., from different companies, and be trained with
multiple algorithms.

In this paper, a centralized and vote-based architecture is proposed to generate clas-
sified datasets and improve the performance of a supervised learning-based IDS. The
proposed architecture uses records from multiple IDS that are classified with multiple
models, and it uses a majority vote system to generate richer and classified datasets. These
datasets are then used to train, and the best models by service are deployed in each IDS.

The performance of five machine learning algorithms (decision tree classifier, random
forest classifier, K-nearest neighbors, simple logistics, and support vector machine) was
assessed regarding their accuracy, precision, and elapsed runtime values, and three algo-
rithms (decision tree classifier, random forest classifier, and simple logistics) were selected
to validate the architecture. In order to test the performance of the proposed architecture, its
components were implemented in Fed4FIRE+ with Ray to distribute tasks by the available
resources. Five samples of the CICDDoS2019 dataset were prepared and used in a testbed
designed and deployed to assess the proposed architecture against a baseline scenario.
From the results obtained, the proposed architecture was able to generate classified datasets
and choose the best model in each iteration, enabling an increase of 11.5% in accuracy value
and an increase of 11.2% in the precision value in the four tested iterations, when compared
to the baseline scenario. This best model can then be applied to the IDSs of each company,
to improve their attack detection performance.

Future efforts may be developed to balance the trade-off between complexity and
elapsed execution time against detection performance. Furthermore, the current proposal
can be tested using deep learning models and against other types of attacks and datasets.

Future Internet 2022, 14, 72 15 of 17

Author Contributions: Conceptualization, D.T., S.M. and P.P.; methodology, D.T., S.M. and P.P.;
software, D.T.; validation, D.T., S.M. and P.P.; investigation, D.T.; writing—original draft preparation,
D.T.; writing—review and editing, D.T., S.M. and P.P.; supervision, S.M. and P.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Norte Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional
Development Fund (ERDF), within project “Cybers SeC IP” (NORTE-01-0145-FEDER-000044).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No other data available from external sources.

Acknowledgments: This study was developed in the context of a project in the Master in Cybersecu-
rity at the Instituto Politécnico de Viana do Castelo, Portugal.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Grispos, G. Criminals: Cybercriminals. Encycl. Secur. Emerg. Manag. 2019, 1–7. [CrossRef]
2. Truong, T.C.; Diep, Q.B.; Zelinka, I. Artificial Intelligence in the Cyber Domain: Offense and Defense. Symmetry 2020, 12, 410.

[CrossRef]
3. Singh, M.D. Analysis of Host-Based and Network-Based Intrusion Detection System. Comput. Netw. Inf. Secur. 2014, 8, 41–47.

[CrossRef]
4. Jyothsna, V.; Prasad, R.; Prasad, K.M. A review of anomaly based intrusion detection systems. Int. J. Comput. Appl. 2011, 28, 26–35.

[CrossRef]
5. Fed4FIRE+. About Fed4FIRE+. 2022. Available online: https://www.fed4fire.eu/the-project/ (accessed on 10 January 2022).
6. Kumar Singh Gautam, R.; Doegar, E.A. An Ensemble Approach for Intrusion Detection System Using Machine Learning

Algorithms. In Proceedings of the 8th International Conference Confluence 2018 on Cloud Computing, Data Science and
Engineering, Confluence 2018, Noida, India, 11–12 January 2018; pp. 61–64. [CrossRef]

7. Tirumala, S.S.; Sathu, H.; Sarrafzadeh, A. Free and open source intrusion detection systems: A study. In Proceedings of the
2015 International Conference on Machine Learning and Cybernetics (ICMLC), Guangzhou, China, 12–15 July 2015; Voume 1,
pp. 205–210. [CrossRef]

8. Hussein, S.M. Performance Evaluation of Intrusion Detection System Using Anomaly and Signature Based Algorithms to
Reduction False Alarm Rate and Detect Unknown Attacks. In Proceedings of the 2016 International Conference on Computational
Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2016; pp. 1064–1069. [CrossRef]

9. Ahmad, T.; Anwar, M.A.; Haque, M. Machine Learning Techniques for Intrusion Detection; IGI Global: Hershey, PA, USA, 2013;
pp. 47–65. [CrossRef]

10. Khosravifar, B.; Bentahar, J. An Experience Improving Intrusion Detection Systems False Alarm Ratio by Using Honeypot.
In Proceedings of the 22nd International Conference on Advanced Information Networking and Applications (AINA 2008),
Gino-wan, Japan, 25–28 March 2008; pp. 997–1004. [CrossRef]

11. Venkatesan, R.; Devi, D.R.; Keerthana, R.; Kumar, A.A. A Novel Approach for Detecting Ddos Attack in H-IDS Using Association
Rule. In Proceedings of the 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA),
Pondicherry, India, 6–7 July 2018; pp. 1–5. [CrossRef]

12. Teixeira, D.; Assunção, L.; Pereira, T.; Malta, S.; Pinto, P. OSSEC IDS Extension to Improve Log Analysis and Override False
Positive or Negative Detections. J. Sens. Actuator Netw. 2019, 8, 46. [CrossRef]

13. Gao, X.; Shan, C.; Hu, C.; Niu, Z.; Liu, Z. An Adaptive Ensemble Machine Learning Model for Intrusion Detection. IEEE Access
2019, 7, 82512–82521. [CrossRef]

14. Panda, M.; Patra, M. Ensemble voting system for anomaly based network intrusion detection. Full Pap. Int. J. Recent Trends Eng.
2009, 2, 8.

15. Raykar, V.C.; Yu, S.; Zhao, L.H.; Jerebko, A.; Florin, C.; Valadez, G.H.; Bogoni, L.; Moy, L. Supervised Learning from Multiple
Experts: Whom to Trust When Everyone Lies a Bit. In Proceedings of the 26th Annual International Conference on Machine
Learning. Association for Computing Machinery, Montreal, QC, Canada, 14–18 June 2009; pp. 889–896. [CrossRef]

16. Mauro, M.D.; Sarno, C.D. Improving SIEM capabilities through an enhanced probe for encrypted Skype traffic detection. J. Inf.
Secur. Appl. 2018, 38, 85–95. [CrossRef]

17. Mahfouz, A.; Abuhussein, A.; Venugopal, D.; Shiva, S. Ensemble Classifiers for Network Intrusion Detection Using a Novel
Network Attack Dataset. Future Internet 2020, 12, 180. [CrossRef]

http://doi.org/10.1007/978-3-319-69891-5
http://dx.doi.org/10.3390/sym12030410
http://dx.doi.org/10.5815/ijcnis.2014.08.06
http://dx.doi.org/10.5120/3399-4730
https://www.fed4fire.eu/the-project/
http://dx.doi.org/10.1109/CONFLUENCE.2018.8442693
http://dx.doi.org/10.1109/ICMLC.2015.7340923
http://dx.doi.org/10.1109/CSCI.2016.0203
http://dx.doi.org/10.4018/978-1-7998-2242-4.ch003
http://dx.doi.org/10.1109/AINA.2008.44
http://dx.doi.org/10.1109/ICSCAN.2018.8541174
http://dx.doi.org/10.3390/jsan8030046
http://dx.doi.org/10.1109/ACCESS.2019.2923640
http://dx.doi.org/10.1145/1553374.1553488
http://dx.doi.org/10.1016/j.jisa.2017.12.001
http://dx.doi.org/10.3390/fi12110180

Future Internet 2022, 14, 72 16 of 17

18. Haghighat, M.H.; Li, J. Intrusion detection system using voting-based neural network. Tsinghua Sci. Technol. 2021, 26, 484–495.
[CrossRef]

19. Gulla, K.K.; Viswanath, P.; Veluru, S.B.; Kumar, R.R. Machine learning based intrusion detection techniques. In Handbook
of Computer Networks and Cyber Security: Principles and Paradigms; Springer: Berlin/Heidelberg, Germany, 2019; pp. 873–888.
[CrossRef]

20. Haripriya, L.; Jabbar, M.A. Role of Machine Learning in Intrusion Detection System: Review. In Proceedings of the 2nd
International Conference on Electronics, Communication and Aerospace Technology, ICECA 2018, Coimbatore, India, 29–31
March 2018; pp. 925–929. [CrossRef]

21. Shin, I.; Choi, Y.; Kwon, T.; Lee, H.; Song, J. Platform design and implementation for flexible data processing and building ML
models of IDS alerts. In Proceedings of the 2019 14th Asia Joint Conference on Information Security, AsiaJCIS 2019, Kobe, Japan,
1–2 August 2019; pp. 64–71. [CrossRef]

22. Vikram, A.; Mohana. Anomaly detection in Network Traffic Using Unsupervised Machine learning Approach. In Proceedings of
the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020;
pp. 476–479. [CrossRef]

23. Anthi, E.; Williams, L.; Słowińska, M.; Theodorakopoulos, G.; Burnap, P. A Supervised Intrusion Detection System for Smart
Home IoT Devices. IEEE Internet Things J. 2019, 6, 9042–9053. [CrossRef]

24. Taher, K.A.; Mohammed Yasin Jisan, B.; Rahman, M.M. Network Intrusion Detection using Supervised Machine Learning
Technique with Feature Selection. In Proceedings of the 2019 International Conference on Robotics,Electrical and Signal Processing
Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019; pp. 643–646. [CrossRef]

25. Ahanger, A.S.; Khan, S.M.; Masoodi, F. An Effective Intrusion Detection System using Supervised Machine Learning Techniques.
In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode,
India, 8–10 April 2021; pp. 1639–1644. [CrossRef]

26. Rani, D.; Kaushal, N.C. Supervised Machine Learning Based Network Intrusion Detection System for Internet of Things. In
Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 1–3 July 2020; pp. 1–7. [CrossRef]

27. Shi, G.; He, G. Collaborative Multi-agent Reinforcement Learning for Intrusion Detection. In Proceedings of the 2021 7th
IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), Beijing, China, 17–19 November 2021;
pp. 245–249. [CrossRef]

28. Latif, S.; Huma, Z.E.; Jamal, S.S.; Ahmed, F.; Ahmad, J.; Zahid, A.; Dashtipour, K.; Umar Aftab, M.; Ahmad, M.; Abbasi, Q.H.
Intrusion Detection Framework for the Internet of Things using a Dense Random Neural Network. IEEE Trans. Ind. Informatics
2021, 1. [CrossRef]

29. Kunal; Dua, M. Machine Learning Approach to IDS: A Comprehensive Review. In Proceedings of the 3rd International
Conference on Electronics and Communication and Aerospace Technology, ICECA 2019, Coimbatore, India, 12–14 June 2019;
pp. 117–121. [CrossRef]

30. Mo, W.; Gutterman, C.L.; Li, Y.; Zhu, S.; Zussman, G.; Kilper, D.C. Deep-neural-network-based wavelength selection and
switching in ROADM systems. J. Opt. Commun. Netw. 2018, 10, D1–D11. [CrossRef]

31. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A Survey on Distributed Machine Learning.
ACM Comput. Surv. 2020, 53, 1–33. [CrossRef]

32. Global Environment for Network Innovations (GENI). What Is GENI? 2022. Available online: https://www.geni.net/about-
geni/what-is-geni/ (accessed on 10 January 2022).

33. Smart Applications on Virtual Infrastructure (SAVI), 2022. Available online: https://www.savinetwork.ca/ (accessed on 10
January 2022).

34. Kim, T.; Cha, Y.; Shin, B.; Cha, B. Survey and Performance Test of Python-Based Libraries for Parallel Processing. In Proceedings
of the 9th International Conference on Smart Media and Applications. Association for Computing Machinery, New York, NY,
USA, 23 August 2020; pp. 154–157. [CrossRef]

35. Ray Team. What Is Ray? 2021. Available online: https://docs.ray.io/en/master/ (accessed on 12 January 2022).
36. Using IPython for Parallel Computing. Available online: https://ipython.org/ipython-doc/3/parallel/ (accessed on 12 January

2022).
37. dispy: Distributed and Parallel Computing with/for Python—Dispy 4.12.0 Documentation. Available online: https://dispy.org/

(accessed on 12 January 2022).
38. Pandaral lel. 2021. Available online: https://github.com/nalepae/pandarallel/tree/v1.5.4 (accessed on 12 January 2022).
39. Dask. Dask—Documentation. 2022. Available online: https://docs.dask.org/en/stable/ (accessed on 12 January 2022).
40. Joblib. Joblib: Running Python Functions as Pipeline Jobs. 2022. Available online: https://joblib.readthedocs.io/en/latest/

(accessed on 12 January 2022).
41. Moritz, P.; Nishihara, R.; Wang, S.; Tumanov, A.; Liaw, R.; Liang, E.; Elibol, M.; Yang, Z.; Paul, W.; Jordan, M.I.; et al. Ray: A

Distributed Framework for Emerging AI Applications. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, USA, 8–10 October 2018; pp. 561–577.

42. Fabbiani, E.; Vidal, P.; Massobrio, R.; Nesmachnow, S. Distributed Big Data Analysis for Mobility Estimation in Intelligent
Transportation Systems. Transp. Rev. 2019, 6, 795–818. [CrossRef]

http://dx.doi.org/10.26599/TST.2020.9010022
http://dx.doi.org/10.1007/978-3-030-22277-2_35
http://dx.doi.org/10.1109/ICECA.2018.8474576
http://dx.doi.org/10.1109/AsiaJCIS.2019.000-4
http://dx.doi.org/10.1109/ICCES48766.2020.9137987
http://dx.doi.org/10.1109/JIOT.2019.2926365
http://dx.doi.org/10.1109/ICREST.2019.8644161
http://dx.doi.org/10.1109/ICCMC51019.2021.9418291
http://dx.doi.org/10.1109/ICCCNT49239.2020.9225340
http://dx.doi.org/10.1109/IC-NIDC54101.2021.9660402
http://dx.doi.org/10.1109/TII.2021.3130248
http://dx.doi.org/10.1109/ICECA.2019.8822120
http://dx.doi.org/10.1364/JOCN.10.0000D1
http://dx.doi.org/10.1145/3377454
https://www.geni.net/about-geni/what-is-geni/
https://www.geni.net/about-geni/what-is-geni/
https://www.savinetwork.ca/
http://dx.doi.org/10.1145/3426020.3426057
https://docs.ray.io/en/master/
https://ipython.org/ipython-doc/3/parallel/
https://dispy.org/
https://github.com/nalepae/pandarallel/tree/v1.5.4
https://docs.dask.org/en/stable/
https://joblib.readthedocs.io/en/latest/
http://dx.doi.org/10.1007/978-3-319-57972-6_11

Future Internet 2022, 14, 72 17 of 17

43. Nsl-kdd Dataset. 2014. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessedon 21 December 2021).
44. KDD Cup 1999. 1999. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 21 December

2021).
45. The UNSW-NB15 Dataset Description. 2015. Available online: https://research.unsw.edu.au/projects/unsw-nb15-dataset

(accessed on 21 December 2021).
46. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset

and taxonomy. In Proceedings of the International Carnahan Conference on Security Technology, Chennai, India, 1–3 October
2019. [CrossRef]

https://www.unb.ca/cic/datasets/nsl.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://dx.doi.org/10.1109/CCST.2019.8888419

	Introduction
	Related Work
	The Proposed Architecture
	Results and Analysis
	Conclusions
	References

