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Abstract: The growing demand on video streaming services increasingly motivates the development
of a reliable and accurate models for the assessment of Quality of Experience (QoE). In this duty,
human-related factors which have significant influence on QoE play a crucial role. However,
the complexity caused by multiple effects of those factors on human perception has introduced
challenges on contemporary studies. In this paper, we inspect the impact of the human-related factors,
namely perceptual factors, memory effect, and the degree of interest. Based on our investigation, a
novel QoE model is proposed that effectively incorporates those factors to reflect the user’s cumulative
perception. Evaluation results indicate that our proposed model performed excellently in predicting
cumulative QoE at any moment within a streaming session.

Keywords: quality of experience (QoE); cumulative QoE model; memory effect; degree of interest;
video-on-demand services

1. Introduction

To correctly determine the end user quality of experience ( QoE) for adaptive streaming services
and subsequently perform a QoE based network control and management, there exists a need for the
development of reliable QoE models [1] to produce a highly accurate QoE prediction either at any
moment or at the end of a streaming session. This requirement links to the phenomenon of cumulative
assessment where QoE can be cumulatively estimated from the time when the viewer starts watching a
streaming video content to any moment of the streaming session [2]. However, such a method requires
a complex quantification of multiple effects of QoE influence factors, especially human-related factors.
In this paper, we propose a QoE model that precisely assesses the cumulative perceived quality in
video on-demand services and it can be potentially utilized as a better alternative than either overall
QoE or instantaneous QoE in QoE management.

Human-related influence factors (e.g., perceptual factors, memory effect and video content) play
a crucial role in precisely modeling QoE. There have been many studies on perceived video quality
models. Some studies investigate and quantify the impact of perceptual factors [3–7]. However,
authors usually abandon the temporal dynamics and historical experience of the user’s satisfaction,
which are referred to as the memory effects [8]. Some other studies attempt to clarify the role of primacy
and recency effects [9–15], resulting in the high accurate QoE prediction. Typically, the primacy and
recency effects [16] determine the memory influence of impairments occurring at the beginning and
the end of streaming session [17], respectively. Besides, the effect of unpleasant events which take place
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in the middle of the session also leaves a considerable impact on the perceived video quality [17,18].
Theoretically, such impacts can be represented by an exponential deterioration of memory retention in
time (defined by forgetting curve) [19–21] for infrequent events or by repetition [18,21] for the repeated
impairments. However, the influence of forgetting behavior and repetition has not been carefully
investigated in existing QoE models. Therefore, to fully express human memory effects on QoE
assessment, in addition to the primacy and recency effects, the forgetting curve and repetition should
be involved in the discussion. Apart from that, the factors that relate to video content also have a
noticeable effect on perceived QoE. Those factors might be type of video, video complexity [22], etc.
Additionally, some studies (e.g., [23–25]) have found that the user’s interest in video content possibly
generates the bias in his/her QoE evaluation. More concretely, the user tends to provide higher QoE
scores for more attractive video contents. Such a behavior is influenced by the so-called degree of
interest (DoI), which clarifies the interestingness of different video content, or the ability of the video
content to attract the user and keep the user’s interest [26]. However, existing studies often neglect
this factor due to the fact that these numerical values might vary upon different users based on their
personal interests.

In this paper, we propose a novel cumulative QoE model that extremely well quantifies multiple
effects of human-related factors, that is to say, perceptual influence factors, memory effect and degree of
interest (DoI). We mainly consider our model on video-on-demand streaming services since the video’s
DoI have to be collected offline before video streaming via performing a subjective test. To assess the
accuracy in predicting cumulative QoE, our proposed model is evaluated over LFOVIA database [12]
and through the subjective evaluation. Evaluation results show that the cumulative QoE at different
moments within a streaming session is precisely predicted by our proposed model. Our study is
distinguished with existing works by the following contributions:

• A cumulative QoE model is proposed that concurrently takes into account the human-related
influence factors for predicting the time-varying cumulative QoE of on-demand
streaming services.

• The novel memory weight, representing the effect of primacy, recency, forgetting and repetition is
introduced in the proposed cumulative QoE model.

• The correlation between DoI and subjective QoE is investigated and confirmed in this study.
Thereby, DoI becomes a potential QoE influence factor that is involved in the proposed model.

The rest of this paper is organized as follows. In Section 2, we discuss the existing works related
to our approach in terms of their drawbacks. Our proposed model and our investigations on the
influence factors are presented in Section 3. Section 4 evaluates the performance of the proposal and
discusses the advantages and disadvantages. Section 5 concludes this paper.

2. Related Work

Modeling and predicting the user’s cumulative perception to a streaming video content are able to
provide lots of advantages for QoE monitor and control systems (e.g., [27,28]) since it not only reflects
the user’s overall satisfaction but also reveals the impact of distorted events happening during the
streaming session. Most existing works only focused on modeling the overall or the instantaneous QoE,
which have shown insufficient characteristics. The overall QoE [3–5,29], which demonstrates the final
subjective judgment for a streaming session, can only be assessed when the viewer finishes watching.
Therefore, the overall QoE cannot be applied for real-time QoE monitor and also does not give sufficient
information about events occurring during the session. Although the instantaneous QoE [6,7,30], on
the other hand, can provide the instant perceived video quality at a certain moment, it only reflects
locally the quality assessment within a specific time range, without considering the cumulative effects
of prior events. Hence, it is highly sensitive to video impairments due to hysteresis effect [18,31]
and does not precisely express the user’s perceived video quality. In contrast, the cumulative QoE
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effectively leverages the advantages of both the overall and instantaneous QoE, while also eliminating
their disadvantages.

For those reasons, the idea of cumulative assessment needs to be considered. In [2], the cumulative
perceptual quality was assessed by leveraging the concept of a sliding window. The work in [32]
evaluated the cumulative QoE driven by video quality, bitrate switching, and rebuffering events
aligning with the exponential decay of human memory. However, these existing models did not
fully express the effects of human-related influence factors (i.e., perceptual factors, primacy, recency,
forgetting and repetition, and the user’s interest on video content) on the video quality assessment.

For modeling QoE, there are recent studies working on cyber-physical social systems [33,34]
that capture the human-related factors such as user’s profiles, characteristics and interests in order to
understand, predict and optimize the user’s QoE. However, in the video streaming field, the impacts
of human-related factors on QoE are not yet fully considered. A number of existing studies (e.g., [3–7])
have considered the perceptual factors (e.g., visual quality, rebuffering events and quality variations)
without taking into account the influence of memory on subjective judgment. To support the idea
of utilizing the memory effect on QoE assessment, the authors of [12,17,18] found that primacy and
recency effects, which are related to the beginning and the end of a session, respectively, have significant
impacts on viewer’s perception. These memory effects have also been studied in [9–15], resulting in
superior performances in terms of accuracy. In addition, the authors of [17,18] also indicated that those
events happening in the middle of the streaming session also influence the perceived video quality.
Particularly, the user tends to forget the infrequent events, but to remember the repeated one. These
memory characteristics actually refer to the forgetting curve [19,21] and repetition [21]. The work
in [32] considered the forgetting behavior in their cumulative QoE model, but did not employ the
effect of primacy and recency. On the contrary, the authors of [2] only investigated the primacy and
recency effect. Besides the above influence factors, the effect of video content was also concerned by
contemporary works [9,13,23–25,35]. Accordingly, the video content (especially spatial and temporal
information) plays an important role in QoE assessments. On the other hand, while the authors of [25]
indicated that content type has a strong influence, the authors of [36] explored the user’s satisfaction
with the quality of a multimedia presentation and user’s ability to analyze, synthesize and assimilate
the informational content of multimedia. However, to the best of our knowledge, there is no QoE
model which takes into account the user’s degree of interest in video content.

In this paper, we propose a QoE model of a cumulative experience driven by human-related
factors including perceptual factors, memory effect (primacy, recency and forgetting and repetition)
and degree of interest.

3. Proposed Cumulative QoE Model

According to Brunnström et al. [37], QoE is defined as the results from the fulfillment of the user’s
expectation to the enjoyment of the application or service based on his or her personality and current
state. Here, “personality” defines “the characteristics of a person that account for consistent patterns of
feeling, thinking and behaving”, whereas, “current state” stands for “situational or temporal changes
in the feeling, thinking or behavior of a person”. Therefore, the role of human-related factors in QoE
modeling is extremely obvious. In this section, we first investigate the impact of those factors on
human perception in QoE evaluation and then formulate our proposed cumulative QoE model.

3.1. Perceptual Factors

In video QoE assessment, perceptual factors [38] including video quality, rebuffering frequency,
and rebuffering duration are directly perceived by the user. Typically, the user is usually sensitive to
the current video segment quality, also known as short time subjective quality (STSQ) [6]. STSQ is defined
as the perceptual quality of the video segment being rendered to the user. STSQ can be predicted
using any of the robust video quality assessment (VQA) metrics such as Spatio-Temporal Reduced
Reference Entropic Differences (STRRED) [39], Multi-Scale Structural Similarity (MS-SSIM) [40], etc.
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In this study, STRRED was utilized to measure STSQ because of the exceptionally robust prediction
performance [14,15]. Rebuffering occurrences also contribute a significant impact to the user’s
satisfaction [18]. Therefore, rebuffering information such as rebuffering length, rebuffering position
and the number of rebuffering events must be investigated. As a result, two rebuffering-related
inputs employed are in this method. Firstly, playback indicator (PI) [11,14,15] is defined as a binary
continuous-time variable, specifying the current playback status: 1 for rebuffering and 0 for normal
playback. Secondly, as the user’s annoyance increases whenever a rebuffering event occurs [18], number
of rebuffering events (NR) happening from the beginning to the current time instant of the session is
considered. Intuitively, perceived video quality tends to decrease when distorted events occur, and
gradually recovers since the end of those events [13]. This leads to the consideration of the fourth input
which refers to the time elapsed since the last video impairment (TR) (i.e., bitrate switch or rebuffering
occurrence) is utilized. All considered perceptual factors are fed into an LSTM-QoE model [15] to
predict the instantaneous QoE as follows [15]:

q(t) = LSTM0(x(t), c(t− 1)) (1)

where q(t) represents the predicted instantaneous QoE at the time instant t, x(t) is the input features,
and c(t) is the memory cells which encode the knowledge of the inputs that have been observed up
to the time t. LSTM provides two functionalities: LSTM0 for output QoE prediction and LSTMc for
memory cells update which is given by [15]:

c(t) = LSTMc(c(0 : t− 1), q(0 : t− 1)), ∀t ≥ 1 (2)

where c(0 : t − 1) and q(0 : t − 1), respectively, refer to the past memory cells and the past
predicted QoE.

The examples of four factors (including STSQ, PI, NR, and TR) and the architecture of LSTM-QoE
model are illustrated in Figures 1 and 2, respectively.

(a) STSQ (b) PI

(c) NR (d) TR
Figure 1. Example of rebuffering and bitrate-related features represented by STSQ, PI, NR, and TR.
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Figure 2. LSTM (Long Short-term Memory)network [15] for the user’s instantaneous QoE prediction.
The network is composed of two LSTM layers. The inputs to the layers are four features including
STSQ, PI, NR, and TR. The outputs combine the LSTM layers’ hidden states, representing the predicted
instantaneous QoE values.

3.2. Memory Effects

Memory effects refer to the influence of historical/past experiences on the perceived video quality.
Primacy and recency are two common effects which were investigated in numerous studies [11,13,15].
In addition to these factors, the effect of forgetting curve characteristic and repetition are also considered
in our proposed model. The next parts of this subsection discusses the role and mathematical function
of these factors. Based on that, a memory weight is proposed for the cumulative QoE model.

3.2.1. Primacy Effect

The primacy effect [16,41] describes the human behavior to recall (bitrate or rebuffering) initial
events occurred at the beginning of the streaming session when providing the overall evaluation [42].
In fact, the primacy effect always exponentially decreases by time [41]. Therefore, its characteristics
can be expressed by an exponential curve as follows:

fP(t) = exp(−αP ∗ t), 0 ≤ t ≤ L (3)

where αP determines the intensity of primacy effect (how fast the primacy effect diminishes over time)
and t denotes a time instant within a session of L seconds.

3.2.2. Recency Effect

The recency effect [16,41] refers to the ability of the human memory to recall the most recent
events [42]; hence, the evaluated QoE heavily depends on the recent experiences. The recency effect
also can be described by an exponential curve represented by the following equation:

fR(t) = exp(−αR ∗ (L− t)), 0 ≤ t ≤ L (4)

where αR determines the intensity of recency effect.
The primacy effect and the recency effect can be combined as the U-shaped form [16], quantifying

the influenced weight of the events occurring from the beginning to the end of a video session.
As shown in Figure 3, it can be observed that Equations (3) and (4) reflect the primacy and recency
effect extremely well.
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Figure 3. A typical U-shaped curve combined primacy and recency effects.

3.2.3. Forgetting Curve and Repetition

Due to the significant impact of the negative experience caused by distorted events, the primacy
and recency effect can be neglected under repeated bitrate switches or rebuffering [22]. In such
situations, forgetting behavior and repetition should be taken into account. The forgetting behavior,
in other words, forgetting curve characteristic [21], is a natural process, describing the exponential
loss of memory over time. As shown in Figure 4a, when information is learned, its memory retention
declines at an exponential rate. Accordingly, any occurred events can be exponentially forgotten by
time if there is no attempt to retain it. The level of remaining memory about such events at a specific
time point depends on:

• The strength of memory (memory intensity): The durability that memory traces in the brain.
The more annoying the event is, the stronger the user memorizes it and the longer it lasts.

• The time that has elapsed since the occurrences of events: As shown in Figure 4a, the user will
forget an average of 60% of what they experience within the first period of time [20,21].

• Repetition: The more frequently an event occurs, the more likely it sticks to the user memory (as
shown in Figure 4b).

(a) An example of forgetting curve (b) Forgetting curve and repetition
Figure 4. Examples of forgetting curve and repetition.

In a typical streaming session, an interruption (bitrate switching or rebuffering) can happen
regularly. When an event, especially rebuffering repeatedly occurs, the strength of memory of those
events will tend to increase [21], negatively influencing the perceived video quality. Consequently,
as the number of negative events increases, QoE will recover at a slower pace after the occurrence of
each event. Such memory characteristics can be formulated as the following equation [43]:
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fRP(t) = exp(− αRP
NR(t)

∗ TR(t)), 0 ≤ t ≤ L (5)

where NR(t) is the number of rebuffering events occurring until the time t, TR(t) is the time
elapsed since the last video impairment, and αRP is the intensity of memory related to a rebuffering
event. The ratio αRP

NR(t) determines the retention of the user’s memory after the NR(t)th rebuffering.

Accordingly, the lower αRP
NR(t) is, the higher retention rate, making fRP declines at a lower rate.

3.2.4. Proposed Memory Weight

As discussed in the previous sub-subsections, the effects of primacy, recency, forgetting behavior
and repetition are significantly crucial for the evaluation of the cumulative QoE. Therefore, in the
proposed cumulative QoE model, we introduce a novel memory weight incorporating the effects of those
factors to accurately assess the cumulative human perception during a streaming session. The proposed
memory weight is represented by Equation (6). An example of time-varying memory weight is
illustrated in Figure 5. In fact, Equation (6) is a linear combination effect of the above-mentioned
memory factors obtained from Equations (3)–(5).

wt = β1 fP(t) + β2 fR(t) + β3 fRP(t) (6)

where β1, β2, β3, respectively, determine the contribution of primacy effect, recency effect and repetition
to the memory weight.

Figure 5. An example of the memory weight in a session under different values of parameters β1, β2,
and β3.

Figure 5 shows that when a rebuffering event occurs near the end of the session, the recency
effect has a stronger effect on human perception. Therefore, in this period of time, the end user’s QoE
will drop dramatically. In addition, the forgetting rate of a specific interruption is also smaller than
those of previous ones, determining the characteristics of forgetting behavior and repetition. Therefore,
the proposed memory weight potentially reflects the intensity of human memory over time during a
streaming session.

3.3. Degree-of-Interest

For modeling QoE, there have been numerous studies that take into account video content-related
factors (e.g., type of video, the complexity of video, etc.). However, most of them neglected the
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user’s interest, in other words, Degree-of-Interest ( DoI). In fact, influenced by video content and
viewer preferences, the user possibly has different DoI on different videos or different parts of a video.
Intuitively, the user seems to provide higher QoE scores for the video with interesting content and
vice versa. Typically, DoI [44] is defined as the interestingness of the video content, or the ability of the
video content to attract the user and keep the user’s interest [26].

To make this clear, in this study, we investigated the correlation between DoI and the overall QoE
by conducting a subjective test. In this test, 18 undistorted videos from the LFOVIA Database [12]
were utilized. The video content varied upon nature, wildlife, outdoor, marine, sports, animation, and
gaming [12] among every video, each with a duration of 120 s. This guaranteed that the subjects would
retain their interests as they watched. The referenced videos were randomly divided into six collections
and encoded using FFmpeg [45] under the default settings with the resolution of 1920× 1080 and were
displayed on a 15-inch monitor with a resolution of 1920× 1080 and a black background. The Absolute
Category Rating (ACR) [46] method was used and 60 subjects agreed to participate in this experiment.
Each video was assessed by at least 10 subjects. At the end of each video, the subject was asked to
give an overall score representing his/her interest in the entire video content, ranging from 1 (worst
or not at all interested) to 5 (best or extremely interested), following the general principle of the
ITU-T recommendation P.913 [46]. A 3-min break was provided to each subject between each video to
minimize the effects of viewer fatigue. The average of subjects’ scores or Mean Opinion Score (MOS)
for each video was utilized as the DoI of video. These values were then linearly scaled up to the range
of 0–100 and compared with the corresponding overall QoE in the LFOVIA Database.

Figure 6 illustrates the obtained correlation between DoI and the overall QoE, which achieved the
Pearson Correlation Coefficient (PCC) of 0.601. The correlation was modest. We speculated this was
due to the small number of subjects participating in the experiment. However, it is shown that the DoI
has an influence on the final decisions of the users when they provide the overall QoE. In the future,
a larger number of subjects will be considered for further investigation. Based on the conclusion of
this experiment, we introduce DoI as one of the potential influence factors in the proposed cumulative
QoE model.

Figure 6. Scatter plot between the mean of subjective DoI scores and the subjective overall QoE
obtained in the database.

3.4. Cumulative QoE Model

Through the investigation of the above human-related influence factors, the proposed cumulative
QoE model is presented in Equation (7). In this model, to quantify how each of the user’s past
experiences influences the cumulative perception, the instantaneous QoE needs to be weighted by
the memory effect from the beginning of playback to the investigated time point t within a streaming
session. According to our proposed model, the procedure of estimating cumulative QoE is described
as follows: Firstly, the instantaneous QoE is predicted by LSTM-QoE model [15], and stored into
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vector Qt = (q0, q1, . . . , qt). Secondly, the memory weight is calculated by Equation (6) to form vector
Wt = (w0, w1, . . . , wt).

CQt = λ1

(
Qt ×WT

t

)
+ λ2DoI (7)

where λ1 and λ2 are correlation coefficients, which, respectively, determine the contribution of the
user’s past experience and user’s interest in video content to the predicted cumulative QoE CQt at
time instant t.

4. Performance Evaluation and Discussion

In this section, we start with the explanation of the proposed model’s establishment where the
necessary parameters including {αP, αR, αRP}, {β1, β2, β3} and {λ1, λ2} are numerically determined.
Afterward, we briefly present the evaluation and discuss the prediction performance of our model.
The evaluation was two-fold. First, the prediction performance of the proposed model was
quantitatively and qualitatively assessed on test videos in a specific database [12]. Second, a subjective
test was conducted to evaluate how well the predicted cumulative QoE correlates with subjective
cumulative evaluation at different moments of a streaming session. Finally, the complexity of the
proposed model was also analyzed for real-time cumulative QoE prediction.

4.1. Model Establishment

The parameters of our proposed model were computed according to a four-step procedure
as follows:

(1) A specific publicly available database was employed for establishing and evaluating the
proposed model.

(2) An LSTM-QoE model [15] was trained to predict the instantaneous QoE values.
(3) The memory effects’ parameters {αP, αR, αRP} were computed to form the memory

weight vector.
(4) The coefficients of memory weight {β1, β2, β3} in Equation (6) and the parameters of the

proposed model {λ1, λ2} in Equation (7) were determined through the predicted instantaneous
QoE values and the subjective DoI collected from the experiment in Section 3.3.

The details of each step are described in the next sub-subsections.

4.1.1. Database Description

Our model was established and evaluated based on a set of 36 distorted videos in LFOVIA Video
QoE Database [12]. These videos have different playout patterns distorted by bitrate switching and
rebuffering events. In this database, the overall QoE and the time-varying instantaneous QoE scores
for those videos were obtained are in the range [0, 100], with score 0 being the worst and 100 being
the best. The set of distorted videos was divided into training and testing sets with a training:testing
ratio of 80:20. Accordingly, there were 28 videos in the training set and 8 videos in the testing set.
The training and testing set were, respectively, used to obtain the model parameters described in
Section 4.1.3 and evaluate the prediction performance of the model presented in Section 4.2.

4.1.2. Instantaneous QoE Prediction by LSTM-QoE

The instantaneous QoE values were estimated by the LSTM-QoE model [15]. The model
was trained on the training set with 28 distorted videos driven by four features STSQ, PI, NR
and TR. The performance of this model was then quantified on the eight test videos using the
Pearson Correlation Coefficient (PCC) and Spearman Rank Order Correlation Coefficient (SROCC).
Consequently, the model achieved high accuracy with PCC of 0.9946 and SROCC of 0.8870.
The performance of the trained model is illustrated in Figure 7, demonstrating high accurate prediction.
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Figure 7. Some examples of instantaneous QoE prediction performance obtained from the LSTM-QoE
model on different test videos of the database.

4.1.3. Parameters Selection

As discussed in Section 3.2, the parameters {αP, αR, αRP} indicate how memory factors impact
the perceived video quality over time. The larger {αP, αR, αRP} are, the easier it is for the user to forget.
According to the authors of [16,17], the effects of primacy and recency gradually decrease within
15–20 s. Therefore, in this study, the deteriorating time was set to 15 s. Since the user usually recalls
unpleasant events when providing a QoE score, the effect of repetition is larger and remains longer
than primacy and recency. As a result, the values of αRP must be smaller than αP and αR. In this study,
the effect of repetition remained within 30 s. The optimal remaining times of repetition effect will
be analyzed in our future works. The function solve in MATLAB [47] was employed to compute the
parameters αP, αR, and αRP according to Equations (3)–(5), respectively. Consequently, the obtained
values of parameters {αP, αR, αRP} are shown in Table 1.

Table 1. Parameters of the primacy and recency effect, forgetting curve and repetition.

αP αR αRP

0.6807 0.6807 0.3404

Thereby, the parameters {β1, β2, β3} and {λ1, λ2} of weight memory and the proposed cumulative
QoE model could then be estimated. Considering a streaming session with a video in the training set of
L seconds, the cumulative QoE from the beginning to the end of the streaming session was calculated
as follows:

CQL = λ1

(
QL ×WT

L

)
+ λ2DoI

= λ1

L

∑
i=0

wiqi + λ2DoI

= λ1

L

∑
i=0

(β1 fP(i) + β2 fR(i) + β3 fRP(i)) qi + λ2DoI

(8)

where QL is the vector of instantaneous QoE (q0, q1, . . . , qL) and WL is the memory weight vector
(w0, w1, . . . , wL).

As mentioned in Section 3.4, the cumulative QoE at the end of the session CQL was also considered
as the overall QoE. Therefore, we first needed to minimize the least square error:

J = ‖CQL −Qoverall‖2 (9)

where Qoverall is the subjective overall user’s QoE obtained from the database. A curve fitting was
performed using lsqcurvefit in MATLAB [47] with 28 training videos to obtain the memory weight
parameters {β1, β2, β3} and the cumulative QoE parameters {λ1, λ2}. The numerical values of those
parameters are shown in Table 2.
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Table 2. Parameters of memory weight and the cumulative QoE model.

β1 β2 β3 λ1 λ2
0.0284 0.8492 0.1177 0.9809 0.0800

4.2. Performance Evaluation on Testing Videos

After obtaining the necessary parameters for the proposed model, we quantitatively and
qualitatively evaluated its prediction performance on eight distorted videos in the testing set.
Alternatively, the discussion on the results was also performed.

To quantitatively assess the prediction performance, the correlation between the subjective overall
QoE obtained in the LFOVIA Video QoE Database [12] and our predicted cumulative QoE at the end
of each video was computed. It is crucial to note that the subjective overall QoE can be considered
as the cumulative perception of the user at the end of streaming session. Three evaluation metrics
were utilized for evaluation: (1) Pearson Correlation Coefficient (PCC); (2) Spearman Rank Order
Correlation Coefficient (SROCC); and (3) Root Mean Square Error (RMSE). Typically, PCC and SROCC
quantify how well the predicted QoE tracks the actual QoE scores in the database, whereas RMSE
indicates the closeness between them. We also compared our proposed model with a reference method
in [32], using the same training set and testing set. The cumulative QoE model in [32] is characterized
by the following equation:

Qt = γQt−1 + (1− γ)qt (10)

where qt is the instantaneous user experience at moment t, Qt−1 is the cumulative QoE at the previous
moment t − 1, and γ is the memory strength parameter. The correlation between the predicted
cumulative QoE obtained from this model and the subjective overall QoE in LFOVIA database was
also investigated through PCC, SROCC and RMSE metrics. We report the performance of our model
and the reference method in Table 3. This result shows a superior prediction performance of our model.
Figure 8 additionally emphasizes the competitive performance of our model. Thereby, the proposed
model has effectively assessed cumulative perception over multiple scenarios in testing videos.

In qualitative evaluation, our purpose was to validate the impact of memory effects and DoI on
the cumulative QoE prediction over multiple scenarios on testing videos. Thereby, the prediction
performance of the proposed model in a short period and longer period could be assessed. Thus,
in Figure 9, we plot the predicted cumulative QoE in comparison with both subjective instantaneous
QoE and subjective overall QoE that were obtained from the database. Hereafter, the terms of
subjective instantaneous QoE and subjective overall QoE are referred to as instantaneous QoE and
overall QoE, respectively.

In general, the predicted cumulative QoE precisely reacts to any interruption at any moment
while being close to the overall QoE at the end of the streaming session. For the initial interruption,
it is always witnessed a significant deterioration in predicted cumulative QoE. Nevertheless, when
such unpleasant events continuously occur, the predicted cumulative QoE tends to decrease at a lower
rate. Additionally, a lower recovering rate is subsequently introduced after each event.

Table 3. Prediction performance of the reference model and our proposed model over training and
testing set.

PCC SROCC RMSE

Training [32] 0.7413 0.6420 10.6187
Proposed model 0.9441 0.8604 4.1525

Testing [32] 0.2777 0.2381 7.5135
Proposed model 0.7664 0.7857 4.6538
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Figure 8. Correlation between subjective overall QoE and predicted cumulative QoE at the end of
streaming session.

Figure 9. Predicted cumulative QoE in comparison with the subjective overall and instantaneous QoE
over eight different playout patterns.

4.2.1. Impacts of Memory Effects

In Patterns #2, #5, and #7, there is only one interruption with short duration occurring near the
beginning of streaming sessions. As a result, the predicted cumulative QoE introduces a slight decrease,
followed by a gradual recovery and convergence to a value as close to the overall QoE. These trends
are consistent with those of instantaneous QoE. It means that the prediction accurately demonstrates
the role of forgetting curve characteristic as well as the recency effect. More concretely, after the
interruption finishes, the memory intensity about such event starts to exponentially decay, leading to
the recovery in perceived video quality. At the end of streaming sessions, there is a possibility that the
decay has completely finished; in other words, the memory of distorted events has vanished. Therefore,
the recency effect becomes dominant, leading to the consistency among the predicted cumulative QoE,
instantaneous QoE, and overall QoE.

In Patterns #0 and #1, rebuffering event repeatedly occurs in the middle of streaming sessions.
While the predicted cumulative QoE is consistent with the overall QoE at the end of sessions,
the instantaneous QoE tends to continuously increase, creating a big gap to the overall QoE.
At first sight, one might think that the overall QoE must be as high as the instantaneous QoE at
the end of streaming sessions due to the recency effect. This inference is understandable because the
moment at which the last interruption occurs is quite far from the end of sessions, thus the recency effect
would have become dominant, resulting in the consistency among those QoE evaluations. However,
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when the interruption repeats many times, the impact of repetition characteristic become significantly
obvious. Consequently, the user tends to provide an overall evaluation whose value is lower than the
instantaneous QoE. On the other hand, by considering the recency effect and repetition characteristic,
our proposed model can effectively provide the prediction consistency with the overall QoE.

According to the hysteresis effect [31], the user is highly sensitive to a single unpleasant event
and provides poor QoE scores immediately. However, when the interruption occurs many times
as in Patterns #0, #1 and #3, the impact of the hysteresis effect will be shared with the repetition
characteristic. This makes the user behave in the consideration of past annoying events to avoid the
aggressive reaction. In addition, under the impact of repetition characteristic, such events are stuck
in the user’s memory and are recalled when the user provides the overall assessment. However,
the instantaneous QoE always aggressively reacts to the distorted events, by dramatically decreasing
and quickly recovering during a short period. This is because the instantaneous QoE is estimated
locally without considering the global views of the streaming session. Oppositely, by weighting
the instantaneous QoE by the memory effects (especially repetition characteristic), the predicted
cumulative QoE can react calmly, and, eventually, correlates perfectly with the overall QoE.

Interestingly, the predicted cumulative QoE also indicates a special behavior in human perception,
which cannot be found in the instantaneous QoE and overall QoE. We call such the behavior as the
persistent evaluation where the user seems familiar with the distorted event and accepts it. The user does
not even want to deteriorate their evaluation score or to quit from the streaming session. For instance,
Patterns #0 and #3 visualize that the cumulative QoE dramatically falls after the occurrence of the
first rebuffering event. However, it decreases with a significantly lower amplitude on the ones
happening subsequently.

4.2.2. Impacts of DoI

As mentioned in Section 3.3, the correlation between DoI and subjective overall QoE is modest.
However, the contribution of DoI on prediction performance is well recognized in some cases, as shown
in Patterns #2, #3, #5 and #7, which share a common characteristic where the predicted cumulative QoE
correctly meets the overall QoE. Without DoI (λ2 = 0), the predicted cumulative QoE would have been
much lower than the overall QoE. Especially, in Patterns #5 and #7, which contain only one super-short
rebuffering event near the beginning of streaming sessions, the memory intensity about this event
must have completely vanished, followed by the dominance of the recency effect, resulting in very
high overall QoE. However, the contents of these two videos might not be sufficiently interesting to
the users, leading to the deterioration in their evaluation. Therefore, when the contribution of DoI is
precisely recognized, our proposed model provides an extremely high accurate prediction. However,
in Patterns #4 and #6, there exist long duration interruptions in the middle of streaming sessions,
creating significantly high intensity memory about those events. As a result, the predicted cumulative
QoE dramatically decreases and slowly recovers. However, the insufficiently accurate contribution
of DoI has curbed the recovering rate. Consequently, the predicted cumulative QoE cannot catch up
with the overall QoE at the end of streaming sessions. This emphasizes the lack of generalization
in DoI coefficient λ2. We believe that the original reason is the insufficient number of participated
subjects in the subjective evaluation in Section 3.3 where each video was watched and evaluated by
only 10 subjects. In the future, a larger number of participants must be involved in this experiment.

4.3. Subjective Evaluation

A subjective evaluation was conducted to assess the accuracy of the proposed model aligning with
ground truth QoE scores provided by a number of subjects. The performance of QoE prediction using
the proposed model was evaluated by relying on the following four measures: (1) PCC; (2) SROCC;
(3) RMSE; and (4) Outage Rate (OR) [6]. While PCC and SROCC quantify the correlation between
predicted cumulative QoE and the subjective cumulative QoE, the closeness between predicted scores
and the ground truth scores is numerically obtained by using RMSE and OR. In particular, OR which
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measures the frequency of times when the prediction pi falls outside twice the confidence interval of
subjective scores si, is defined as the following equation:

OR =
1
N

N

∑
i
1(|pi − si| > 2CIsi ) (11)

where 1(·) is the indicator function
To conduct the subjective test, six distorted videos from the testing set of LFOVIA database

(Patterns #0, #1, #3, #4, #5, and #7) were selected. We selected those videos because they have different
contents, thus the role of DoI in our model could potentially be assessed. Each distorted video was
cropped into four small videos with starting timestamps of 00:00:00 and different length (60, 80, 100,
and 120 s) using FFmpeg [45]. The purpose was to ask the subjects to provide subjective cumulative
evaluations at the time points of 60, 80, 100, and 120 s of each distorted video. The correlations between
subjective cumulative QoE and predicted cumulative QoE obtained from our model and reference
model were assessed. The cropped videos were divided into six collections with different video content
and displayed on a 15-inch screen with a resolution of 1920 × 1080 and a black background. Each
video was rated by at least 18 subjects and there were totally 120 participants. Note that these subjects
were different from those in the “DoI” experiment presented in Section 3.3. The Absolute Category
Rating method was used in our experiment [46]. The subjects give a rating score at the end of each
cropped video with the score ranging from 1 (worst) to 5 (best) based on the perceived quality and
video content, following the general principle of the ITU-T recommendation P.913 [46]. The average
of subjects’ scores, associated with 95% confidence interval, for each cropped video, was utilized as
the subjective cumulative QoE. These values were linearly rescaled so that the scores lay in the range
0–100 and then compared with the predicted cumulative QoE.

Figure 10 illustrates the obtained correlation between the predicted cumulative QoE and subjective
cumulative QoE. The comparison in QoE prediction performance between our model and reference
model is tabulated in Table 4. Accordingly, we observed that the proposed model provides a
competitive performance in terms of SROCC, RMSE and OR against the reference model. On the
other hand, Figure 11 shows a reasonable prediction performance of our model in comparison with
subjective cumulative QoE at four discrete moments (at time points of 60, 80, 100, and 120 s) within a
streaming session. In general, the proposed model performs extremely well when the high frequent
and long duration rebuffering occur. It means that our model is capable of cumulatively capturing the
effects of all the occurred unpleasant events on human perception. However, the model performances
on Patterns #5 and #7 are poorer, as compared to other patterns (Patterns #0, #1, and #4) even though
they have only one short rebuffering event. This is because, on Patterns #5 and #7, the users’ perception
seems to be significantly affected by the video content. In other words, the effect of DoI becomes
dominant in their evaluation, which is not precisely captured by our model.

Table 4. Prediction performance of reference model and the proposed model over
subjective experiment.

PCC SROCC RMSE OR (%)

[32] 0.5418 0.3917 9.1318 33.3
Proposed model 0.5405 0.5146 9.0922 25.0
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Figure 10. Scatter plot of predicted cumulative QoE and subjective cumulative QoE.

Figure 11. Performance of our predicted cumulative QoE in comparison with the subjective
cumulative QoE.

4.4. Computational Complexity

The computational complexity of our proposed model was determined by the computational
complexity of forming the instantaneous QoE vector Qt = (q0, q1, ..., qt) predicted by the LSTM-QoE
model. It is important to note that, at the time instant t, the previous instantaneous QoE values
{q0, q1, ..., qt−1} have already been predicted and cached in the memory. Since the LSTM-QoE model
takes up only a very small computational overhead to predict qt, to form the vector Qt, the cumulative
QoE of each second CQt can be predicted in real-time. To demonstrate this, we calculated the required
computing time for training LSTM-QoE model and predicting the instantaneous QoE at the end of
a session qL. All the timing experiments were carried out on a 18.04 Ubuntu LTS Intel i7-8750H @
2.20 GHz and 16 GB RAM system. The LSTM-QoE model took 620.740 s to train and 0.4917 ms to
predict qL. Furthermore, the cumulative QoE CQL prediction took 0.5103 ms. Thus, our proposed
model is suitable for real-time cumulative QoE prediction.

4.5. Overall Evaluation

We assessed the performance of our proposed model on a publicly available database and the
subjective test. In this way, we could validate the predicted cumulative QoE in both quantitative
and qualitative manners. Typically, the model can precisely provide cumulative QoE prediction in
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different scenarios. Therefore, our proposal promisingly provides an alternative and reliable approach
in modeling QoE towards QoE based control and management.

5. Conclusions and Future Work

In this paper, a novel cumulative QoE model is proposed. This model successfully and effectively
incorporates the impacts of human-related influence factors to predict the cumulative perceived video
quality. In different scenarios, the proposed model achieved impressive performance, outperforming
the reference model. Additionally, it was shown that the introduced memory weight accurately
mimicked human memory during a streaming session, especially when unpleasant events repeatedly
occurred. Besides, the user’s interest in video content was found as a potential influence factor in
predicting QoE. However, the correlation between DoI and subjective overall QoE was not so high
due to the small number of subjects involved in our experiment. For future work, the influence of DoI
will be further investigated. In addition, the proposed cumulative QoE model will also be evaluated
in multiple databases to understand how well the model will perform across diverse scenarios of
video streaming.
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