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Abstract: Presently, we are observing an explosion of data that need to be stored and processed
over the Internet, and characterized by large volume, velocity and variety. For this reason, software
developers have begun to look at NoSQL solutions for data storage. However, operations that are
trivial in traditional Relational DataBase Management Systems (DBMSs) can become very complex
in NoSQL DBMSs. This is the case of the join operation to establish a connection between two
or more DB structures, whose construct is not explicitly available in many NoSQL databases. As
a consequence, the data model has to be changed or a set of operations have to be performed to
address particular queries on data. Thus, open questions are: how do NoSQL solutions work when
they have to perform join operations on data that are not natively supported? What is the quality of
NoSQL solutions in such cases? In this paper, we deal with such issues specifically considering one
of the major NoSQL document oriented DB available on the market: MongoDB. In particular, we
discuss an approach to perform join operations at application layer in MongoDB that allows us to
preserve data models. We analyse performance of the proposes approach discussing the introduced
overhead in comparison with SQL-like DBs.
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1. Introduction

Presently, we are observing to an explosion of heterogeneous data coming from social media,
entertainment transmissions, Cloud computing services and Internet of Things (IoT). Such data need to
be stored and processed for Future Internet applications ad services. This huge number of unstructured
and complex data sets, typically indicated with the term Big Data, are characterized by large volume,
velocity and variety, and cannot be managed by traditional Structured Query Language (SQL)-like
databases (DBs), due to their static structure organization [1]. Designing DB systems that efficiently
handle the requirements of Big Data applications is a challenging task. On one hand, we have to
manage large amounts of data, while on the other hand there is the need to perform analytic studies
on them. The constant growth of Big Data makes high data availability a critical factor. Data contents
are often shared through web portals, and also users, including suppliers and partners, can be in
different geographical areas. For these reasons the adoption of geographical data distribution approach,
placing data close to users, is becoming an ever more strategic solution. Considering all the previous
motivation it possible to state that traditional SQL-like data processing applications are inadequate
to manage and collect this kind of data information. For this purpose, organizations are looking at
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NoSQL (standing for “Not Only SQL”) solutions that are considered more efficient than traditional
Sql-like DataBase Management System (DBMS) in data management.

NoSQL DBMSs are already successfully adopted for storing Big Data in many application domains,
but, now, it is important for business companies to know how to analyse and process data in order to
make critical and strategic business decisions. High availability, scalability and accuracy in Big Data
analytics may lead to more confident decision making, and better decisions mean greater operational
efficiency along with cost and risk reduction. Indeed, it is not the amount of data that is important
for companies, but what they can with data. However, since Big Data can be both structured and
unstructured, operations that are trivial in traditional Relational DataBase Management Systems
(DBMSs) can become very complex in NoSQL DBMSs. This is the case of the join operation to establish
a connection between two or more DB structures, whose construct is not explicitly available in many
NoSQL databases. Thus, open questions are: how do NoSQL solutions work when they have to
perform join operations on data that are not natively supported? What is the quality of NoSQL
solutions in such cases?

In this paper, we analyse the behaviour of one of the major NoSQL document-oriented DBs,
MongoDB [2], dealing with the inner join problem in particular. MongoDB stores BSON documents
(i.e., data records) in unstructured collections, and collections in DBs. The MongoDB open source
community, aware that aggregation operation among collections are highly required by developers,
has introduced the $lookup operator in version 3.2. the $lookup operator is able to perform Left Outer
Equi-Join (briefly called “left join”) operations with two or more collections. However, it gives as
output all the documents of a left-collection even if it has not any matching on the right-collection’s
document fields. As a result, the query can contain a huge amount of useless documents becoming
a problem especially in a Big Data context. The “inner join” commonly used in traditional SQL-like
databases solves this kind of problem, but it is not supported in MongoDB as well as in the most of
NoSQL document-oriented DBs. Effective aggregation among data in collections have to be performed
by external applications connected to MongoDB. In order to address such a problem, we present
an application-layer implementation of the inner join that overcome the described issue. In our
experiments, we analyse the performance of the proposed inner join solution, also discussing the
introduced overhead in comparison with SQL-like DBs, considering equivalent datasets.

The paper is organized as follows. Section 2 describes related works. An overview on differences
between SQL-like and NoSQL solutions is provided in Section 3. In particular, the advantages of NoSQL
solutions are discussed, also analysing their limits in term of constructs and operations compared
to SQL-like solutions, especially considering MongoDB and MySQL as DB models. An overview
of MongoDB features is given in Section 4. In Section 5, we present the application-layer inner join
solution we implemented for MongoDB. A comparison analysis between MongoDB and MySQL
specifically considering both inner join operations is presented in Section 6. Section 7 concludes
the paper.

2. Background and Related Work

With the advent of Future Internet applications, there is an increasing need to pass from SQL-Like
to NoSQL DBMS(s) able to efficiently manage a huge volume of heterogeneous data in different
domains including smart cities [3], industry 4.0 [4], marketing [5], robotics [6], transportation [7],
healthcare [8,9], genomics [10,11], and so on. Therefore, many scientific and technical works have
been proposed in literature so far focusing on a comparative analysis between SQL-like and NoSQL
database solutions.

In [12], a comparison is proposed between both types of databases (SQL and NoSQL) to test
the various CRUD operations i.e., Create, Read, Update and Delete varying the amount of used
data. The authors therefore thanks to their analysis give an evaluation index in order to select which
database to use for a given data set. All of the above works give their own evaluation about the
performance of each DBMS. They have been tested all basic operations (CRUD) but none of these
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works made a comparative analysis between the Join (SQL) and Join (NoSQL) operations, because
everyone agrees that this operation does not exist in the non-relational databases. In [13], in order
to run comparative tests between different kind of databases, a bank application that uses different
types of databases is designed and implemented. The experimental results measure the timing of
the basic operations carried out on each of them demonstrating that the NoSQL databases with SQL
features such Foundationdb turn out to be better than SQL. In [14] the authors made a conversational
careful analysis on NoSQL databases, comparing the differences between the different types of NoSQL
databases, highlighting in the end their advantages and disadvantages. Authors in [8,15] present the
Open Archival Information System (OAIS), which exploits the well-known NoSQL column-oriented
Database (DB) Cassandra. They performed some tests on the proposed solutions in a real use case
scenario, comparing performance with a traditional MySQL solution. They noticed that in a not
distributed infrastructure Cassandra in not very performing compared to MySQL, because benefits
of column family management can not be exhibited. However, advantages in using Cassandra are
evident when Cassandra is Coupled with Apache Spark. In the healthcare application domain, ref. [16]
presents a protocol to assess the computational complexity of querying relational and non-relational
standardized electronic health record (EHR). This protocol shows that SQL systems are not practical
for single-patient queries since response times are slower. NoSQL databases show a linear slope, and
MongoDB performs considerably faster than eXist DBMS. In concurrency, MongoDB also behaves
much better than relational MySQL. The [17] presents a comparative analysis between NoSQL
databases such as HBase, MongoDB, BigTable, SimpleDB and relational databases such as MySQL
specifying their limits when applied to real world. The authors specifically tested the above databases
analysing both simple and more complex queries. A set-similarity join solution in NoSQL using
MapReduce is discussed in [18].The set-similarity join algorithm can avoid redundant comparisons
between join attribute values in the MapReduce framework. In particular, the number of comparisons
to find all similar pairs was reduced by extending the prefix filtering technique for the MapReduce
Framework. This solution resulted up to an order of magnitude improvement in performance over the
most efficient existing solutions. In [19], an index-based solution that adapts a centralized rank-join
algorithm is discussed. In particular, authors provide (i) MapReduce algorithms showing how to
build indices and statistical structures, (ii) algorithms to allow for online updates to these indices,
and (iii) query processing algorithms utilizing them. All algorithms are implemented and tested
in Hadoop (HDFS) and HBase, utilizing different queries on tables of various sizes and different
score-attribute distributions. The query optimization problem is addressed in [20], where authors deal
with the efficiently execution of JOIN queries on top of Hadoop query language, Hive, over limited
Big Data storages. A novel data integration methodology to query data individually from different
relational and NoSQL database systems is proposed in [21]. Such a solution does not support joins
and aggregates across data sources, but it only collects data coming from different separated DBMS
according to the filtering options and migrates them. The proposed method is based on a metamodel
approach and it covers the structural, semantic and syntactic heterogeneities of source systems. In [22],
authors present a piece of framework able to automatically map a MySQL relational database to
a MongoDB NoSQL database. In particular, an algorithm that uses metadata stored in the MySQL
system tables is used. Join operation are treated by means of embedded documents. In [23] authors
show how dynamic SPARQL access to non-relational data can be achieved considering MongoDB. In
particular, they use SparqlMap-M, which is an extension of the SPARQL-to-SQL tool that performs
a partial transformation of SPARQL queries by using a relational abstraction over a document store.
Furthermore, duplicated data in the document store is used to reduce the number of joins and custom
optimizations are introduced. Event though, such a solution allows performing join operations, it
need to create a new abstraction of the whole data model not considering the advantage of a direct
access to MongoDB. Ref. [24] introduces a framework that aims at analysing semi-structured data
applications using NoSQL database MongoDB. The proposed framework focuses on the key aspects
needed for semi-structured data analytics in terms of data collection, data parsing and data prediction.
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A performance analysis for select+fetch operations needed for analytics, of MySQL and MongoDB is
carried out where NoSQL database MongoDB outperforms MySQL database.

Despite the the large adoption of MongoDB and the presence of many scientific and technical
works focusing on different aspects of it, to our knowledge, at the time of writing, no work has directly
faced the inner join problem so far.

3. SQL-Like vs. NoSQL DBMS

Nowadays, most of DBMS solutions are mainly based on the relational model and allow
composing complex queries on data by means of the Structured Query Language (SQL). For this
reason, they are also referred as SQL-like databases. The first Relational DBMS (RDBMS) solution
appeared in the 1970s and for four decades they have dominated the market. However, the recent
growing need of larger databases, due to the success of Cloud computing, social media and IoT have
stood out the limits of RDBMS. In this context, NoSQL (that stands for Not Only SQL) has rapidly
caught the attention of both academia and industry as the promising solution to address the “Big
Data problem”. In fact, since NoSQL solutions are able to manage scheme-less or scheme-free data
models, they can easily store huge amount of heterogeneous and unstructured data coming from
several different data sources. This is not possible in RDBMS solutions, where static data models have
to be define a priori.

The relational model is based on relational algebra and relational calculus, and represents
a powerful tool that allows developers to write complex queries on data represented by means
of relations. A schema defines the relation’s name, specifying columns representing attributes or
fields. Rows, also called tuples or record, represent the instance of the relation. Integrity constraint is
the property that relations must be satisfy in order to represent correct information in data instances.
Integrity constraints can be classified according to the involved database elements:

• domain constraints, which impose a restriction on the attributes’ domain;
• intra-relational constraints, which need coherence in primary and foreign keys.

In recent years, NoSQL database solutions have emerged to address limits of RDBMS in terms of
management of big, unstructured, complex and dynamic data. Differently from SQL-like DBs, most of
NoSQL solutions do not enforce domain and inter-relational constrains. We can identify four main
NoSQL DB families, each based on a different data model:

1. key-Value-Store DB: based on a key-value model, where each record is characterized by
a primary key and a collection of values; it is also called row-store, since data representing
a single record are stored together. Examples of NoSQL DB that use this data model are Redis
and Riak.

2. Column oriented DB: data are stored in columns (it is complementary to DBs that store data
instead along the rows, namely row-oriented DBs); each attribute of a table is stored in a separate
file or region onto the storage system. Example of this type of DB is Cassandra.

3. Document oriented DB: data are stored in a document; documents can be nested and thus
contain other documents, lists and arrays; this category also includes the native XML DB, so
called because they define a logical model for the XML document. Examples are MongoDB and
CoucheDB.

4. Graph DB: designed for data whose relations are well represented as a graph consisting of
elements interconnected with a finite number of relations between them. Examples includes
Neo4j and OrientDB.

At this point the question is: how do we understand if the needs of an end user (e.g., a company,
a developer, etc.) are better satisfied by a NoSQL or RDBMS solution? In order to answer this question,
we start from ACID and CAP theorems. ACID refers to the four key properties of a transaction:
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• A as Atomicity: transactions must be atomic, which is indivisible; in DBMSs, the operations of
a transition affect a DB coherently.

• C as Consistency: a transaction must not violate the integrity constraints in the DB; if
an inconsistency on data arises, all data come back to the state before the transaction.

• I as Isolation: executions of a transaction must be independent from each other.
• D as Durability: the transaction, after a commit execution commit, should take effect correctly on

the DB and all changes must be applied and no more lost.

ACID transactions are the basis of RDBMS solution. However, today, the continuous evolution
of Web and software services leads to the increase of the amount of data that must be managed by
distributed applications. This limits the adoption of (natively) non-distributed RDBMS. In order to
address such a limit, Eric Brewer presented the CAP theorem [25]. It asserts that it is impossible for
a distributed storage system providing more than two of the following three properties simultaneously:

• C as Consistency: changes in a distributed storage system must to be reflected on all the
distributed storage nodes.

• A as Availability: the storage system is always available to respond to a request.
• P as Partition-tolerance: the storage system is able to work and to respond to queries also if

problems in the network occur (e.g., a storing node crashes, or some messages are lost).

To well understand the CAP Theorem, let us consider a storing node. Alone, it is able only to
guarantee consistency and partition-tolerance, but not availability; if we consider many nodes that
preserve the same data, they ensure availability, but can not guarantee consistency because they can be
in different states at a specific time before the data is provided to all the nodes. Increasing the number
of nodes, the level of complexity of the system increases, and also the tolerance to the partitions. This
concept is schematised in Figure 1. The CAP theorem is at the basis of NoSQL DB solutions.

Figure 1. CAP Theorem.

Whenever we adopt NoSQL DBs, it is necessary to find a compromise on which CAP properties
we want to address, depending on the requirements of the specific system. For example, if a system
must guarantee Partition-Tolerance together with Availability going to the detriment of Consistency,
possible NoSQL solutions include Riak, CoucheDB or Cassandra, whereas if the goal of a system is to
guarantee Consistency and Partition-Tolerance in disfavour of Availability possible NoSQL solutions
are MongoDB or Redis.

A system is scalable when it increases its performance in proportion to the resources it manages.
The increase of resources occurs in two possible ways: by vertical or horizontal scaling. Vertical scaling
means increasing the number of physical resources (e.g., CPU, RAM) in a storing node. Horizontal
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scaling means that new nodes are added to the storing system. With horizontal scaling, it is easier
to scale dynamically according to the requirement of the storage system, whereas vertical scaling is
limited to the capacity of a single node. To implement horizontally scaling of relational DB, tables
have to be distributed onto different nodes, but they can accessed from end users through queries
using the join operator. However, the main problem of distributed RDBMS managing big data is the
complexity in assuring the referential integrity constraints which are on the basis of the relational
systems. Implementing horizontally scaling of NoSQL DB means adding more node instances in the
system and the DBMS automatically spreads data across nodes as necessary. This solution is oriented
to big data because does not have to keep integrity among data. Therefore, NoSQL DBs scale easily,
but they do not provide join operations to collect data belonging to different DB structures.

In this paper, we deal with such limitation of NoSQL DBs, and, in particular, we provide a useful
solution that has been experimented on MongoDB, a well known NoSQL document oriented DB.
MongoDB version 3.2 has introduced the concept of textitleft join among collections by means of
the lookup operator. Currently, it does not allow users to perform theta or natural join operations.
In order to fulfill such a gap, we present the MongoDB textitinner join operation implemented at
application layer.

4. MongoDB Overview: Main Features and Limits

The name MongoDB comes from “humongous” to identify something “big”. It provides high
performance in writing and reading operations. In fact, writing operations (by default) are fire and forget.
That means the driver will not confirm the success of the writing operation. However, if necessary,
it is possible to set the “safe write”-mode for writing forcing the system to send a response. Also,
MongoDB allows enabling the “journaling”, which creates one journal record for each client initiating
a write operation. This kind of in-memory buffering allows preventing any failure due to data loss.
Whenever journal files are all synchronized, then data are written in the DB. Another important feature
is the easy scalability of the storage system: MongoDB provides useful tools to efficiently distribute
data across multiple machines, such as sharding and replication. In Figure 2 the reference architecture
of MongoDB is show. It describes how applications interact with the DB through a specific Driver
necessary to insert data and perform queries.

Figure 2. MongoDB Architecture [26].
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4.1. CRUD Operations

In line with traditional DBMS, MongoDB allows performing CRUD (Create, Read, Update
and Delete) operations on data. It stores data inside scheme-less documents. This means that it is
possible to create nested documents (e.g., documents included in other documents or in arrays), thus
reducing the need to perform join operations. Figure 3 shows an example of MongoDB document.
MongoDB documents have JSON-structured syntax and are stored as BSON (Binary JSON) documents.
The scheme free organization of data introduced with JSON provides the advantage of a highly
dynamic and flexible data structure, and makes easier to develop data model in comparison with
the rigid patterns of relational DBMSs. This flexibility is also supported by a rich query language.
Indeed, MongoDB provides many features such as: secondary indexes, updates, upsert (“update” if
the document exists, otherwise “insert”), and simple aggregations.

Figure 3. Example of a MongoDB document.

The logical organization of data and documents in MongoDB is shown in Figure 4. A collections is
a group of documents, which is the equivalent of a table in a SQL-like DB. Each collection belongs to
only one DB. Collections do not enforce a data schema; actually, documents within a collection can
have different fields. However, typically, documents in a collection have related purpose and share
some fields. Figure 5 shows an example of MongoDB collection. A MongoDB DB is formed by a group
of collections.

Figure 4. MongoDB logica organization of data.

Figure 5. Example of a MongoDB collection.
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4.1.1. Reading Operation in MongoDB

A reading operation returns documents stored within MongoDB. A query specifies criteria or
conditions to identify one or more documents in a collection, also specifying projection target fields.
For this type of operation, MongoDB provides the db.collection.find () method that accepts criteria and
projections as parameters in order to return a pointer to the result set of retrieved documents. From
version 3.2, MongoDB supports left join operation among different collections by means of the lookup
operator, but it does not support inner join operation among collections. To compare the complexity of
the query language in different DBs, Figure 6a,b shows an example of reading operation respectively
in MongoDB and in a SQL-like DBMS.

(a) Reading Operation in MongoDB.

(b) Reading Operation in SQL-like DBMS.

Figure 6. Comparison between reading operations in MongoDB and SQL-like DBMS respectively.

4.1.2. Writing Operation in MongoDB

In MongoDB, writing operations are atomic on a single document of a specific collection. There
are three classes of writing operations in MongoDB: insert, which involves a collection, update,
which changes the existing data of a collection and remove, which deletes data from the collection.
Regarding the insert operation, MongoDB provides the db.collection.insert() method. As far as update
operations, MongoDB provides db.collection.update() and db.collection.save() methods. The first one
accepts query criteria to determine the documents to update. Such a method also supports “upsert”
that it is possible to active by setting a third parameter to true, which by default is false. If “upsert”
finds the selected document, it will perform an update on that, otherwise it creates a new one.
Instead, the db.collection.save(document) method represent a combination between insert and update
operations. In the end the deleting operation removes documents from a collection by means the
method db.collection.remove(). It can accept query criteria to determine which documents have to
be removed.

4.1.3. Limits of Data Relationships

By manipulating the structure of documents it is possible to define relationships among data
within a collection. Thus, relations among data were accomplished within a collection by means of
reference and embedded documents techniques:

• Reference allows managing data relationships including references or links from a document to
another one. Different applications can use these references to access related data. In principle,
these data patterns are normalized. MongoDB uses two methods to carry out such a type of
relationship among different pieces of data:

1. manual references, which allow saving the field of a document into another document as
a reference, so the application can run a second query to return the embedded data.

2. DBRef, including the following fields:
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(a) $ref contains the name of the collection where the referenced document resides.
(b) $id contains the value of the field _id of the referenced document.
(c) $db (optional) contains the name of the database where the document resides.

Example: {
“_id” : ObjectId(“5126bb f 64aed4da f 9e2ab765′′), founder: { “$ref” : “founders”,
“$id” : ObjectId(“5126bc054aed4da f 9e2ab766′′),
“$db” : “users” }
}
In the example DBRef points to a document in the collection founders which has in
the field _id the value
ObjectId(“5126bc054aed4da f 9e2ab766′′) and which resides in the database users.

• Embedded allows managing the data relationships considering nesting documents. MongoDB,
in fact, allows incorporating more documents within another one as a field or as a matrix. These
data models are denormalised and allows the applications to retrieve and manipulate the related
data by means a single operation on the collection. MongoDB also uses dot notation to access the
elements of an array and the fields in a incorporated document. To access an element of an array,
you concatenate the name of the array with the index of the element through the dot, enclosing all
in quotation marks: “ < array > . < index >′′ To access the field of a sub-document with the dot
notation, you concatenate the name of the sub-document with the name of the field through the
dot, enclosing it quotation marks: “ < subdocument > . < f ield >′′

With both approaches, relations among data are managed inside the data model itself. As
a consequence, if a new query requires a new type of relation among data that was not planned
previously, the whole data model has to be modified. In order to solve such a problem, starting from
version 3.2, the MongoDB open source community has introduced union operation among collections.
In particular MongoDB 3.2 was improved with the $lookup operator. These improvements want to
extend the options to perform analytics on operational database continuing to keep efficient and
quickly answers to the queries. In the previous MongoDb versions the join between two collections
was performed at application-layer by developers. In other words considering two collections, we had
the first collection (we can call it “left-collection”) containing the “_id” filed of the documents of the
other multiple collections (right-collections). The left-collection contains the references to access the
right-collection. Before the MongoDB 3.2 this linking was implemented in application code. MongoDB
3.2, instead introduces the $lookup operator that can now be included as a stage in an aggregation
pipeline. This operator allows combining the data of the left and right collections within the database.
But this new operator considers only a particular case of the “join”’s potentiality namely the “Left
Outer Equi-Join”. The Left Outer Equi-Join is an “external join”. It provides a query result where all
the collections’ documents are involved. Moreover this is a mono-directional solution “le f t→ righ”
that in our opinion is a limitation because the user must always put attention on the order of “join”
operands. Left Outer Equi-Join, in fact, gives as output all the documents of the left-collection even if
it has not any matching on the right-collection’s document fields. Thus the result of the query can
contain a huge amont of useless documents especially in a Big Data context. With our work instead
we provide a high-level solution to the “inner join” also called “theta-join” that consists in a Cartesian
product followed by a selection operation. The user, in this way, can manage collections in a more
efficient manner, also obtaining a joined collection including only the documents matching a specific
condition on one or more fields. The main objective of this paper is to study the overhead introduced
by an application-layer implementation performing a inner join on different collections.
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5. Application-Layer Inner Join for MongoDB

As it is well known, the natural join is a clause in the SQL language that combines tuples of two
or more relations (tables) in a cartesian product, according to specific criteria applied on attributes.
Although not supported, the natural join can be executed by an external third-party application written
with whichever programming language supported by the MongoDB Application Program Interface
(API), even at the cost of some additional operations. Listing 1 shows an example of inner join query
considering “Exam” and “Class” tables whose instances are depicted respectively in Figures 7 and 8
(only the first 20 rows).

Listing 1. Example of innerl join query.

Future Internet 2019, xx, x 10 of 17

considering “Exam” and “Class” tables whose instances are depicted respectively in Figures 7 and 8
(only the first 20 rows).

SELECT e . id , e . S e r i a l Number , e . Grade ,
c . Course , c . Professor , c . CourseNumb

FROM Exam e , Class c
WHERE e . CourseNumb=c . CourseNumb } .

Listing 1: Example of innerl join query.

Figure 7. Example table “Exam” on MySQL.

Figure 8. Example table “Class” on MySQL.

Figure 9 shows an example of results of the SQL inner join operation performed on MySQL considering
“Exam” and “Class” tables filtered by the “CourseNumb” field.

Figure 9. Result of the Inner Join operation performed on MySQL considering “Exam” and “Class”
relations filtered by the “CourseNumb” field.

Figure 7. Example table “Exam” on MySQL.

Figure 8. Example table “Class” on MySQL.

Figure 9 shows an example of results of the SQL inner join operation performed on MySQL
considering “Exam” and “Class” tables filtered by the “CourseNumb” field.
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Figure 9. Result of the Inner Join operation performed on MySQL considering “Exam” and “Class”
relations filtered by the “CourseNumb” field.

Regarding MongoDB, Figures 10 and 11 respectively show analogous examples of “Exam” and
“Class” collections (only the first 20 rows).

Figure 10. Example of Exam collection.

Figure 11. Example of Class collection.

An Inner Join procedure that allows performing an application-layer Inner Join operation
considering two MongoDB collections is shown in Algorithm 1. It takes as input three DBCollection
objects, respectively representing the two collections that will be joined, collection1 and collection2,
and the resulting collection, i.e., joinedCollection. Moreover, Algorithm 1 takes as input also a String,
i.e., joinField, representing the name of the field for matching documents of collection1 and documents
of collecition2. In code line 2, DBCursor cursor1 is created including all documents of collection1. Code
lines 3–7 extract documents from collection1 in a DBObject[] array1. In code line 8, DBCursor cursor2 is
created including all documents of collection2. Code lines 9–13 extract documents from collection2 in
a DBObject[] array2 Code lines 14–29 perfrom the inner join operation con collection1 and collection2
whose documents match joinField field. Since, such a procedure performs an Inner Join operation
on two MongoDB collections at application-layer, it introduces an overhead due to reading/writing
operations in MongoDB.
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Algorithm 1 Procedure performing an Inner Join operation among two collections in MongoDB.
1: procedure void join(DBCollection collection1, DBCollection collection2, DBCollection collollectionJoined, String joinField )

2: DBCursor cursor1 ← collection1.find() ;

3: int size1 ← cursor1.size();

4: DBObject[] array1 ← new DBObject[size1];

5: for i = 0 to i < size1 do
6: array1[i] ← cursor1.next();

7: end for
8: DBCursor cursor2 ← collection2.find();

9: int size2 ← cursor2.size();

10: DBObject[] array2 ← new DBObject[size2];

11: for i = 0 to i < size2 do
12: array2[i] ← cursor2.next();

13: end for
14: DBObject obj1 ← (DBObject) JSON.parse(“{}”);

15: for i = 0 to i < size1 do
16: if array1[i].containsField(joinField) then
17: obj1.putAll(array1[i]);

18: for j = 0 to i < size2 do
19: if array2[i].containsField(joinField) then
20: if array1[i].get(joinField).equals(array2[j].get(joinField)) then
21: obj1.putAll(array2[i]) ;

22: obj1.removeField(“_id”) ;

23: collectionJoined.insert(obj1);

24: obj1 ← JSON.parse(“{}”);

25: end if
26: end if
27: end for
28: end if
29: end for
30: end procedure

The MongoDB Inner Join procedure allows executing a query analogous to the one expressed in
Listing 1. The result of the MongoDB Inner Join operation considering “Exam” and “Class” collections
filtered by the “CourseNumb” field is shown in Figure 12.

Figure 12. Result of the MongoDB Inner Join performed MongoDB, considering “Exam” and “Class”
collections filtered by the “CourseNumb” field.

6. Experiments

The objective of this Section is to compare MongoDB and MySQL performance in terms of
response time and, in particular, how performance is affected by join operations. To provide this type
of analysis, we studied both insertion and query operations on the same data model. In particular, we
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analyzed the database scheme (Class-Exam) discussed in the previous Section. Regarding MySQL,
through the SQL command CREATE DATABASE mysqldb, we created the database named mysqldb,
and then we created the Exam table including id, Serial Number, Grade and CourseNumb attributes and
the Class table including CourseNumb, Course and Professor attributes. A foreign key constrain was
also created in Class Table so that the Exam.CourseNumb attribute referenced Class.CourseNumb
attribute. Regarding MongoDB, since it is scheme-free, did not have to create an a priori database
scheme, because the collection data structure is created when the first document is inserted

Identified data structures for experiments, we evaluated database response times for two types
of operations that are: (1) data insertion and (2) data retrieval with inner join. The evaluation of
data insertion allows us to characterize the behavior of the two DBs, highlighting advantages and
disadvantages of the two approaches. The evaluation of data retrieval with inner join allows us to
provide our considerations on the proposed inner join implementation for MongoDB.

The first step of evaluation is related to the data insertion operation. In particular, we set up
a testbed where an external Java application inserts the same data:

• a document (representing an exam) into collection “Exam” of the database mymongodb;
• a record (representing an exam) into table “Exam” of the database mysqldb.

Each test evaluates the response time for insertion operations, and test were repeated it 30 times
in order to calculate mean values with 95% confidence intervals. Specifically, each piece of data was
deleted from each database before being re-inserted.

Figure 13 shows the histogram reporting the measured average insertion time. We can observe
that the insertion of documents in MongoDB is very efficient in comparison with the insertion of
records in MySQL. This is due to the scheme-free organization of data in MongoDB that allows storing
information reducing processing and controls. In particular, since MongoDB does not present the
control overhead due to foreign key constrains it offers better performance compared to MySQL. Thus,
an insertion operation of a document in mymongodb takes roughly 5 ms whereas the same operation
in mysqldb takes roughly 105 ms; so the insertion time on MongoDB is about is about the 4% of it on
MySQL. The histogram shown in Figure 14 shows the distribution of measurements on insertion time
in order to show how measured values spread in the range of measurements. This is an additional
information respect to the estimation of the mean insertion time that asses the stable/unstable behavior
of the system around the mean value. In particular, Figure 14 shows that the behavior of MongoDB is
more stable that the one in MySQL with the most of measured time in the range [0–5] ms. In fact, how
we can observe looking at the frequency histogram as far as MongoDB 27 repeated insertion tasks of
30 experienced an average response time ranging from 0 to 5 ms. Whereas, regarding MySQL we can
observe that in 17 repeated insertion tasks of 30 we experienced an average response time ranging
from 100 to 120 ms.

Figure 13. Insertion average time of documents and records respectively in MongoDB and MySQL.
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Figure 14. Insertion frequency histogram of documents and records respectively in MongoDB and MySQL.

The second step of evaluation is related to the inner join operation. The inner join operation
was performed in MongoDB by using Algorithm 1 implemented in Java language at application layer
considering the same dataset previously discussed. In particular, we considered 1000 records/documents
in “Class” table/collection and 9 records/documents in “Exam” table/collection for MySQL/MongoDB.
As previously discussed, the added value of Algorithm 1 is to provide a new functionality that is not
available for MongoDB. Here, we investigate its impact in terms of performance. On the testbed
we performed:

• 30 repeated inner join operations in MongoDB between “Exam” and “Class” collections
a mymongodb database.

• 30 repeated inner join opeartions in MySQL between “Exam” and “Class” tables of
a mysqldb database.

Figure 15 shows the overhead introduced by the inner join operation executed at application layer
compared to a native inner join operation directly executed in MySQL. The average response time
for MySQL is roughly 11 ms, whereas the average response time for MongoDb is roughly 1000 ms.
Figure 16 highlights that the inner join operation is more stable in MySQL, whereas the response time in
MongoDB is spread over a large set of values, thus to make performance very variable during queries.

Figure 15. Average rensponse time comparison between MySQL and MongoDB (application-layer)
join operations.
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Figure 16. Frequency histogram showing response times of MySQL and MongoDB (application-layer)
join operations.

7. Discussion and Conclusions

NoSQL databases are becoming more and more popular due to their flexibility and scalability
in the management of heterogeneous big data coming from social network, Cloud computing, IoT
and other emerging scenarios. Even though, most of popular NoSQL database solutions offer good
performance in terms of both data insertion and retrieval, often they do not natively support join
operations. This is the case of MongoDB that has recently introduced the concept of left join among
collections, but that at the time of writing of this paper, does not support the popular inner join
operation. As a result, to retrieve different types of information at the same time, data must be stored
in one big collection organized in nested json objects. Even if functional, this limits data architects
in organizing data, for example addressing logical independence of data and differentiation of data
access polices at the collection level, or limiting the integration with legacy systems. In this paper,
we presented a new algorithm to overcome this kind of limitation by implementing the inner join
functionality also in NoSQL MongoDB. This makes the design of DB more flexible, providing new
opportunities for data architects in organizing data into DBs.

The contribution of this paper to the state of the art is twofold: (1) we implemented a new
functionality that is not available in MongoDB (and in many other NoSQL DBs), proving more
flexibility to data architects in organizing data; (2) we analyze the impact of the inner join operation in
the performance of MongoDB, and we compare such performance with the MySQL ones. In particular,
experiments prove that even though insertion tasks are more convenient in MongoDB than in MySQL,
data retrieval tasks requiring inner join operations among different collections take a response time
that is roughly 10 times grater than the one obtained in MySQL.

From experimental results, it is evident the best design approach to organize data in MongoDB is
to have one collection with nested json objects. However, this can not be always a good approach, for
example if it is necessary to differentiate data access policies at the collection level. Now, data architects
have the opportunity to manage data in a more flexible way, but they have to balance flexibility with
performance issues. With this paper, we hope to stimulate the MongoDB open source community
toward the creation of a native inner join operator.

For these reasons, from the perspective of future Internet legacy applications that on one hand
need to migrate from a SQL-like DBMS to a MongoDB, but that on the other hand require preserving
their data models, a native implementation of inner join operation in MongoDB is strongly needed.
Our future studies will be oriented to fullfil such a gap. However, in next step, we plan to perform



Future Internet 2019, 11, 83 16 of 17

a massive evaluation of the proposed algorithm with different datasets and in different operative
scenarios. Furthermore, we will also analyze additional limitations of MongoDB and other NoSQL DBs.
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