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Abstract: Human activity recognition is an active field of research in computer vision with numerous
applications. Recently, deep convolutional networks and recurrent neural networks (RNN) have
received increasing attention in multimedia studies, and have yielded state-of-the-art results. In
this research work, we propose a new framework which intelligently combines 3D-CNN and LSTM
networks. First, we integrate discriminative information from a video into a map called a ‘motion
map’ by using a deep 3-dimensional convolutional network (C3D). A motion map and the next video
frame can be integrated into a new motion map, and this technique can be trained by increasing the
training video length iteratively; then, the final acquired network can be used for generating the
motion map of the whole video. Next, a linear weighted fusion scheme is used to fuse the network
feature maps into spatio-temporal features. Finally, we use a Long-Short-Term-Memory (LSTM)
encoder-decoder for final predictions. This method is simple to implement and retains discriminative
and dynamic information. The improved results on benchmark public datasets prove the effectiveness
and practicability of the proposed method.

Keywords: action recognition; fused features; 3D convolution neural network; motion map; long
short-term-memory

1. Introduction

Human activity recognition (HAR) is one of the enabling technologies behind human-computer
interactions, video surveillance and video scene understanding [1]. To date, it imposes significant
challenges such as the frequent presence of background clutter, view point changes, irregular motion,
intra-class variations and camera motion. In addition, the huge information redundancy in video
requires large amounts of memory, and also, the discovery of discriminative information from video
frames is very complex and slow process.

The result of various research studies indicates that the success of action recognition problems
depends on an appropriate feature extraction process. The appropriate feature extraction is very
important in distinguishing samples and variations in the frames. Considerable progress has been
made to address this problem by employing various specific solutions. Many local space-time visual
representations have been proposed to overcome these issues in action recognition tasks. Laptev [2]
detected sparse-time interest points and computed a histogram of the detected local points. Hessian [3],
local trinary patterns (LTP) [4], Cuboids [5], and 3-D SIFT [6]) have also shown promising levels of
HAR effectiveness, mainly thanks to their robustness against partial occlusions and noise. To facilitate
a more effective usage of motion information, many trajectory-based feature extraction approaches
have been proposed, such as KLT-tracker [7], SIFT matching [8], DTF [9], improved DTF [10]. However,
there are number of weaknesses in these models, such as the presence of irrelevant and redundant
trajectories, computational complexity and blending of unnecessary motion.
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The ideal video representation method must be efficient to compute and simple to implement
instead of using complicated and labor-intensive feature extraction and encoding methods. The
extraction of spatiotemporal features from video frame sequences is widely used for recognizing
human actions. Due to the advancement of digital camera technology, it has become possible to
capture depth information, which can be embodied into a single motion map. Compared to dynamic
and conventional images, motion maps can provide 3D information, and can be insensitive to changes
in light conditions. Much research efforts has used depth imagery such as dynamic images [11] and
depth maps [12] in the context of action recognition. These methods are able to process temporal
information, but are insufficient to capture dense and discriminative information in terms of shape,
appearance and motion.

Recently, deep convolutional neural networks (DCNNs) and Long Recurrent Convolutional
networks (LRCNs) have shown great potential in many areas, and have yielded promising results
for many computer vision tasks. These approaches have the ability to accurately identify the hidden
pattern in visual data by back propagation, so features are auto-extracted without any artificial selection.
It has been proven empirically that features learned from deep neural networks are much better than
hand-crafted features.

In light of the above analysis, this research article examines the issue of human action recognition
by using motion maps and intelligently incorporating a C3D network with a Long Recurrent
Convolutional network (LRCN) network. We utilize a 3D convolutional neural network (C3D) [13]
to acquire and integrate the temporal information. The C3D can model appearance and motion
information simultaneously. Our model integrates a motion map of the previous frames with the
next frame to generate a new motion map. We can get a motion map of the whole video after the
repetitive integration of the next frame for various-length videos. We use a linear weighted fusion
method to fuse feature maps to take advantage of spatiotemporal features. Finally, we use LSTM
for feature encoding and action classification. The proposed method is simple to implement and
acquires temporal information effectively, integrating it into a map without losing the discriminative
information of videos. The proposed method shows significantly improved results over some baseline
methods when applied to the various benchmark video datasets. It is worth highlighting the following
contributions:

1. We propose an iterative training method for our neural network to generate a motion map from
input video, which can integrate information into a motion map from each video frame.

2. We intelligently incorporate C3D and LSTM networks and capture long-range spatial and
temporal dynamics. C3D features on video shots contain richer motion information; LSTM
can explore the temporal relationship between video shots.

3. We introduce an effective fusion technique i.e., a linear weighted fusion method which can fuse
correspondence between spatial and temporal features and boost recognition accuracy.

4. The effectiveness of our approach is evaluated on benchmark datasets, in which it obtained
state-of-the-art recognition results.

The remainder of this article is organized as follows: Section 2 reviews related works. In Section 3,
we present our proposed approach in detail. We demonstrate the experimental evaluation in Section 4.
Finally, a conclusion is presented in Section 5.

2. Related Work

Over the last decade, researchers have presented many hand-crafted and deep-net-based methods
for action recognition. Earlier works were based on hand-crafted features for non-realistic actions
videos. Since the proposed method is based on deep neural network (DNN), in this section, we will
only review related works based on DNN.

In recent years, different variants of deep learning models have been proposed for human activity
recognition in videos, and have achieved great performance for computer vision tasks. Ji et al. [14]
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applied 3D convolutional kernels on video frames in a time axis to capture both spatial and temporal
information. Karpathy et al. [15] directly applied CNNs to multiple frames in each sequence and
obtained the temporal relations by pooling, using single, late, early and slow fusion; however, the
results of this scheme were just marginally better than those of a single frame baseline. Simonyan
and Zisserman [16] used a two-stream CNN framework to incorporate both feature types, with one
stream taking RGB image frames as the input and the other taking pre-computed stacked optical
flows. Since optical flow contains only short-term motion information, adding it does not enable
CNNs to learn long-term motion transitions. The additional stream significantly improved action
recognition accuracy, indicating the importance of motion features. Tran et al. [13] avoided the need
for pre-computing optical flow features through their 3D convolution (C3D) framework, which allows
deep networks to learn temporal features in an end-to-end manner. However, C3D only covers a short
range of the sequence. Wang et al. [17] introduced a temporal segment network (TSN) architecture,
where a sparse temporal sampling strategy is adopted to model long-term temporal structures. In [18],
Feichtenhofer et al. study a number of ways of fusing CNN towers in order to take advantage of
this spatial-temporal information from the appearance and optical flow networks. However, the
CNN-based method only extracts visual appearance features, and lacks the long-range temporal
modeling capabilities. Moreover, the CNN-based method ignores the intrinsic difference between
spatial and temporal domains.

Some researchers have also presented methods by uniting the benefits of both hand-crafted and
deep learned features, such as [19,20], and obtained good results. They integrate the key factors from
two successful video representations, namely improved trajectories [10] and two-stream ConvNets [18].
How to combine the benefits of these two kinds of features to design good descriptors has been an
active research area. Some research efforts have been carried out using depth imagery such as dynamic
images and depth maps. Bilen et al. [11] introduced the dynamic image network to generate dynamic
images for action videos. The order of video frames is used as the supervisory information; however,
this method loses some discrimination information. Chen et al. [12] represented a model in the
form of depth maps in the context of action recognition. These contributions showed good action
recognition results but were insufficient to capture dense and discriminative information in terms
of shape, appearance and motion. Taylor et al. [21] used a convolutional gated restricted Boltzmann
machine to generate a flow field of the adjacent two frames in the video for action recognition, but this
model could not generate a single map to represent a video. Rank pooling [22] and Fisher Vector [23]
made an attempt to generate the desire length motion map. However, these methods are unable to
model temporal dynamics among video frames.

In order to model the temporal dynamics among video frames, RNNs have been considered for
video-based HAR. RNN networks provide strength to find and process hidden patterns in time-space
data. In these kind of systems, data is processed in a sequential way, such that at each time t, it
gets input from the previous hidden state st−1 and obtains new data xt. Most of the state-of-the-art
methods [24–29] have proposed their own recurrent networks by leveraging CNNs and RNNs for
action recognition, and have achieved impressive performance. However, due to the large number of
calculations of parameters, and negligence of effect of initial input after few layers, vanishing gradient
problems occurred. The solution to this problem is LSTM [25,27,30], which has the ability to capture
long-term dependencies and preserve sequence information over time by integrating memory units.
LSTM was first introduced by [31]; it has been successfully adapted to many sequential modelling tasks
such as speech recognition, visual description and machine translation, and has achieved encouraging
performance. In most of these networks, the inputs to the LSTM are the high level features captured
from a fully-connected layer of CNN. LSTM units use multiplicative gates to control access to the error
signal propagating through the networks.

In this paper, we propose a 3Dconv-based iterative training method to generate the motion map,
enabling the use of existing CNN models directly on video data with fine-tuning. Our model efficiently
integrates the temporal information of the motion map and video frames and generates the arbitrary
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length of the motion map. The Combination of CNN-RNN provides effective representation for
long-term motion and modeling of the sequential data, each of which has a time relationship with
adjacent points. (RNN uses the extracted C3D features as inputs and models more robust, longer-range
features.) The C3D network is able to encode local temporal features within each video unit; it cannot
model across the multiple units of a video sequence. We thus introduce LSTM to capture global
sequence dependencies of the input video and cues on motion information. The fused spatio-temporal
features are processed by LSTM, which helps recognizing complex frame-to-frame hidden sequential
patterns. After conducting extensive experiments, we observed that our method is very effective for
videos of various lengths, and shows significant improvement in action recognition.

3. The Proposed Approach

In this section, the proposed approach and its related components are discussed. The process of
action recognition is divided into two parts: The first part is related to the extraction of spatiotemporal
fused features, so we discuss this within the relevant subsequent sections, e.g., the generation of motion
maps and the training of motion map networks. Finally, we explain the encoding of the extracted
features and the action classification part in the main subsequent section.

3.1. Extraction of Spatio-Temporal Fused Features

3.1.1. Generation of Motion Map

A motion map is a powerful and compact representation of a video which can be useful in
computer vision tasks. The motion map can visualize motion information in good manner, and can
remove a large amount of information redundancy of the video, thereby revealing discriminative
information. The calculation of the motion map is fast, and takes up fewer memory resources. Hence,
using a map to represent the video has realistic requirements. Our propose model is very simple to
implement and can be trained by increasing the training video length iteratively. Mainly, it is very
helpful to solve the problem of videos of various lengths to get the same effect of the map representation,
and also to integrate the temporal information into a map without losing the discriminative information
of the video. Another advantage of this method is that we can extract a constant number of video
frames per second, which improves the generalization performance of the network. We can utilize
a 3D-convolutional neural network for the extraction of the motion map. 3D convolution and 3D
pooling operations are adopted in 3D ConvNets. Three-dimensional convolution is the extension of 2D
convolution. The output of the 2D convolution are two-dimensional feature maps, while the output
volume of 3D convolution can have multiple-dimensions. Each feature map of the convolutional
layer is connected with some successive adjacent frames in upper layer. As a result, the temporal
information is not lost and the motion of the human body can be efficiently captured. Hence, multiple
3D convolutional layers can be used to handle the spatial and temporal information of the inputs in a
hierarchal way.

For a video V with N frames, we define the video frames as fi, i {1 . . . . . . N}. Fi denotes the motion
map from f1 to fi. In order to retain appearance and action information, we introduce an iterative
method to generate a new motion map Fi+1 using Equation (1) by combining the current motion map Fi
with the future video frame fi+1 by using MMN. Symbol ⊕ is the pixel-wise addition between motion
map and video frame. The process of generating our first and final motion map is shown in Figure 1a,b
respective

Fi+1 = Fi ⊕ fi+1 (1)
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maps generated by our C3D network are listed in Figure 2. Each map highlights the static object with
its main features, and the superposed silhouette incarnates the different locations and postures of the
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Figure 2. Output Motion  Figure 2. Output Motion map generated by our network, illustrating the discriminative information
integrated into a single motion map to classify the video category.

3.1.2. C3D Network Architecture

The C3D network has the ability to learn visual patterns directly from pixels without any
pre-processing step. The architecture of C3D comprises trainable filters and local pool operations,
which is very useful to find hidden patterns in a video frame, and captures all changes in terms of
spatial and temporal information.

The architecture of the C3D network is given in Figure 3. Table 1 illustrates the different parameter
settings of each convolutional and pooling layer. We set the 3D Convolution and pooling kernel size as
d × k × k, where d is kernel temporal depth and k is kernel spatial size. The 3D convolution is achieved
by convolving a 3D kernel to the cube formed by stacking multiple contiguous frames together. By this
construction, the feature maps in the convolution layer are connected to multiple contiguous frames in
the previous layer, thereby capturing motion information. Intuitively, these different layers describe
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the visual content at different level, each of which is complementary to each other for the task of
recognition. The C3D network has 5 convolution layers and 5 pooling layers (each convolution layer is
immediately followed by a pooling layer), 2 fully connected layers and softmax loss layer. The number
of channels (filters) for 5 convolution layers from 1 to 5 is 64, 128, 256, 512, and 512 respectively. The
ratio represents the spatial map size ratio. In both spatial and temporal dimensions, all convolutional
layers have 3 × 3 × 3 convolution filters with stride 1 × 1 × 1. All pooling layers from pool2 to pool5
(except for the first layer) have 2 × 2 × 2 pooling kernels with stride 2 × 2 × 2, which means the size
of the output signal is reduced by a factor of 8 compared with input signal. The first pooling layer, i.e.,
the pool1 layer, has a kernel size of 1 × 2 × 2, with the goal of not merging the temporal signal and
preserving the temporal information in the early phases. The output of each convolution-al layer is a
kind of volume in the form of feature maps. All pooling layers lead to the same number of feature
maps as convolution layers but with reduced spatial resolution; also, these pooling layers introduce
scale-invariant features. The two fully connected layers have 2048 outputs, and finally, a softmax layer
is used to predict action labels.
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Table 1. The convolutional and pooling layers of the C3D architecture.

Layers Conv1a Conv2a Conv3a Conv3b Conv4a Conv4b Conv5a Conv5b

Size 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3
Stride 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1

Channel 64 128 256 256 512 512 512 512
Ratio 1 1/2 1/4 1/4 1/8 1/8 1/16 1/1

Layers Pool1 Pool2 Pool3 Pool4 Pool5 Fc6 Fc7

Size 1 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 - -
Softmax

Layer
Stride 1 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 - -

Channel 64 128 256 512 512 4096 4096
Ratio 1/2 1/4 1/8 1/16 1/32 - -

Figure 4 illustrates the single iteration process of our Motion Map Network (MMN). The input
to our network is frame-by-frame RGB clip. A motion map and the next video frame are combined
into a video frame sequence as input, and a single 2D-feature map is extracted as output. At this
stage, it is very important to mention that the feature maps are extracted in a frame-by-frame manner.
We compute feature maps of layer conv5b from the input videos, and the rest of the pool5 and
full-connected layers are abandoned in our scheme. C3D conv5b feature maps have the highest
activation projected back to the image space. In each iteration, the output of the conv5b layer generates
two feature maps, each with a size of 7 × 7 × 512, where 7 × 7 is the spatial size of the feature maps
with 512 channels. So, we build only one feature map of 7 × 7 × 512 by taking the maximum value
for each position of the both feature maps from conv5b. This process is applied for all iterations for
our pipeline, except the last iteration, because the output of the last iteration is again with two feature
maps. We will apply linear weighted fusion to the last two feature maps by taking advantage of
spatial-temporal features to obtain our final feature map. The discriminative information embodied in
the final motion map can be applied to human action recognition tasks.
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3.1.3. Training of Motion Map Network (MMN)

Since the network can only handle video frames, the videos need to be processed as video frames.
Some methods directly split the videos, ignoring different frame rates, so dynamic information may
be inconsistent in time. Therefore, we extract a constant number video frames per second, which
improves the generalization performance of the network. For the network to better capture the changes
in the action, we extract two frames per second. As for some short videos, we loop the extracted
frames, and fill up 16 frames per video.

We introduce an iterative method to train the Motion Map Network (MMN). We use video V with
N frames and video labels L to train our MMN. S is defined as maximum training iteration length. We
train MMN using training length s from 2 to S. The training length s is the round of iteration. We cut
the training video Vi into s-length clips Ci

j (j ∈ 1 . . . .Ni/s) with overlap 0.7 and assign the labels Li to

clip Ci
j. We define the MMN as a function Zθs (Ia, Ib), where θs denotes the parameters of MMN after

the iteration of training length s. The initial parameters of the network are defined as θ1. For each s, we

generate the motion map F
ci

j
1∼s−1 using Zθs−1 , and train the MMN using the motion map F

ci
j

s−1, video

frame f
ci

j
s and video clip label Li. Finally, we can get θs which is the parameter of our trained motion

map network. The detail of the training steps is summarized in Algorithm 1.

Algorithm 1. Training of Our Motion Map Network

Input: V is Video dataset; Frame number of video dataset, N;
Video labels, L; Maximum training iteration length, S;
Parameters of our model, θ1;
Output: Final parameters of Network, θs;
1: Initialize the parameter θ1 for our model;
2: for each s∈2,3, . . . ,S do
3: cut Vi into s-length clips Cj

i (j ∈ 1 . . . Ni/s) with overlap 0.7;

4: Extract the video frames from Cj
i as f Cj

i ;
5: for each j ∈1, 2 . . . N/s do
6: for k ∈1, 2 . . . s − 1 do

7: Generate the motion map FCj
i

k using Zθs−1 (FCj
i

k − 1, f Cj
i

k ) end for

8: Train the MMN using FCj
i

s−1, FCj
i

s and Li end for
9: Get the MMN parameters θs; end for

3.1.4. Fusion Method

The motion of the object can be observed via changes in both appearance and semantics. Based
on this, we follow a feature fusion strategy to combine spatial and temporal information. Given, Xs ∈
RH×W×T, Xt ∈ RH×W×T are the extracted frame level spatial and temporal features, where H and W
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are the height and width of the feature maps, T is the number of frames. Before the fusion operation,
we have to reshape both features maps (spatial and temporal) into vectors, which can be given as:

X = [Xs, Xt] (2)

Now, we perform a pixel-wise addition which is known as linear weighted fusion between Xs

and Xt to compute a single feature map F.

F = wsFs ⊕ wtFt (3)

where, X ∈ RH×W×T, ⊕ is a matrix addition, ws and wt are weights of appearance and motion for
spatial and temporal features maps, respectively. The weights are used to measure the significance
of spatial and temporal features. After performing the fusion operation, we can define the new
representative features as xf,t for the video clip. So, for the input video, a set of fused features (xf,1, . . .
. . . , xf,t, . . . . . . , xf,N) can be generated. Finally, we apply LSTM on these generated features to perform
temporal encoding for human activity prediction.

3.2. Encoding and Activity Classification

This is the second and final part of our approach, which starts from detailed discussion on LSTM
features and its architecture; then, we present the encoding and activity classification method.

3.2.1. Long Short-Term Memory (LSTM)

To analyze the hidden sequential patterns, it is natural choice to use RNN to encode the temporal
structure of extracted sequential features. In video, visual information is represented in many frames
which help in understanding the context of an action. RNN can interpret such sequences, but in cases of
long term sequences, it usually forgets the earlier input sequence. LSTM has been designed to mitigate
the vanishing problem and to learn long-term contextual information from temporal sequences. LSTM
is a kind of recurrent network which can capture long-term dynamics, and which preserves sequence
information over time. In addition, the LSTM gradient does not tend to vanish when trained with back
propagation through time. Its special structure with input, output and, control gates control long-term
sequence pattern identification. The gates are adjusted by a sigmoid unit that learns during training
when to open and close. We adopt LSTM for encoding and decoding to recognize human actions.

The architecture of a LSTM unit is depicted in Figure 5. xt, ct, ht and yt stand for input vector, cell
state, hidden state and output at the t-th state, respectively. The output yt depends on hidden state ht,
while ht depends on not only the cell state ct, but also on its previous state. Intuitively, the LSTM has
the capacity to read and write to its internal memory, and hence, to maintain and process information
over time. The LSTM neuron contains an input gate it, a memory cell ct, a forget gate ft, and an output
gate ot. At each time step t, it can choose to write, read or reset the memory cell through these three
gates. This strategy helps LSTM to access and memorize information in many steps. Equations (4)–(9)
demonstrate the operation of temporal modelling performed in LSTM unit.

W and b are the parameters of the LSTM known as weights of the input vector and bias term. S
means a sigmoid function, tanh is the activation function and ⊗ is the element-wise multiplication.
The cell state and output are computed step by step to extract long-term dependencies. The input to
LSTM is xt, which is the feature vector. A forget gate is used to clear the information from the memory
unit, and an output gate keeps the information about the upcoming step. We also have gt, which is
computed from the input of the current frame and state of the previous state ht-1. The hidden state of
LSTM step is computed by using a tanh activation function and memory cell ct.

it = S(wxi xt + Whiht−1 + bi) (4)

ft = S
(

wx f xt + Wh f ht−1 + b f

)
(5)
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ot = S(wxo xt + Whoht−1 + bo) (6)

gt = tanh(wxc xt + Whcht−1 + bc) (7)

ct = ft ⊗ ct−1 + it ⊗ gt (8)

zt = ht = ot ⊗ tanh (ct) (9)
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3.2.2. Encoding and Classification Process by LSTM

The generated fused features xf,t are fed into LSTM as inputs to conduct encoding and decoding
for activity prediction. LSTM can be jointly trained, and our proposed model provides a trainable
platform which is ideal for large-scale cognitive intelligence. The unique feature of LSTM is that it
processes variable length inputs and produces high-level variable length predictions (Output). As
shown in Figure 6, LSTM consists of an encoder and decoder; the encoder transforms input data xt to a
corresponding activation h. The decoder in the output layer is trained to reconstruct an approximation
y of the input from activation h.
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In general, the LSTM model has parameters i.e., W and b, which denotes the weights and the
biases of input layer and the hidden layer respectively, generates an output zt of given input xt and a
previous hidden state at time step t − 1 i.e., ht−1, and also updates the current hidden state ht.

zt = S(W1xt + b1) (10)

The next step is decoding, which is similar as the encoding step given in Equation (10), where W2

and b2 denotes the weights and biases of the hidden layer and the output layer.

yt = (W2zt + b2) (11)
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The final single label prediction for a video can be produced by using softmax classifier. A
Softmax layer can be utilized to achieve the M-way class scores for a given video sequence. This single
prediction can be achieved by averaging the label probabilities, which is the output of our decoder,
and can be represented by the Equation (11).

P(yq
(t) = 1) = so f tmax(yt) = so f tmax(Wzt + bt) (12)

where W and bt are the trained parameters of the LSTM model, q ∈ Q is the prediction and t is the
current time step.

4. Experiments

We conduct several experiments to validate the effectiveness of our system. Three well-known
benchmark human action datasets, UCF101 [32], HDMB51 [33], and UCF Sports [34], have been used.
The description of datasets with their validation schemes, experimental setup, results and comparative
analysis are presented in subsequent sections.

4.1. Datasets

The UCF101 dataset is the extension of UCF50; it contains 101 different action categories. Each
action category consists of at least 100 video. There are 13,320 video clips in total. Most of the video
clips are realistic, clean and user-uploaded videos with cluttered background, illumination and camera
motion. The dataset is divided into a training set containing 9.5 K videos and testing set containing
3.8 K videos. We adopt the evaluation scheme of the THUMOS13 challenge [35] and follow the three
testing/training split for performance evaluation by reporting average recognition accuracy over these
three splits.

The HDMB51 dataset comprises of variety of realistic videos collected from YouTube and Google
video. There are 6766 manually annotated video clips of 51 different action classes and each action
class containing about 100 video clips. For experimental setting, we follow the original evaluation
guidelines using three-test splits, and each split with an action class has 30 sequences for testing
and 70 sequences for training. The average accuracy over these three splits is used to measure the
final performance.

The UCF sports dataset encompasses 150 videos from 10 action classes. These videos were
recorded in real sports environments, taken from different television channels. This dataset exhibiting
the occlusion, illumination conditions and variations in background make it a complex and challenging
dataset. The average accuracy is used to measure the final performance.

Some sample frames from three datasets are given in Figure 7.
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4.2. Experimental Setup and Implementation Details

As UCF101 is the largest dataset among the three datasets, we use it to train the C3D model
initially, and then transfer it to the learnt model to HMDB51 and UCF sports for feature extraction.
RGB clips are resized to have a frame size of 128 × 171. On training, we randomly crop input clips into
16 × 112 × 112 crops. We also horizontally flip them with 55% probability. We fine-tune the model
parameters on the UCF101 dataset, where the initial learning rate is set as 0.003, which is divided by 2
every 150 K iterations. The optimization is stopped at 1.9 M iterations.

Since the network can only handle video frames, the videos need to be processed as video frames.
Therefore, we extract a constant number video frames per second, which improves the generalization
performance of the network. For the network to better capture the changes in the action, we extract
two frames per second (fps) and loop the extracted frames, and fill up to 16 frames per video.

4.3. Results and Comparison Analysis

We conduct extensive experiments to evaluate the performance of our proposed method. In this
section, we presented relevant experimental results and performance analysis.

4.3.1. Effect of Different Feature Fusion Techniques

In this section, we analyze the effect of different early fusion methods such as element-wise sum,
concatenation, element-wise max and linear weighted fusion on our proposed framework. We show
the recognition accuracy for UCF Sports dataset and also each split of UCF 101 dataset, and the average
recognition accuracy over the three splits. The results are reported in Table 2. We observe that linear
weighted fusion enhances the recognition accuracy of our approach by a fair margin, compared to
other fusion methods. This enhancement may be due to the fact that the linear weighted fusion method
efficiently fuses spatial and motion features. Therefore, we choose the linear weighted fusion method
as our fusion scheme to fuse spatio-temporal features.
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Table 2. Effect of different earlier fusion methods on our model. The accuracy (%) is computed on a
UCF Sports dataset, and all three splits and their average on UCF101.

Fusion Method UCF Sports Split 1
(UCF 101)

Split 2
(UCF 101)

Split 3
(UCF 101)

Average
(UCF 101)

Element-wise max 91.8 90.5 89.9 89.6 90.0
Element-wise sum 92.1 90.8 90.1 89.9 90.2

Concatenation 92.8 91.2 90.5 91.0 90.9
Linear weighted 93.9 91.6 90.9 91.7 91.4

4.3.2. Class-Wise Accuracy for Activity Recognition

This section computes the class-wise accuracy for action recognition. We investigate the
recognition accuracy of our method by making a confusion matrix and considering 10 action classes of
the UCF Sports dataset. Table 3 demonstrates the accuracy of each action category, the x-axis denotes
the predicted labels and the y-axis represents the ground truth labels. The intensity of the true score
is high (diagonal) for each category, and our method achieves 94% for all 10 classes. It is interesting
to note that some of categories with similar actions are more easily confused with each other, such
as golf swing, kicking, running, swing bench and walking; these categories interfere with each other
and yield low scores. A possible reason for this is the similarity of the features and representations
among actions. In addition, the number of training samples is too small, so the result is confusing and
misclassification occurs. The confusion matrix of HMDB51 dataset is shown in Figure 8, which is well
diagonalized. However, some categories are easily misclassified; nonetheless, our proposed approach
still performs well with most action categories.

1 
 

Figures 1. (a,b) Generation of our first and final Motion Map. 

    
     PushUps   Playing Violin Surfing  Skateboarding 

    
           Skydiving              Punching           Horse-riding          Playing Flute 

Figure 2. Output Motion  
 

 

Figure 8. Confusion matrix on the HMDB51 dataset using our model.
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Table 3. Confusion matric of UCF sports dataset.

Categories Diving Golf -Swing Kicking Lifting Horse
Riding Running Skate

Boarding
Swing
Bench Swing-Side Walking

Diving 1.00 0 0 0 0 0 0 0 0 0
Golf-Swing 0 0.91 0.07 0 0 0 0 0.02 0 0

Kicking 0 0.06 0.94 0 0 0 0 0 0 0
Lifting 0 0 0 0.95 0 0 0 0 0 0
Riding
Horse 0 0 0 0 0.90 0 0 0 0 0

Running 0 0.06 0.01 0 0.01 0.91 0 0 0 0.01
Skateboarding 0 0 0 0 0 0 0.93 0 0 0
Swing Bench 0 0 0 0 0 0 0 1.00 0 0
Swing Side 0 0.01 0 0 0 0 0 0 0.99 0

Walking 0 0.07 0 0 0 0 0 0.04 0 0.89

Average
Accuracy 0.94
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4.3.3. Comparison to the State-Of-The-Art Methods

In this section, we further verify the effectiveness of our model, and compare our proposed
approach to different existing state-of-the-art Human Action Recognition approaches on UCF101 and
HDMB51 benchmark datasets. The comparison of results is reported in Table 4. We organize these
baseline methods into different categories with respect to the type of features and network being used,
including traditional, deep-learned features, very deep-learned features and hybrid features.

Table 4. Comparison to the state-of-the-art methods.

Modality Method Year UCF101 HDMB51

Traditional

iDT+fisher vector [10] 2013 84.7 57.2
Ordered Trajectory [36] 2015 72.8 47.3
MPR [37] 2015 - 65.5
MoFAP [38] 2016 88.3 61.7
Trajectory Rejection [39] 2016 85.7 58.9

Deep

Two-Stream [16] 2013 88.9 59.4
FSTCN [40] 2015 88.1 59.1
EMV-CNN [41] 2016 86.4 -
DANN [42] 2016 89.2 63.3
Dynamic Images [11] 2016 89.1 65.2
LTC-CNN [43] 2018 92.7 67.2

Very deep

C3D [13] 2015 85.2 -
LSTM [27] 2015 88.6 -
LRCN [25] 2015 82.9 -
VideoLSTM [44] 2016 89.2 56.4
3D Convolution [14] 2016 91.8 64.6
STPP-LSTM [45] 2017 91.6 69.0
FCNs-16 [46] 2017 90.5 63.4
Hidden-Two-stream [47] 2017 90.3 58.9
Multi-LSTM [48] 2018 90.8 -

Hybrid-Model

TDD-iDT [19] 2015 91.5 65.9
C3D-iDT [13] 2015 90.4 -
TSN [17] 2016 94.2 69.4
3D conv + iDT [14] 2016 93.5 69.2
SCLSTM [49] 2017 84.0 55.1
LTC-iDT [43] 2018 92.7 67.2

Ours LSTM–3D ConvNet - 92.9 70.1

Compared to traditional methods, our model performs the best by 4.5% on both datasets,
Compared with RNN-based methods such as (LRCN) [25] and (LSTM) [27], our model outperforms
these two methods by 4.3% and 10% on UCF101 datasets respectively. Different experiments indicated
that our approach possesses higher discriminative power, even using fewer parameters. It can be
also seen that some methods with both features such as TSN [17] and 3D conv—iDT [14] lead to
a performance gain by a minimal margin on the UCF101 dataset. We can explain the decrease
in prediction rate by fact that this dataset contains action classes with cluttered backgrounds and
illumination changes, and TSN is pre-trained on the large-scale ImageNet dataset, which provides
large scale size and diversity. Our approach is based on C3D, which is pre-trained on the UCF101
dataset. However, our introduced method outperformed the 3D conv—iDT by 0.9% and the TSN
method by 0.7% on the HDMB51 dataset, and showed the highest recognition rate on small-scale
datasets. A possible reason for this higher recognition accuracy is that our model is based on a
hybrid deep learning model, and the introduction of LSTM temporally works well by capturing the
long-term dependencies and boosting the recognition accuracy for complex action categories in the
HDMB51 dataset. We can conclude that a combination of LSTM with a 3D convolutional network for
the spatiotemporal stream achieves better results and obtains recognition rates of 92.9% and 70.1%
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on UCF101 and HDMB51 datasets respectively. This shows that there is a degree of complimentary
between LSTM and convolutional neural network.

5. Conclusions

In this paper, we proposed an action recognition framework by utilizing frame-level deep features
of the 3D-CNN and processing it through LSTM. First, we introduced a 3Dconv-based model MMN and
its iterative training method to integrate the discriminative information of a video into motion maps.
Three-dimensional convolutional components extract compact and efficient spatiotemporal features
from the input video in the form of feature maps. Moreover, we design a linear weighted fusion method
to effectively fuse spatial and temporal feature maps. Finally, we adopt LSTM encoder/decoder to
obtain video level representations to conduct video classification. According to the experimental
results, our model takes the complementary information contained in multiple features (both spatial
and motion features). It is also proof that the motion maps generated by our model intuitively integrate
the dynamic information in an efficient manner, and that they retain more discriminative aspects.
Moreover, our fusion method makes the features more detailed and specific. To verify the effectiveness
of our framework, extensive experiments have been carried out on benchmark datasets, and the
obtained results showed that our approach achieves promising performance.
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