
future internet

Article

Sensorial Network Framework Embedded in
Ubiquitous Mobile Devices

Miroslav Behan 1, Ondrej Krejcar 1,* , Thabit Sabbah 2 and Ali Selamat 1,3,4,5

1 Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec
Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic; mirek.behan@gmail.com (M.B.);
aselamat@utm.my (A.S.)

2 Faculty of Technology and Applied Sciences, Al Quds Open University (QOU), P.O. Box 1804, Ramallah,
Palestine; thabit.s.sabbah@gmail.com

3 Media & Games Center of Excellence, UTM & Faculty of Engineering, Universiti Teknologi Malaysia,
UTM Johor Bahru 81310, Johor, Malaysia

4 Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia,
Kuala Lumpur 54100, Malaysia

5 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
* Correspondence: ondrej.krejcar@uhk.cz

Received: 7 July 2019; Accepted: 12 October 2019; Published: 14 October 2019
����������
�������

Abstract: Today’s digital society is interconnected and networked, with modern smart devices
ubiquitously built into and embedded within smart environments and other environments, where
people (their users) typically live. It is very important to mention that sensorial awareness of an
environment depends on one’s current location and equipment, as well as the equipment’s real-time
capabilities. Personal sensorial information is considered to be the key factor for progress in the
improvement of the productivity of everyday life and creation of a smart surrounding environment.
This paper describes the design, implementation, and testing process of a new sensorial framework
based on the current possibilities created by ubiquitous smart mobile devices with sensors, which
involves computing power and battery power issues. The two parts of the proposed framework
have been designed, implemented, and tested. The client part is represented by a front-end mobile
application, and the back-end part is represented by a server-side application. The analysis of the data,
captured during the testing phase, involves the analysis of the processing time, battery consumption,
and transmitted data amount. This analysis reveals that Transmission Control Protocol (TCP) and
user datagram protocol (UDP) protocols have a comparable performance, although TCP is preferable
for use in local networks. In comparison to other solutions such as MobiSense or Feel the World
framework, the final solution of the proposed and developed sensorial framework has two main
capabilities, which are the security support and social networking possibilities. The advantage of
the MobiSense platform is the existence of several real-world applications, whereas the proposed
sensorial framework needs to be verified in the massive context of many users in real time.

Keywords: sensor; mobile; Android; framework; cloud; monitoring; IoT; Industry 4.0

1. Introduction

Nowadays, smart mobile-based reality, in which life supportive informational systems are able to
promote the effectiveness of human behavior, has become widespread. The key to intelligent human
behavior is to embrace ecological sustainable solutions, which could move people from financial
slavery to a creative future. Human needs have changed according to this wisdom through each era of
our evolution, and human dreams and desires are the most important catalysts for the elevation of
the effectiveness of knowledge distribution throughout humanity. The knowledge itself consists of

Future Internet 2019, 11, 215; doi:10.3390/fi11100215 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-5992-2574
https://orcid.org/0000-0001-5770-7339
https://orcid.org/0000-0001-9746-8459
http://dx.doi.org/10.3390/fi11100215
http://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/11/10/215?type=check_update&version=2

Future Internet 2019, 11, 215 2 of 20

pieces of information, some of which are related to the physical aspects of reality and others which can
be gathered by mobile device sensors. The era of simple nonsensorial smart phones is more or less
over, and the future environment, where built-in sensors, such as those based on ambient temperature,
a magnetic field, an accelerometer, gravity, light, humidity, and localization [1] are common features of
current mobile devices, has emerged [2]. Sensors are assumed to be the basis of research and serve
as mandatory information providers for building future knowledge-based sensorial informational
systems [3–5]. Moreover, they provide physical reality information, which is mostly related to the
surrounding environment of a single person at a certain place and time. Such a sensor-centric view
is the key to improving the effectiveness of human behavior in relation to the actual resources and
knowledge of the environment.

1.1. Trends and Standards

Nowadays, challenges in the application development area are all about keeping in touch with
the actual trends and standards that influence mainstream future-based solutions [6]. The Internet of
Things (IoT) is considered to be one such future mainstream trend [7,8], where all devices are able to
communicate with each other and share information about users or surrounding areas. It is clear that
the sharing and distribution of information between every day users creates an intelligent environment
that makes users’ lives easier. For instance, when entering the home, users can adjust the lights to
automatically turn on with a specific color that the user likes and intensify itself according to the
brightness outside and inside. Information about a user’s location can be acknowledged by a live WiFi
connection through a mobile device. The key idea behind IoT is that all devices have internet access [9],
which we believe will become the reality in the near future. Therefore, the offered solution takes into
account the intermediate between no connectivity and full connectivity, i.e., limited connectivity to the
internet. The solution proposes to share such information between nodes via message exchanging in
an ad-hoc created local network. The devices that are not connected will use other connected devices to
distribute messages across the network to endpoints. Ideally, each device uses sensorial networks [10],
including Android devices, which are capable of understanding the distributed messages and behaving
according to their content. In order to allow each device to handle universal messaging, there have to
be defined informational exchange standards. As the IoT is one of the key parts of Industry 4.0 [11],
current trends in automation and data exchanges in manufacturing, we can also predict the benefits
of sensorial networks. In order to obtain the latest research on Industry 4.0, we have employed a
systematic literature review (SLR) to identify the research areas related to sensorial networks [12].

We searched the Web of Science (WOS), as well as the Scopus database, for the term, “Industry
4.0”, in the title of papers, until the end of July 2019. As a result, we obtained 1265 papers at WOS,
which were distributed into 456 journal articles [13–15], 146 editorial materials, 653 conference papers,
and 25 book chapters. There were also 18 records that were recognized by WOS as highly cited in
filed. In the Scopus database, we obtained 1982 records, containing 874 journal articles, 923 conference
papers, 60 editorial materials and two books (see Figure 1 for the current trends in Industry 4.0).

Future Internet 2019, 11, 215 3 of 20

Future Internet 2019, 11, 215 3 of 20

Figure 1. Published articles with “Industry 4.0” as a keyword in the Web of Science (WOS) and
Scopus databases.

Figure 2. Published articles with “Industry 4.0” as a keyword in the Scopus database by country.

This short analysis provides a solid basis for proving that Industry 4.0 is now very trendy not
only in industry, but also in research areas. The sensorial framework (SF) refers to the sensing of
users’ behavior [20] and distribution of collected information within the surrounding area. In this
way, each device is able to understand the content of a message. One example is the Windows Push
Notification Service (WNS), based on Android devices, which can easily be implemented and applied
anywhere [21]. The solution is able to link external sensors connected via USB to mobile devices [22].
The sensorial framework (SF) can recognize that a user is walking, running or sitting, and each device
in the surrounding area, which receives such messages by a broadcast, can behave according to the
user’s behavior.

1.2. Problem Definition

There are several areas that have to be defined at first to understand the core principals of reality
in order to properly design the sensorial framework (SF). At first, a considerable amount of
information should be collected about the embedded sensors in devices to answer questions about
what and how they measure, as well as what their outputs are. Then, the focus should be on real

0

100

200

300

400

500

600

700

800

2012 2013 2014 2015 2016 2017 2018 2019

WOS SCOPUS

Figure 1. Published articles with “Industry 4.0” as a keyword in the Web of Science (WOS) and
Scopus databases.

By summarizing the results, Germany was found to rank as number one in terms of the number of
publications with “Industry 4.0” as a keyword [16–18], with 283 results from the WOS. Germany was
followed by the People’s Republic of China (PRC), with 92 records [19]; Italy, with 91; England, with
72; Spain, with 69; and the Czech Republic, with 61. From the Scopus database, where more papers are
already indexed with the German authored papers, Germany was also found to be in the lead, with
507 records, followed by Italy, with 169; the United Kingdom, with 112; the USA, with 98; the PRC,
with 97; and the Czech Republic, with 58. Figure 2 shows the distribution of published articles with
“Industry 4.0” as a keyword in the Scopus database by country.

Future Internet 2019, 11, 215 3 of 20

Figure 1. Published articles with “Industry 4.0” as a keyword in the Web of Science (WOS) and
Scopus databases.

Figure 2. Published articles with “Industry 4.0” as a keyword in the Scopus database by country.

This short analysis provides a solid basis for proving that Industry 4.0 is now very trendy not
only in industry, but also in research areas. The sensorial framework (SF) refers to the sensing of
users’ behavior [20] and distribution of collected information within the surrounding area. In this
way, each device is able to understand the content of a message. One example is the Windows Push
Notification Service (WNS), based on Android devices, which can easily be implemented and applied
anywhere [21]. The solution is able to link external sensors connected via USB to mobile devices [22].
The sensorial framework (SF) can recognize that a user is walking, running or sitting, and each device
in the surrounding area, which receives such messages by a broadcast, can behave according to the
user’s behavior.

1.2. Problem Definition

There are several areas that have to be defined at first to understand the core principals of reality
in order to properly design the sensorial framework (SF). At first, a considerable amount of
information should be collected about the embedded sensors in devices to answer questions about
what and how they measure, as well as what their outputs are. Then, the focus should be on real

0

100

200

300

400

500

600

700

800

2012 2013 2014 2015 2016 2017 2018 2019

WOS SCOPUS

Figure 2. Published articles with “Industry 4.0” as a keyword in the Scopus database by country.

This short analysis provides a solid basis for proving that Industry 4.0 is now very trendy not
only in industry, but also in research areas. The sensorial framework (SF) refers to the sensing of
users’ behavior [20] and distribution of collected information within the surrounding area. In this
way, each device is able to understand the content of a message. One example is the Windows Push

Future Internet 2019, 11, 215 4 of 20

Notification Service (WNS), based on Android devices, which can easily be implemented and applied
anywhere [21]. The solution is able to link external sensors connected via USB to mobile devices [22].
The sensorial framework (SF) can recognize that a user is walking, running or sitting, and each device
in the surrounding area, which receives such messages by a broadcast, can behave according to the
user’s behavior.

1.2. Problem Definition

There are several areas that have to be defined at first to understand the core principals of reality
in order to properly design the sensorial framework (SF). At first, a considerable amount of information
should be collected about the embedded sensors in devices to answer questions about what and how
they measure, as well as what their outputs are. Then, the focus should be on real mobile devices,
which will be used in experiments. It is also important to concentrate on how these mobile devices
interact with users and environments theoretically and practically. Additionally, the key factors, which
can influence the framework in certain ways, need to be defined. Finally, the topic of the usability of
embedded sensors in cloud-based services needs to be discussed. This attaches an additional value to
the present research.

All sensors consume energy in order to provide their measurements [23,24]. In the case of mobile
devices, it is a challenge to maximize the duration of device usage, without recharging. It was assumed
that the energy consumption for localization [25,26] is the most effective within Global System for
Mobile communication (GSM) cell-based evaluation [27]. The energy cost is lower than <20 mW and
is followed by WLAN, which has around 500 mJ. On the other hand, the Global Positioning System
(GPS) sensor uses the most energy (more than >1000 mJ), depending on the mobile device. Therefore,
the sensors used for location estimation have to be considered in relation to the energy efficiency factor.
Relative to an accelerometer, a magnetometer has a significantly lower energy consumption, and its
sampling of sensors does not pose a significant difficulty in terms of power management. Table 1
shows the measurements of the energy consumption of Samsung S2 smartphone sensors.

Table 1. Sensor energy consumption of Samsung S2 [27,28].

Sensor Sampling [MJ] Idle [MJ] Switch ON/OFF [MJ]

accelerometer 21 - -/-

gravity 25 - -/-

magnetometer 48 20 -/-

gyroscope 130 22 -/-

microphone 101 - 123/36

It can be concluded, from those measurements, that the accelerometer is the most efficient sensor
for smart phones’ motion detection [28]. This means that, when we need to trigger any action, whereby
the mobile device starts to move, listening to accelerometer sensorial data is sufficient.

A suitable solution for the goal of research based on the gathered knowledge can be provided. In
this way, it is possible to suggest an effective solution to the battery consumption of mobile devices,
available network connectivity, and necessity of provided information. The usage of a sensorial-based
cloud service was considered, where sensorial data from a group of users were gathered from mobile
devices. These included users’ location, activity, or environment, which were recognized by embedded
sensors. Figure 3 shows the typical user scenario of a sensorial framework (SF).

Future Internet 2019, 11, 215 5 of 20

Future Internet 2019, 11, 215 4 of 20

mobile devices, which will be used in experiments. It is also important to concentrate on how these
mobile devices interact with users and environments theoretically and practically. Additionally, the
key factors, which can influence the framework in certain ways, need to be defined. Finally, the topic
of the usability of embedded sensors in cloud-based services needs to be discussed. This attaches an
additional value to the present research.

All sensors consume energy in order to provide their measurements [23,24]. In the case of mobile
devices, it is a challenge to maximize the duration of device usage, without recharging. It was
assumed that the energy consumption for localization [25,26] is the most effective within Global
System for Mobile communication (GSM) cell-based evaluation [27]. The energy cost is lower than
<20 mW and is followed by WLAN, which has around 500 mJ. On the other hand, the Global
Positioning System (GPS) sensor uses the most energy (more than >1000 mJ), depending on the
mobile device. Therefore, the sensors used for location estimation have to be considered in relation
to the energy efficiency factor. Relative to an accelerometer, a magnetometer has a significantly lower
energy consumption, and its sampling of sensors does not pose a significant difficulty in terms of
power management. Table 1 shows the measurements of the energy consumption of Samsung S2
smartphone sensors.

Table 1. Sensor energy consumption of Samsung S2 [27,28].

Sensor Sampling [MJ] Idle [MJ] Switch ON/OFF [MJ]
accelerometer 21 - -/-
gravity 25 - -/-
magnetometer 48 20 -/-
gyroscope 130 22 -/-
microphone 101 - 123/36

It can be concluded, from those measurements, that the accelerometer is the most efficient sensor
for smart phones’ motion detection [28]. This means that, when we need to trigger any action,
whereby the mobile device starts to move, listening to accelerometer sensorial data is sufficient.

A suitable solution for the goal of research based on the gathered knowledge can be provided.
In this way, it is possible to suggest an effective solution to the battery consumption of mobile devices,
available network connectivity, and necessity of provided information. The usage of a sensorial-
based cloud service was considered, where sensorial data from a group of users were gathered from
mobile devices. These included users’ location, activity, or environment, which were recognized by
embedded sensors. Figure 3 shows the typical user scenario of a sensorial framework (SF).

Figure 3. Typical user scenario of a sensorial framework.
Figure 3. Typical user scenario of a sensorial framework.

According to the users’ behavior, it is possible to create virtual spaces based on similar behavior
patterns and share information or artifacts with others. Users can share their recognized location,
activities, or environment with others automatically through social connectors or specific applications.
Users can automate processes in their surrounding environment by connected elements in the Internet
of Things (IoT) [29]. There are many practical uses to which third parties can put this technology. For
instance, users can analyze their daily activities. The users’ mobile devices connect to a local WiFi spot,
recognized as a home environment, and the service can then share such information with relatives or
social channels and can start a home welcoming process. The same can be done when a user leaves
home to prevent energy loss, lock all entrances, or inform relatives that the user is no longer at home.

2. Related Works

Since the core problems were identified in the previous section, it is now possible to search
for related works in this area. There are many publications dealing with sensor-based computing,
however, it is necessary to limit the focus to those publications that have something in common with
mobile devices. While the number of such articles becomes lower as a consequence of this limitation,
thousands remain. Therefore, we consider other search criteria, which include the applications related
to frameworks and informational systems. In this way, the considered publications can be limited
to the ones mainly oriented toward context-awareness. The following articles are considered to be
relevant to our research:

• (FTW) Feel the World, a mobile framework for participatory sensing [30];
• (MobiSens), a versatile mobile sensing platform for real-world applications [31];
• (SensLoc), sensing everyday places and paths using less [32];
• (ODK) Open Data Kit Sensors, a sensor integration framework for Android at the application

level [33].

These four publications are described in more detail in the following subsections. The rest
of the related articles are summarized in the last subsection, as they are the closest to our desired
goals relating to the sensorial framework. In the last section, we compare the articles, with a brief
functionalities overview.

2.1. Feel the World Framework (FTW)

This related work introduces an embedded sensor middleware, which gives third-party
programmers the ability to develop applications that enable people to sense, visualize, and share

Future Internet 2019, 11, 215 6 of 20

information about their surrounding environment. This middleware platform is called Feel the World
(FTW), and the key contributions of this work can be summarized as follows [30]: It is an open source
framework that allows for the development of Android-based applications and user-centric sensing.
The FTW framework allows users to see and configure each integrated user mobile device or external
sensor. The framework is able to configure properties, such as the sample rate, data collection time,
data priority, and running environment. The framework includes a system architecture, based on
Android SDK and the Java Runtime Environment (JRE), with a downloadable source code. The data
are stored on mobile devices by default in different CSV formatted files. Such an implementation is not
sufficient for data access, because pattern recognitions could be considered based on samples gathered
by the mobile device itself, which, however, makes sense.

2.2. MobiSens Platform

The MobiSens Platform is a versatile mobile sensing platform for real-world applications, where
the common requirements of mobile sensing applications depend on power consumption, activity
segmentation, recognition, and annotation based on descriptions provided by a group of motivated
users, who provide activity labels. The framework proves the usability of several applications with
auto-segmentation and auto-recognition features, which increases the applicability of the whole
framework. In short, their achievements are described in the following way by [31]: “Based on the
MobiSens platform, we developed a range of mobile sensing applications, including Mobile Lifelogger,
SensCare for assisted living, Ground Reporting for soldiers to share their positions and actions
horizontally and vertically, and CMU SenSec, a behavior-driven mobile Security system”. Therefore,
an analysis of the pros and cons of their solution, based on user behavior patterns to determine missing
gaps, was conducted. At first, the MobiSens system architecture, which consists of three main client
or server parts, was studied. These include the mobile application, which collects sensor data and
applies activity segmentation with light-weight algorithms, a first-tier back-end system, where data
are indexed and processed with heavy-weight algorithms, and a second-tier system, with applications
and services.

2.3. SensLoc Location Service

Location-based services are considered to be a core functionality of sensorial frameworks. The
SensLoc location service provides an innovative approach to locate mobile devices with minimal battery
consumption. More specifically, the authors of the work mention that “SensLoc comprises a robust
place detection algorithm, a sensitive movement detector, and an on-demand path tracker. Based on a
user’s mobility, SensLoc proactively controls the active cycle of a GPS receiver, a WiFi scanner, and an
accelerometer. Pilot studies show that SensLoc can correctly detect 94% of place visits, track 95% of a
total travel distance, and still only consume 13% of the energy consumed by algorithms that periodically
collect coordinates to provide the same information”. Therefore, this publication is considered to be
related to the proposed solution, since the location resolution is mandatory for advanced environment
and behavior pattern recognition. The proposed service describes the optimal location resolution,
gathered from sensors, WiFi, GPS, and an accelerometer using an advanced technique for determining
an indoor location, since people usually spend approximately 89% of their time indoors and only 6%
outdoors [34].

2.4. Open Data Kit Framework

In the case of developing an application, which would work with external mobile device sensors
and would be connected via Bluetooth or USB, the Open Data Kit framework becomes useful. The
authors describe their framework as: “A framework to simplify the interface between a variety of
external sensors and consumer Android devices. The framework simplifies both the development of
applications and drivers, with abstractions that separate responsibilities between the user application,
sensor framework, and device driver”. Therefore, we acknowledge this framework as modular in

Future Internet 2019, 11, 215 7 of 20

order to add new sensors to the system, with isolation between applications and a sensor-specific code.
A single sensing interface is made available for external and internal sensors to provide a low-level
sensor communication abstraction. Typically, applications can directly communicate with a sensor
manager through standard Android service interfaces or content providers. This framework and such
principals can be used in the case of using external sensors, which are currently beyond the scope of
the proposed solution, but which can be considered for future research.

2.5. Discussion

The analysis of all related publications shows a significant contribution of many ideas and
problem solutions. In Table 2, the core relevant features of the proposed solution are outlined and
compared to the related works. Only the embedded sensor is considered in our SF. External sensors
connected to mobile devices are within the scope of future work. Server data synchronization is the
basis for spreading out dataflow to multiple clients and is considered to be mandatory. Dynamic
sampling is required to adjust sensor usage in terms of battery effectiveness and consumption. The
decision module on the client side is one of the features that supports intelligent data transmission and
pattern recognition.

Table 2. Comparison of sensorial frameworks.

Core Features FTW [30] Mobisens [31] Sensloc [32] ODK [35] Required

embedded sensors ALL ALL
WiFi
Accelerometer
GPS

ALL ALL

external sensors YES NO NO YES NO

server data sync YES YES NO NO YES

dynamic sampling YES YES NO NO YES

decision module YES YES NO NO YES

security NO NO NO NO YES

third parties YES YES NO YES YES

social connectors NO NO NO NO YES

The related works do not include all of our desired goals and functionality. Therefore, it is believed
that the design and implementation of such a sensorial framework would be of great value and would
provide sensorial information related to mobile devices in a comprehensive form (directly on a mobile
device itself or externally on other devices).

3. Sensorial Network Framework Embedded in Ubiquitous Mobile Devices

The full model of the proposed solution for the sensorial framework is defined in this Section. In
order to be able to easily and quickly develop this solution, agile techniques were used. Then, the
goals are presented, and a description and considerations concerning the possibilities of the sensorial
framework are provided. Afterwards, the focus is on converting ideas into user stories, where the
level of the framework model definition is reached, and the basic architecture of the system, including
the activity flow, class, and data model is covered. Furthermore, some security aspects and possible
security threats are identified. Finally, a deployment model of the system, in terms of the end users, is
developed. The section also describes, in minimal detail, the techniques and tools that were used for
the modeling and analysis process. The focus was on using a more agile approach for modeling an
information system.

3.1. Goals, Requirements, and User Stories

The main target is to create a realistic solution. Therefore, the following list of main goals is
created and kept in mind throughout the whole research:

Future Internet 2019, 11, 215 8 of 20

• To gather any possible sensorial information from mobile devices,
• To provide a visualization of gathered sensor data in a comprehensive form for end users;
• To add prediction models to the consolidated sensorial data.

Moreover, the innovation potential and reasons for the defined goals should also be clarified.
First, each voluntary user is able to view a history of a sensor’s data on their mobile device. A
graphical representation of the records, based on a user’s location, time, and activity, was outlined in
the considered cases, when this was considered useful. Users would also be able to see a sensorial
map provided by the sensorial framework, which could help to automate the decision making of any
sensorial-based electronics.

In the next part, user stories, which form the basis of our models and further analysis, are described.
The scrum format was used for user story definition, where the developer side is represented by the
authors of this paper, and the end users are represented by students, who own Android mobile devices,
with a desire to use an innovative approach to information distribution. In Table 3, the user stories are
outlined, which were extracted by questionnaires from the end-user group.

Table 3. User stories defined by the end-user group.

User Story Identifier
(USI) Content of User Stories Related to

USI-1-1 As a user, I want to register with a sensorial framework using specific
credentials, such as an email and password Main

USI-1-2 As a user, I want to log in to a sensorial framework using defined
credentials Main

USI-1-3-1 As a user, I want to change my password, when I forget it, via an
email channel Main

USI-1-3-2 As a user, I want to change my password, when I am logged in Main/Authorized

USI-1-3-3 As a user, I want to change my email, when I am logged in Main/Authorized

USI-1-4 As a user, I want to logout Main/Security/Authorized

USI-2-1
As a user, I want to connect my device to a sensorial framework by
installing application on the device using the same login credentials
and by providing a basic description, such as a name

Devices/Authorized

USI-2-2 As a user, I want to disconnect my device Devices/Authorized

USI-2-3 As a user, I want to modify the name of my device Devices/Authorized

USI-2-4-1
As a user, I want to see all of the devices connected to a sensorial
framework with a basic description, such as the name of the device,
type of device and connection status of the device in the device list

Devices/Authorized

USI-2-4-2 As a user, I want to see all details of the devices by selecting them
from a device list Devices/Authorized

USI-3-1 As a user, I want to see a list of the available sensors of the device,
with the name, type, periodicity/action and data counters Device/Authorized

USI-3-2 As a user, I want to see details of device sensor, where I can customize
details, such as the period of monitoring, type of action, etc. Sensor/Authorized

USI-3-3 As a user, I want to see historical data on sensors in timeline charts Sensor/Authorized

After the identification of user stories, it is possible to prioritize them and make assumptions
concerning the difficulty of story points. These criteria are defined in order to improve the quality of
decision making, where the most important user stories are developed first. It is possible to count
how much time it takes and how much effort is needed with some degree of difficulty. This kind of
measurement increases the flexibility of the organization of the user definitions in relation to the issues
of the framework development. There is a specialized form to visualize such an overview, called a story
board. The main reason for this kind of view is to simplify it for everyone and offer the possibility to
display it simply by a pencil and stickers on any wall, obviating the need to use electronic equipment.

Future Internet 2019, 11, 215 9 of 20

3.2. System Architecture

This section concentrates on a high-level system architecture design using components in order to
understand each part of the system. The client or server architecture is considered, as shown in Figure 4,
in relation to information distribution, where a server is defined as a single instance, and clients are
defined as multiple instances of mobile device applications. A client consists of an application, a user
interface (UI), a background service, sensor readers, and a database. The end user controls and views
all information on the UI from the application module, which gathers data from the server or from
locally saved data in database. In that moment, when the end-user connects their mobile device to the
system, the background service provides data from sensors to the server and updates the local database.
The server consists of several components, including listeners, an application program interface (API),
a core, management, logging, and a database. The listeners store sensorial data, gathered from mobile
devices, in the database.

Future Internet 2019, 11, 215 9 of 20

application program interface (API), a core, management, logging, and a database. The listeners store
sensorial data, gathered from mobile devices, in the database.

Figure 4. System architecture.

3.3. Activity and Flow Model

In the design and analysis phase of the sensorial framework development process, it is possible
to analyze, in more detail, each user story in order to provide the necessary insight for
implementation. The process activity and flow model is defined in a comprehensive form to gather
data in order to define classes and data models at a later point. Some activities require that the mobile
device has access to the internet to allow it to communicate with the backend. Before a user starts the
application, the application firstly needs to be installed on the mobile device. The high level of
application flow, where all user stories can be applied from a specific application point of the flow,
is shown in Figure 5.

Figure 5. Application flow with a user story identifier (USI).

Figure 4. System architecture.

3.3. Activity and Flow Model

In the design and analysis phase of the sensorial framework development process, it is possible to
analyze, in more detail, each user story in order to provide the necessary insight for implementation.
The process activity and flow model is defined in a comprehensive form to gather data in order to
define classes and data models at a later point. Some activities require that the mobile device has access
to the internet to allow it to communicate with the backend. Before a user starts the application, the
application firstly needs to be installed on the mobile device. The high level of application flow, where
all user stories can be applied from a specific application point of the flow, is shown in Figure 5.

3.4. State Models

This section is dedicated to model the states of the system. The activity and process flow design
is considered to be sufficient for a basic understanding of how it should work within the system.
Therefore, the focus is on the implementation of such functionalities. The state model can be the base
agreement concerning the possibilities of the system entities and how they can behave together, as
well as how information is distributed internally between the entities. The main entities have to be
defined, which can be in different states and, later, are binding for other derivate entities in the classes
and data model universe. Core entities are understood as natural representations of reality, such as
users, devices, and sensors. These are the main three entities that constitute the basis for interacting
with other entities and being connected with them. The user entity represents all information related
to a single user in the data collection. Core entities are also easily understandable by different colors in
Figure 5 as green represent users, purple is for devices, and red is for sensors.

Future Internet 2019, 11, 215 10 of 20

Future Internet 2019, 11, 215 9 of 20

application program interface (API), a core, management, logging, and a database. The listeners store
sensorial data, gathered from mobile devices, in the database.

Figure 4. System architecture.

3.3. Activity and Flow Model

In the design and analysis phase of the sensorial framework development process, it is possible
to analyze, in more detail, each user story in order to provide the necessary insight for
implementation. The process activity and flow model is defined in a comprehensive form to gather
data in order to define classes and data models at a later point. Some activities require that the mobile
device has access to the internet to allow it to communicate with the backend. Before a user starts the
application, the application firstly needs to be installed on the mobile device. The high level of
application flow, where all user stories can be applied from a specific application point of the flow,
is shown in Figure 5.

Figure 5. Application flow with a user story identifier (USI). Figure 5. Application flow with a user story identifier (USI).

3.5. Implementation

In this section, the frontend and backend implementation phases of the system’s development
lifecycle are described. A source code is produced, based on the defined class model and criteria from
the design phase. The frontend is considered to be the client application, which is using the backend
application as a server. The frontend communicates with the backend via representation state transfer
(REST) HTTP request and response messaging, for the entity exchange channel, and the user datagram
protocol (UDP) for the byte streaming channel.

3.5.1. Frontend Application

The user interface (UI) on the Android platform [24] is based on a static definition, within a
predefined xml layout file, or dynamic definition, where visual components are instantiated during
runtime from a code. The first method helps developers with rapid development and the “what you
see is what you get” (WYSIWYG) design mode. On the other hand, the dynamic definition throughout
the source code accesses the advanced design mode based on variables in runtime. A combination
of these is used, where a basic layout is defined as static and does not change during the application
lifecycle, and some inner visual components are generated during the start of the application. In this
way, two basic layouts are defined and highlighted, as shown in Figure 6, where a user can see a sensor
list immediately after startup and can start monitoring or stop monitoring the sensor by touching each
graph. The navigation is handled by a menu in the top right-hand corner, which is also visualized
in the right screenshot. Users are able to log in to the system, see a profile of the sensors, connect or
disconnect their device to and from a cloud, see devices that are also connected to the system, and
even change the name of their device.

Future Internet 2019, 11, 215 11 of 20

Future Internet 2019, 11, 215 11 of 20

profile are set via an interactive number entering dialog. The user can customize the sampling rate to
the millisecond just by entering a numeric value in the correct field. The entered value is first locally
stored in the sensor profile and then synchronized with a cloud.

Figure 6. Client Android application: Sensor list. Figure 6. Client Android application: Sensor list.

This layout dashboard is dynamically generated by a list of the available sensors, gathered from
SensorManager, to supply each item with a SensorViewGraph class, which is responsible for the proper
data visualization of the cached data from the memory of each sensor. This view is refreshed by an FPS
of at least 10. This prototype is considered sufficient for seeing in real time what is behind a sensor’s
raw data, however, for future development, visualization with GL rendering should be provided for
a better refresh rate. Nevertheless, the current solution is based on Canvas and provides real-time
data graphing. First, a sensor’s data are collected into a memory cache by the sensor’s listeners
from the Android framework. Then, the collected data are processed, and the intensity and average
are calculated. Independently, in the view manager, whenever the canvas can be refreshed, after
invalidated states have been propagated, the canvas is redrawn with current values from the cache
memory. This process is repeated, and the sensor data animation appears on the screen. The sensor
profile layout (Figure 7) of the client Android application is designed to customize the embedded
mobile device sensors. The user can choose the required embedded sensor from the Spinner Android
component and a scanned sensor list. After selecting the desired embedded mobile device sensor, the
user can customize the sensor attributes in order to change the monitor rate, local data propagation
rate, and remote cloud propagation rate of the data. These attributes of the sensor profile are set via an
interactive number entering dialog. The user can customize the sampling rate to the millisecond just
by entering a numeric value in the correct field. The entered value is first locally stored in the sensor
profile and then synchronized with a cloud.

Future Internet 2019, 11, 215 12 of 20

Future Internet 2019, 11, 215 12 of 20

Figure 7. Client Android application: Sensor map and profile.

The values are applied instantly by updating a live instance and sensor listeners of an activity
via the SensorManager using a back button or by changing sensors. The behavior of the user on a
google map is shown on the left side of Figure 7. It shows walking, running, and standing still. This
behavior recognition is based on a monitoring accelerometer, which means that, when the intensity
of the measured data exceeds an empirically defined threshold [36], the engine recognizes that the
user is walking, running, or standing still. The overlay of one’s own visual definition of items is
implemented using Google maps within Google API. The item is composed of a personal image,
personal name, gathered from social connectors [37], and the current activity, which is realized by
activity recognition [38].

The next step, after the application’s layout definition, is the logic of the application. The
Android framework includes a Java class, called Activity, which brings together UI and an
application’s logic. It is a basic fundamental principal of the Android framework philosophy of
application design to use activity from the model, view and control (MVC) point of view.

Application logic defines how activities should be coupled and how they should react to events.
The activity is named after the intention behind another activity or by listening to broadcasted
intentions within the system, such as onBootComplete, onActionMain, or onSensorChanged, which
are visualized in Figure 8. The main background service, which is responsible for gathering data from
the sensors, also locally stores the data or posts them to a remote backend.

The user workflow scenario is considered as well. It starts with a user’s intention to launch the
application from the launcher and jump to ActivityMain, which is responsible for the static
initialization control flow. The control is given to ActivityAuth, where all authentication tasks are
performed with the backend. Once a valid token is received from the backend and stored locally in
the secure storage, the control is given again to ActivityMain, with a successful resulting code, and
ActivityDashboard can be started. The ActivityDashboard provides all of the necessary data for UI

Figure 7. Client Android application: Sensor map and profile.

The values are applied instantly by updating a live instance and sensor listeners of an activity
via the SensorManager using a back button or by changing sensors. The behavior of the user on a
google map is shown on the left side of Figure 7. It shows walking, running, and standing still. This
behavior recognition is based on a monitoring accelerometer, which means that, when the intensity
of the measured data exceeds an empirically defined threshold [36], the engine recognizes that the
user is walking, running, or standing still. The overlay of one’s own visual definition of items is
implemented using Google maps within Google API. The item is composed of a personal image,
personal name, gathered from social connectors [37], and the current activity, which is realized by
activity recognition [38].

The next step, after the application’s layout definition, is the logic of the application. The Android
framework includes a Java class, called Activity, which brings together UI and an application’s logic. It
is a basic fundamental principal of the Android framework philosophy of application design to use
activity from the model, view and control (MVC) point of view.

Application logic defines how activities should be coupled and how they should react to events.
The activity is named after the intention behind another activity or by listening to broadcasted intentions
within the system, such as onBootComplete, onActionMain, or onSensorChanged, which are visualized
in Figure 8. The main background service, which is responsible for gathering data from the sensors,
also locally stores the data or posts them to a remote backend.

Future Internet 2019, 11, 215 13 of 20

Future Internet 2019, 11, 215 13 of 20

from local and remote datasets, with a valid token. If the token expires over time, the control is given
back to ActivityMain, and the authentication begins again.

Figure 8. Application logic: Coupling of activities and reaction of activities to events.

3.5.2. Backend Application

There are many ways to implement the backend application. The one that was chosen in this
study is based on the spring framework and is convenient, easy to use and extremely fast in
developing applications in Java. In essence, the spring framework constitutes a step forward from
old conventional rules to new and reasonable simplification for developers through comprehensive
solutions. When web-based services are considered through the spring framework [39] for the
backend, the string boot has to be mentioned, as it combines all classical web containers based on
XML configuration files. However, for the proposed solution, it is a static and ineffective old
approach, and Java annotation-based configurations in a minimalistic form, as outlined in the
following code, are therefore preferred. The key principal of the backend server concerns the request
and response handling through a Hyper Text Transfer Protocol (HTTP), where knowledge of how a
HTTP works comes in handy. The suggested implementation is based on the spring framework,
which brings to developers’ attention the business logic of the application, rather than the reinvention
of the wheel. To better understand the business logic of the application, the backend implementation
is outlined in Figure 9 on the basis of the request and response process flow principal. The parts of
the spring framework are represented in blue. The parts of the internal implementation are
represented in yellow.

Figure 8. Application logic: Coupling of activities and reaction of activities to events.

The user workflow scenario is considered as well. It starts with a user’s intention to launch the
application from the launcher and jump to ActivityMain, which is responsible for the static initialization
control flow. The control is given to ActivityAuth, where all authentication tasks are performed with
the backend. Once a valid token is received from the backend and stored locally in the secure storage,
the control is given again to ActivityMain, with a successful resulting code, and ActivityDashboard
can be started. The ActivityDashboard provides all of the necessary data for UI from local and remote
datasets, with a valid token. If the token expires over time, the control is given back to ActivityMain,
and the authentication begins again.

3.5.2. Backend Application

There are many ways to implement the backend application. The one that was chosen in this
study is based on the spring framework and is convenient, easy to use and extremely fast in developing
applications in Java. In essence, the spring framework constitutes a step forward from old conventional
rules to new and reasonable simplification for developers through comprehensive solutions. When
web-based services are considered through the spring framework [39] for the backend, the string boot
has to be mentioned, as it combines all classical web containers based on XML configuration files.
However, for the proposed solution, it is a static and ineffective old approach, and Java annotation-based
configurations in a minimalistic form, as outlined in the following code, are therefore preferred. The
key principal of the backend server concerns the request and response handling through a Hyper Text
Transfer Protocol (HTTP), where knowledge of how a HTTP works comes in handy. The suggested
implementation is based on the spring framework, which brings to developers’ attention the business
logic of the application, rather than the reinvention of the wheel. To better understand the business
logic of the application, the backend implementation is outlined in Figure 9 on the basis of the request
and response process flow principal. The parts of the spring framework are represented in blue. The
parts of the internal implementation are represented in yellow.

Future Internet 2019, 11, 215 14 of 20

Future Internet 2019, 11, 215 14 of 20

Figure 9. Backend request and response process flow.

At first, the request is received on a server via the Dispatcher Servlet, which immediately
dispatches the task to HandlerMapping for the selection of the appropriate controller. It uses
mapping, defined in the controller, and returns the selected handler and controller back to the
DispatcherServlet. Afterwards, the task is sent to the HandlerAdapter, which calls the business logic
of the controller. The business logic, with a persistent data layer, is processed, and the result is sent
to the model, which returns the logical name of the view to the HandlerAdapter. The
DispatcherServlet dispatches the task of resolving the view corresponding to the view name to the
ViewResolver and returns the view mapped to the view name. The DispatcherServlet sends the
rendering process to the returned view, which renders the model data and returns the response.

MongoDB was used as the main database engine, as its high quality has been proven in many
cases. MongoDB is a document-based database, where documents are similar to JSON objects. The
values of fields may include other documents, arrays, and arrays of documents. It supports a dynamic
schema definition, which can change in real time, without data constraints. Moreover, it provides a
high-performance data persistence, where the index supports faster queries, together with a high
availability, provided via a replication facility, called replica sets. Additionally, it has automatic
scaling, where horizontal scalability is part of the core MondoDB functionality, with automatic
shading of distribution data across a cluster of machines. Once the database engine is installed on a
server, and it runs in a separate process, listening to default port 27017, it is possible to start to use
Java database clients to connect to a local host. For the purpose of interaction, a database engine was
used, with database client implementation, based on the spring framework, via spring-data-
mongodb. The interface is defined in the following source code, which enables coupling data
manipulation operations by annotations. An improved database was considered for the sake of
indexing and obtaining a more effective data layout [40].

4. Evaluation and Discussions

This section describes the methods with which the implemented applications were evaluated
and discusses the main issues related to the results.

4.1. Tuning and Testing of the Developed Solution

A necessary part of the proper evaluation of the developed framework includes the tuning and
testing of the solution. The Dalvik Debug Monitoring Server (DDMS) [24], outlined in Figure 10, was

Figure 9. Backend request and response process flow.

At first, the request is received on a server via the Dispatcher Servlet, which immediately
dispatches the task to HandlerMapping for the selection of the appropriate controller. It uses mapping,
defined in the controller, and returns the selected handler and controller back to the DispatcherServlet.
Afterwards, the task is sent to the HandlerAdapter, which calls the business logic of the controller. The
business logic, with a persistent data layer, is processed, and the result is sent to the model, which
returns the logical name of the view to the HandlerAdapter. The DispatcherServlet dispatches the
task of resolving the view corresponding to the view name to the ViewResolver and returns the view
mapped to the view name. The DispatcherServlet sends the rendering process to the returned view,
which renders the model data and returns the response.

MongoDB was used as the main database engine, as its high quality has been proven in many
cases. MongoDB is a document-based database, where documents are similar to JSON objects. The
values of fields may include other documents, arrays, and arrays of documents. It supports a dynamic
schema definition, which can change in real time, without data constraints. Moreover, it provides
a high-performance data persistence, where the index supports faster queries, together with a high
availability, provided via a replication facility, called replica sets. Additionally, it has automatic scaling,
where horizontal scalability is part of the core MondoDB functionality, with automatic shading of
distribution data across a cluster of machines. Once the database engine is installed on a server, and it
runs in a separate process, listening to default port 27017, it is possible to start to use Java database
clients to connect to a local host. For the purpose of interaction, a database engine was used, with
database client implementation, based on the spring framework, via spring-data-mongodb. The
interface is defined in the following source code, which enables coupling data manipulation operations
by annotations. An improved database was considered for the sake of indexing and obtaining a more
effective data layout [40].

4. Evaluation and Discussions

This section describes the methods with which the implemented applications were evaluated and
discusses the main issues related to the results.

4.1. Tuning and Testing of the Developed Solution

A necessary part of the proper evaluation of the developed framework includes the tuning and
testing of the solution. The Dalvik Debug Monitoring Server (DDMS) [24], outlined in Figure 10, was
used for tuning and optimizing the implementation on the Android client. On the server side, the

Future Internet 2019, 11, 215 15 of 20

Java Mission Control (JMC) was used for profiling Java Virtual Machines (JVM). Such profiling tools
are capable of monitoring engines and source codes, which are executed in real time, and provide
comprehensive results on, for instance, memory usage, the processing time of threads, datatype
statistics, network I/O, and CPU/GPU usage [41].

Future Internet 2019, 11, 215 15 of 20

used for tuning and optimizing the implementation on the Android client. On the server side, the
Java Mission Control (JMC) was used for profiling Java Virtual Machines (JVM). Such profiling tools
are capable of monitoring engines and source codes, which are executed in real time, and provide
comprehensive results on, for instance, memory usage, the processing time of threads, datatype
statistics, network I/O, and CPU/GPU usage [41].

Figure 10. Tuning client with Android the Dalvik Debug Monitoring Server (DDMS).

On the basis of the results from the profiling tools, it was possible to find memory leaks and
existing deadlocks. Moreover, the implementation itself was also improved. For instance, from the
profiling trace log, the precise exclusive CPU time spent on each method in the implementation was
obtained. Furthermore, the source code, based on useless and ineffective calls, was discovered and
optimized.

To test the functionalities of the developed system, there are a lot of testing frameworks. Some
of them differ from one another according to the client and server used. On the client side, Junit tests
were used for unit testing of functionalities. Android API and the Espresso library were applied for
instrumental testing of Android internal elements, which basically simulate user behavior within the
application. It is also possible to use Monkey Runner for UI-type stress testing by pseudo random
events on a device. On the client side, this can be slightly more complex due to the simulation of the
user’s behavior, which is different to that on the server side, where input and outputs are generated
by the client’s applications. For testing the functionalities on the server-side, Junit testing was used,
and the Rest Assured library was applied for REST API testing. The code coverage of a particular test
suite was considered very low on both the server and client sides due to the lack of the developers’
capacity, which is a necessary consequence of covering most of the test cases, both the positive and
the negative ones.

4.2. Discussion of Results

The most important of the measured results of the system functionalities is the processing time,
battery consumption, and the amount of transmitted data. The implemented solution was tested in a
local 2.4 GHz WiFi network, with a single router in the area of a distance less than 2 m. The sensorial
provider was a mobile device (Android Sony ZT3-blade), the sensorial consumer was a tablet device
(Google Nexus 7), and the backend was a tower server (HP ProLiant ML150 Gen9). These details are
outlined in a test scenario (Figure 11).

Figure 10. Tuning client with Android the Dalvik Debug Monitoring Server (DDMS).

On the basis of the results from the profiling tools, it was possible to find memory leaks and
existing deadlocks. Moreover, the implementation itself was also improved. For instance, from the
profiling trace log, the precise exclusive CPU time spent on each method in the implementation
was obtained. Furthermore, the source code, based on useless and ineffective calls, was discovered
and optimized.

To test the functionalities of the developed system, there are a lot of testing frameworks. Some of
them differ from one another according to the client and server used. On the client side, Junit tests
were used for unit testing of functionalities. Android API and the Espresso library were applied for
instrumental testing of Android internal elements, which basically simulate user behavior within the
application. It is also possible to use Monkey Runner for UI-type stress testing by pseudo random
events on a device. On the client side, this can be slightly more complex due to the simulation of the
user’s behavior, which is different to that on the server side, where input and outputs are generated
by the client’s applications. For testing the functionalities on the server-side, Junit testing was used,
and the Rest Assured library was applied for REST API testing. The code coverage of a particular test
suite was considered very low on both the server and client sides due to the lack of the developers’
capacity, which is a necessary consequence of covering most of the test cases, both the positive and the
negative ones.

4.2. Discussion of Results

The most important of the measured results of the system functionalities is the processing time,
battery consumption, and the amount of transmitted data. The implemented solution was tested in a
local 2.4 GHz WiFi network, with a single router in the area of a distance less than 2 m. The sensorial
provider was a mobile device (Android Sony ZT3-blade), the sensorial consumer was a tablet device
(Google Nexus 7), and the backend was a tower server (HP ProLiant ML150 Gen9). These details are
outlined in a test scenario (Figure 11).

Future Internet 2019, 11, 215 16 of 20

Future Internet 2019, 11, 215 16 of 20

Figure 11. Testing sensor informational flow of the sensorial framework.

Over 100 measurements for each sensor, from the sensorial provider to the sensorial consumer,
were transported, and the time delivery of all of the components was measured. The granularity of
the measurement is defined by each component, which has an independent system clock. The starting
point is on the mobile device, where sensor data are gathered by listeners, and the processing time of
each sensor is the measured delta of the data delivered to our application from the Android
middleware [42]. Then, the data are processed and sent to the backend, where another time
consumption is measured as the delta between the start time of the message delivery and the stop
time, when it is acknowledged that the message has been received. Finally, the message is captured
by the backend and stored in the database, where the delta of the start and stop time of the storing
measurement entity are measured.

Table 4. Performance results from testing.

Component Time*** [ms] Description
sensor proximity* - interactive
sensor accelerometer* 12 tested on Sony ZT3-blade
sensor magnetic field* 46 tested on Sony ZT3-blade
sensor orientation* 69 tested on Sony ZT3-blade
network rtt tcp** 30 tested on WLAN (single router)

332B HTTP Rest Header
116B JSON payload

network rtt udp* 15 tested on WLAN (single router)
66B UDP Header
547B Java serializable payload

mongo database 57 < 3000 records
* tested on Sony ZT3-blade; ** tested in a local WiFi network with a router; *** arithmetic average time
consumption is taken from 1000 measurements.

The results (Table 4) highlight that, in a local network, it is possible to use TCP, rather than UDP,
of which the time consumptions are comparable. However, TCP has a certain payload delivery. We

Figure 11. Testing sensor informational flow of the sensorial framework.

Over 100 measurements for each sensor, from the sensorial provider to the sensorial consumer,
were transported, and the time delivery of all of the components was measured. The granularity of the
measurement is defined by each component, which has an independent system clock. The starting point
is on the mobile device, where sensor data are gathered by listeners, and the processing time of each
sensor is the measured delta of the data delivered to our application from the Android middleware [42].
Then, the data are processed and sent to the backend, where another time consumption is measured as
the delta between the start time of the message delivery and the stop time, when it is acknowledged
that the message has been received. Finally, the message is captured by the backend and stored in the
database, where the delta of the start and stop time of the storing measurement entity are measured.

The results (Table 4) highlight that, in a local network, it is possible to use TCP, rather than UDP,
of which the time consumptions are comparable. However, TCP has a certain payload delivery. We
decided to use TCP to test the bit rate in order to be as close as possible to the HTTP REST protocol for
data transfer, which was initially considered as the only way to exchange data with the cloud service,
however, we are currently considering the benefits of UDP as an ideal way to propagate sensory data,
although it may be unreliable.

Table 4. Performance results from testing.

Component Time *** [ms] Description

sensor proximity * - interactive

sensor accelerometer * 12 tested on Sony ZT3-blade

sensor magnetic field * 46 tested on Sony ZT3-blade

sensor orientation * 69 tested on Sony ZT3-blade

network rtt tcp ** 30
tested on WLAN (single router)
332B HTTP Rest Header
116B JSON payload

network rtt udp * 15
tested on WLAN (single router)
66B UDP Header
547B Java serializable payload

mongo database 57 <3000 records

* tested on Sony ZT3-blade; ** tested in a local WiFi network with a router; *** arithmetic average time consumption
is taken from 1000 measurements.

Future Internet 2019, 11, 215 17 of 20

Moreover, transferring data is less time consuming than sensorial event data gathering on a
low-end mobile device. Therefore, in future research, it would be useful to consider the test scenario
on a wide area network (WAN) with different providers and also change the information distribution
principal. Currently, the basic sensors of mobile devices are covered, which are visualized in a
comprehensive form on mobile devices by an Android application. The sensorial data can be captured
locally by mobile devices and can be provided to local applications. Furthermore, data are propagated
on a remote backend, where they can be distributed to proper consumers, such as other mobile devices
or different servers, for analysis. For further research, a group of users could be established, who
are willing to share their sensorial data from a personal mobile device. The cooperation with other
developer members, who would like to link their solutions in a framework, would also be very useful.
Other mobile device sensors will continue to be added to the framework. A microphone, camera, or
radio could be included in the sensorial framework and can be used in other applications, such as a
Smart Home Point [43].

5. Conclusions and Future Works

Sensorial-based frameworks are quickly evolving in the quickly changing mobile device
environment. The challenge of creating an efficient concept for distributive sensorial information
lies in battery consumption, communication, and effective sensorial data gathering. There is a group
of sensorial applications that partly provide the desired functionalities. However, none of these
applications provide a fully capable sensorial framework with an open sourced code, available social
connectors, predictive pattern recognition, customization of visual components, intelligent profile
handling, and minimal battery consumption. All of these aspects are evaluated to help increase the
usability of sensorial frameworks. Therefore, the challenge of this work was to design and implement
such a framework in a real environment.

The goal of this paper was to create a sensorial framework that captures embedded sensor data
and transforms them into comprehensive information, which can be shared through the cloud. To
reach that goal, it was necessary to analyze the currently available mobile device sensors, discover the
most suitable development tools and techniques, design and implement a prototype application, test
the prototype in a real environment, and evaluate the results. In the beginning, the agile development
approach, together with Java and Android-based platforms, was selected for implementation, which
proved to be a good choice later on. The key benefit of the proposed architecture is in its scalability
and applicability for further location, motion, and environment-based real-time solutions. The work
proposes an effective sensorial information distribution in terms of usability. The future smart
environments are expected to be based on mobile device embedded sensorial networks [44–46]. While
one of the most significant contributions of the successful solution MobiSens platform is covered
by activity classification based on Hidden Markov models (HMM) together with adaptive activity
recognition based on user annotation interaction with sophisticated user interface (UI) where end
users are willing to annotate their unknown activities, the potential use case scenarios of our proposed
sensorial framework can be summarized as follows:

- Measuring the radio capabilities of networks, for instance, WiFi, 3G, LTE, etc. Global knowledge
of a network map can be beneficial for a free WiFi connection or better connection, when this is
required for a community with open communication;

- Measuring sensors, such as a microphone and its volume level or a camera and its noise level.
Such an application enables the identification of a surrounding area;

- Measuring health sensors embedded in smart watches, connected to a mobile device via Bluetooth.
Measuring the heartbeat or body temperature of a user can identify their behavior more precisely.

Wireless networks are an essential components of various intelligent systems enabling the
involvement of the Internet of Things, including Smart Homes, Smart Healthcare, Smart Factories, and

Future Internet 2019, 11, 215 18 of 20

Smart Cities [45]. Selection of the right technology that suits the requirements of a particular system
can and will be a challenging task for a system architect due to the wide variety of options [47].

Author Contributions: Conceptualization, M.B., O.K., and A.S.; methodology, O.K., T.S. and A.S.; software, M.B.
and O.K.; validation, O.K., T.S. and A.S.; formal analysis, A.S., T.S.; investigation, M.B.; resources, O.K., and A.S.;
data curation, M.B., and O.K.; writing—original draft preparation, M.B. and O.K.; writing—review and editing,
O.K., T.S. and A.S.; visualization, M.B., O.K..; supervision, A.S., and O.K.; project administration, O.K., and A.S.;
funding acquisition, O.K. and A.S.

Funding: The work and the contribution were supported by project of excellence 2019/2205, Faculty of Informatics
and Management, University of Hradec Kralove. The work was partially funded by the: (1) SPEV project,
University of Hradec Kralove, FIM, Czech Republic (ID: 2102–2019), “Smart Solutions in Ubiquitous Computing
Environments”, (2) Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-20H04, Malaysia
Research University Network (MRUN) Vot 4L876 and (3) the Fundamental Research Grant Scheme (FRGS) Vot
5F073 supported under Ministry of Education Malaysia for the completion of the research.

Acknowledgments: We are grateful for the support of student Sebastien Mambou and Michal Dobrovolny in
consultations regarding application aspects.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Machaj, J.; Brida, P. Optimization of Rank Based Fingerprinting Localization Algorithm. In Proceedings
of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia,
13–15 November 2012.

2. Hii, P.C.; Chung, W.Y. A comprehensive ubiquitous healthcare solution on an android (TM) mobile device.
Sensors 2011, 11, 6799–6815. [CrossRef] [PubMed]

3. Bellavista, P.; Cardone, G.; Corradi, A.; Foschini, L. The Future Internet convergence of IMS and ubiquitous
smart environments: An IMS-based solution for energy efficiency. J. Netw. Comput. Appl. 2012, 35, 1203–1209.
[CrossRef]

4. Velandia, D.M.S.; Kaur, N.; Whittow, W.G.; Conway, P.P.; West, A.A. Towards industrial internet of things:
Crankshaft monitoring, traceability and tracking using RFID. Robot. Comput. Integr. Manuf. 2016, 41, 66–77.
[CrossRef]

5. Li, F.; Han, Y.; Jin, C.H. Practical access control for sensor networks in the context of the Internet of Things.
Comput. Commun. 2016, 89, 154–164. [CrossRef]

6. Condry, M.W.; Nelson, C.B. Using Smart Edge IoT Devices for Safer, Rapid Response With Industry IoT
Control Operations. Proc. IEEE 2016, 104, 938–946. [CrossRef]

7. Salehi, S.; Selamat, A.; Fujita, H. Systematic mapping study on granular computing. Knowl. Based Syst. 2015,
80, 78–97. [CrossRef]

8. Phithakkitnukoon, S.; Horanont, T.; Witayangkurn, A.; Siri, R.; Sekimoto, Y.; Shibasaki, R. Understanding
tourist behavior using large-scale mobile sensing approach: A case study of mobile phone users in Japan.
Pervasive Mob. Comput. 2015, 18, 18–39. [CrossRef]

9. Android Operation System. Available online: https://en.wikipedia.org/wiki/Android_(operating_system)
(accessed on 14 October 2019).

10. Győrbíró, N.; Fábián, A.; Hományi, G. An activity recognition system for mobile phones. Mob. Netw. Appl.
2009, 14, 82–91. [CrossRef]

11. Schirmer, M.; Höpfner, H. SenST*: Approaches for reducing the energy consumption of smartphone-based
context recognition. In Proceedings of the International and Interdisciplinary Conference on Modeling and
Using Context, Karlsruhe, Germany, 26–30 September 2011.

12. Efstathiades, H.; Pa, G.; Theophilos, P. Feel the World: A Mobile Framework for Participatory Sensing.
In Proceedings of the International Conference on Mobile Web and Information Systems, Paphos, Cyprus,
26–29 August 2013.

13. Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.;
Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure
to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [CrossRef]

14. Spring, Spring Framework—spring.io. Available online: http://docs.spring.io/spring-data/data-document/
docs/current/reference/html/#mapping-usage-annotations (accessed on 14 October 2019).

http://dx.doi.org/10.3390/s110706799
http://www.ncbi.nlm.nih.gov/pubmed/22163986
http://dx.doi.org/10.1016/j.jnca.2011.05.003
http://dx.doi.org/10.1016/j.rcim.2016.02.004
http://dx.doi.org/10.1016/j.comcom.2016.03.007
http://dx.doi.org/10.1109/JPROC.2015.2513672
http://dx.doi.org/10.1016/j.knosys.2015.02.018
http://dx.doi.org/10.1016/j.pmcj.2014.07.003
https://en.wikipedia.org/wiki/Android_(operating_system)
http://dx.doi.org/10.1007/s11036-008-0112-y
http://dx.doi.org/10.1038/sj.jea.7500165
http://docs.spring.io/spring-data/data-document/docs/current/reference/html/#mapping-usage-annotations
http://docs.spring.io/spring-data/data-document/docs/current/reference/html/#mapping-usage-annotations

Future Internet 2019, 11, 215 19 of 20

15. Kim, D.H.; Kim, Y.; Estrin, D.; Srivastava, M.B. SensLoc: Sensing everyday places and paths using less energy.
In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys ’10), Zürich,
Switzerland, 3–5 November 2010.

16. Huseth, S.; Kolavennu, S. Localization in Wireless Sensor Networks. In Wireless Networking Based Control;
Springer: New York, NY, USA, 2011; pp. 153–174.

17. Lin, P.-J.; Chen, S.-C.; Yeh, C.-H.; Chang, W.-C. Implementation of a smartphone sensing system with social
networks: A location-aware mobile application. Multimed. Tools Appl. 2015, 74, 8313–8324. [CrossRef]

18. Gil, G.B.; Berlanga, A.; Molina, J.M. InContexto: Multisensor architecture to obtain people context from
smartphones. Int. J. Distrib. Sens. Netw. 2012, 8. [CrossRef]

19. Woerndl, W.; Manhardt, A.; Schulze, F.; Prinz, V. Logging user activities and sensor data on mobile devices.
In International Workshop on Modeling Social Media; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6904,
pp. 1–19.

20. Brunette, W.; Sodt, R.; Chaudhri, R.; Goel, M.; Falcone, M.; Orden, J.V.; Borriello, G. Open data kit sensors: A
sensor integration framework for android at the application-level. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, Low Wood Bay, Lake District, UK, 25–29 June
2012.

21. Wu, P.; Zhu, J.; Zhang, J.Y. MobiSens: A Versatile Mobile Sensing Platform for Real-World Applications.
Mobile Networks and Applications. Mob. Netw. Appl. 2013, 18, 60–80. [CrossRef]

22. Behan, M.; Krejcar, O. Smart Home Point as Sustainable Intelligent House Concept. In Proceedings of
the 12th IFAC Conference on Programmable Devices and Embedded Systems, Ostrava, Czech Republic,
25–27 September 2013.

23. Tarkoma, S.; Siekkinen, M.; Lagerspetz, E.; Xiao, Y. Smartphone Energy Consumption: Modeling and Optimization;
Cambridge University Press: Cambridge, UK, 2014.

24. Behan, M.; Krejcar, O. Modern smart device-based concept of sensoric networks. Eurasip. J. Wirel. Commun.
Netw. 2013, 2013, 155. [CrossRef]

25. Brida, P.; Benikovsky, J.; Machaj, J. Performance Investigation of WifiLOC Positioning System. In Proceedings
of the 34th International Conference on Telecommunications and Signal Processing, Budapest, Hungary,
18–20 August 2011.

26. Benikovsky, J.; Brida, P.; Machaj, J. Proposal of User Adaptive Modular Localization System for Ubiquitous
Positioning. In Proceedings of the 4th Asian Conference on Intelligent Information and Database Systems,
Kaohsiung, Taiwan, 19–21 March 2012.

27. Machaj, J.; Brida, P. Performance Comparison of Similarity Measurements for Database Correlation
Localization Method. In Proceedings of the 3rd Asian Conference on Intelligent Information and Database
Systems, Daegu, Korea, 20–22 April 2011.

28. Brida, P.; Machaj, J.; Gaborik, F.; Majer, N. Performance Analysis of Positioning in Wireless Sensor Networks.
Przegląd Elektrotechniczny 2011, 87, 257–260.

29. González, F.; Villegas, O.; Ramírez, D.; Sánchez, V.; Domínguez, H. Smart Multi-Level Tool for Remote
Patient Monitoring Based on a Wireless Sensor Network and Mobile Augmented Reality. Sensors 2014, 14,
17212–17234. [CrossRef]

30. Mao, L. Evaluating the Combined Effectiveness of Influenza Control Strategies and Human Preventive
Behavior. PLoS ONE 2011, 6, e24706. [CrossRef]

31. Cuzzocrea, A. Intelligent knowledge-based models and methodologies for complex information systems.
Inf. Sci. 2012, 194, 1–3. [CrossRef]

32. Lang, G.; Li, Q.; Cai, M.; Yang, T. Characteristic matrixes-based knowledge reduction in dynamic covering
decision information systems. Knowl. Based Syst. 2015, 85, 1–26. [CrossRef]

33. Hempelmann, C.F.; Sakoglu, U.; Gurupur, V.P.; Jampana, S. An entropy-based evaluation method for
knowledge bases of medical information systems. Expert Syst. Appl. 2016, 45, 262–273. [CrossRef]

34. Cavalcante, E.; Pereira, J.; Alves, M.P.; Maia, P.; Moura, R.; Batista, T.; Delicato, F.C.; Pires, P.F. On the interplay
of Internet of Things and Cloud Computing: A systematic mapping study. Comput. Commun. 2016, 89, 17–33.
[CrossRef]

35. Ma, H.; Liu, L.; Zhou, A.; Zhao, D. On Networking of Internet of Things: Explorations and Challenges. IEEE
Internet Things J. 2016, 3, 441–452. [CrossRef]

http://dx.doi.org/10.1007/s11042-013-1782-4
http://dx.doi.org/10.1155/2012/758789
http://dx.doi.org/10.1007/s11036-012-0422-y
http://dx.doi.org/10.1186/1687-1499-2013-155
http://dx.doi.org/10.3390/s140917212
http://dx.doi.org/10.1371/journal.pone.0024706
http://dx.doi.org/10.1016/j.ins.2012.02.037
http://dx.doi.org/10.1016/j.knosys.2015.03.021
http://dx.doi.org/10.1016/j.eswa.2015.10.023
http://dx.doi.org/10.1016/j.comcom.2016.03.012
http://dx.doi.org/10.1109/JIOT.2015.2493082

Future Internet 2019, 11, 215 20 of 20

36. Barbon, G.; Margolis, M.; Palumbo, F.; Raimondi, F.; Weldin, N. Taking Arduino to the Internet of Things:
The ASIP programming model. Comput. Commun. 2016, 89, 128–140. [CrossRef]

37. Mineraud, J.; Mazhelis, O.; Su, X.; Tarkoma, S. A gap analysis of Internet-of-Things platforms. Comput.
Commun. 2016, 89, 5–16. [CrossRef]

38. Ronglong, S.; Arpnikanondt, C. Signal: An open-source cross-platform universal messaging system with
feedback support. J. Syst. Softw. 2016, 117, 30–54. [CrossRef]

39. Krejcar, O. Threading Possibilities of Smart Devices Platforms for Future User Adaptive Systems. In
Proceedings of the Asian Conference on Intelligent Information and Database Systems, Kaohsiung, Taiwan,
19–21 March 2012.

40. Wang, S.; Wan, J.; Zhang, D.; Li, D.; Zhang, C. Towards smart factory for industry 4.0: A self-organized
multi-agent system with big data based feedback and coordination. Comput. Netw. 2016, 101, 158–168.
[CrossRef]

41. Bangemann, T.; Riedl, M.; Thron, M.; Diedrich, C. Integration of Classical Components into Industrial
Cyber-Physical Systems. Proc. IEEE 2016, 104, 947–959. [CrossRef]

42. Pfeiffer, T.; Hellmers, J.; Schön, E.M.; Thomaschewski, J. Empowering User Interfaces for Industrie 4.0.
Proc. IEEE 2016, 104, 986–996. [CrossRef]

43. Blind, K.; Mangelsdorf, A. Motives to standardize: Empirical evidence from Germany. Technovation 2016, 48,
13–24. [CrossRef]

44. Schleipen, M.; Lüder, A.; Sauer, O.; Flatt, H.; Jasperneite, J. Requirements and concept for Plug-and-Work
Adaptivity in the context of Industry 4.0. Automatisierungstechnik 2015, 63, 801–820. [CrossRef]

45. Schuh, G.; Potente, T.; Varandani, R.; Schmitz, T. Global Footprint Design based on genetic algorithms—An
“Industry 4.0” perspective. CIRP Ann. 2014, 63, 433–436. [CrossRef]

46. Xie, Z.; Hall, J.; McCarthy, I.P.; Skitmore, M.; Shen, L. Standardization efforts: The relationship between
knowledge dimensions, search processes and innovation outcomes. Technovation 2016, 48, 69–78. [CrossRef]

47. Gomez, C.; Chessa, S.; Fleury, A.; Roussos, G.; Preuveneers, D. Internet of Things for enabling smart
environments: A technology-centric perspective. J. Ambient Intell. Smart Environ. 2019, 11, 23–43. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.comcom.2016.03.016
http://dx.doi.org/10.1016/j.comcom.2016.03.015
http://dx.doi.org/10.1016/j.jss.2016.02.018
http://dx.doi.org/10.1016/j.comnet.2015.12.017
http://dx.doi.org/10.1109/JPROC.2015.2510981
http://dx.doi.org/10.1109/JPROC.2015.2508640
http://dx.doi.org/10.1016/j.technovation.2016.01.001
http://dx.doi.org/10.1515/auto-2015-0015
http://dx.doi.org/10.1016/j.cirp.2014.03.121
http://dx.doi.org/10.1016/j.technovation.2015.12.002
http://dx.doi.org/10.3233/AIS-180509
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Trends and Standards
	Problem Definition

	Related Works
	Feel the World Framework (FTW)
	MobiSens Platform
	SensLoc Location Service
	Open Data Kit Framework
	Discussion

	Sensorial Network Framework Embedded in Ubiquitous Mobile Devices
	Goals, Requirements, and User Stories
	System Architecture
	Activity and Flow Model
	State Models
	Implementation
	Frontend Application
	Backend Application

	Evaluation and Discussions
	Tuning and Testing of the Developed Solution
	Discussion of Results

	Conclusions and Future Works
	References

