
future internet

Article

Partitioning Convolutional Neural Networks to
Maximize the Inference Rate on Constrained
IoT Devices

Fabíola Martins Campos de Oliveira * and Edson Borin *

Institute of Computing, University of Campinas, Campinas 13083-852, SP, Brazil

* Correspondence: fabiola.oliveira@ic.unicamp.br (F.M.C.d.O.); borin@unicamp.br (E.B.)

Received: 3 September 2019; Accepted: 26 September 2019; Published: 29 September 2019

Abstract: Billions of devices will compose the IoT system in the next few years, generating a huge

amount of data. We can use fog computing to process these data, considering that there

is the possibility of overloading the network towards the cloud. In this context, deep

learning can treat these data, but the memory requirements of deep neural networks may

prevent them from executing on a single resource-constrained device. Furthermore, their

computational requirements may yield an unfeasible execution time. In this work, we propose

Deep Neural Networks Partitioning for Constrained IoT Devices, a new algorithm to partition

neural networks for efficient distributed execution. Our algorithm can optimize the neural network

inference rate or the number of communications among devices. Additionally, our algorithm

accounts appropriately for the shared parameters and biases of Convolutional Neural Network. We

investigate the inference rate maximization for the LeNet model in constrained setups. We show

that the partitionings offered by popular machine learning frameworks such as TensorFlow or by the

general-purpose framework METIS may produce invalid partitionings for very constrained setups.

The results show that our algorithm can partition LeNet for all the proposed setups, yielding up to

38% more inferences per second than METIS.

Keywords: Internet of Things; convolutional neural networks; graph partitioning; distributed

systems; resource-efficient inference

1. Introduction

In the next few years, a burst in the number of Internet-of-Things (IoT) devices is expected [1–3].

IoT devices present many sensors and can generate a large amount of data per second, which will

prevent these data from being sent to the cloud for processing due to the high and variable latency and

limited bandwidth of current networks [1,4]. Thus, an approach to process the large amount of data

generated by the IoT and to efficiently use the IoT limited resources is fog computing, which allows

the applications or part of them to be executed closer to the devices or on the devices themselves [5].

To achieve the billions of devices estimated for the IoT system, many of them will have to

be constrained, for instance, in size and cost. A constrained device presents limited hardware in

comparison to the current devices connected to the Internet. Recently, a classification of constrained

devices has been proposed, showing the increasing importance of them in the IoT [6]. These devices

are constrained due to their embedded nature and/or size, cost, weight, power, and energy.

Considering that these constraints impact on the amount of memory, computational power,

communication performance, and battery life, these resources must be properly employed

to satisfy applications requirements. The proposed classification not only differentiates more

powerful IoT devices such as smartphones and single-board computers such as Raspberry Pi from

Future Internet 2019, 11, 209; doi:10.3390/fi11100209 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0001-8531-4559
https://orcid.org/0000-0003-1783-4231
http://dx.doi.org/10.3390/fi11100209
http://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/11/10/209?type=check_update&version=3

Future Internet 2019, 11, 209 2 of 30

constrained devices but also delimits the IoT scope, which does not include servers either desktop or

notebook computers.

To obtain valuable information from the vast amount of data generated by the IoT, deep learning

can be used since it can extract automatic features from the data and strongly benefits from large

amounts of data [7]. Nevertheless, deep learning techniques often present a high computational cost,

which brings more challenges in using resource-limited devices even if we only consider executing

the inference phase of these methods. These constrained devices may impact an application that has

as requirements real-time responses or a high inference rate, for instance.

The size and computational requirements of current Deep Neural Networks (DNNs) may not fit

constrained IoT devices. Two approaches are commonly adopted to enable the execution of DNNs

on this type of device. The first approach prunes the neural network model so that it requires fewer

resources. The second approach partitions the neural network and executes in a distributed way on

multiple devices. In some works that employ the first approach, pruning a neural network results in

accuracy loss [8–10]. On the other hand, several works can apply the first approach to reduce DNN

requirements and enable its execution on limited devices without any accuracy loss [11–13]. However,

it is important to notice that, even after pruning a DNN, its size and computational requirements may

still prevent the DNN from being executed on a single constrained device. Therefore, our focus is on

the second approach. In this scenario, the challenge of how to distribute the neural network aiming

to satisfy one or more requirement arises.

Some Machine Learning (ML) and IoT frameworks that offer the infrastructure to

distribute the neural network execution to multiple devices already exist such as TensorFlow,

Distributed Artificial Neural Networks for the Internet of Things (DIANNE), and DeepX [14–16].

However, they require the user to manually partition the neural network and they limit the

partitioning into a per-layer approach. The per-layer partitioning may prevent neural networks from

being executed on devices with more severe constraint conditions, for instance, some devices from

the STM32 32-bit microcontroller family [17]. This may happen because there may be a single DNN

layer whose memory requirements do not fit the available memory of these constrained devices.

On the other hand, other general-purpose, automatic partitioning tools such as SCOTCH [18] and

METIS [19] do not take into account the characteristics of neural networks and constrained devices.

For this reason, they provide a suboptimal result or, in some cases, they are not able to provide any

valid partitioning.

Recently, we proposed Kernighan-and-Lin-based Partitioning [20], an algorithm to automatically

partition neural networks into constrained IoT devices, which aimed to reduce the number of

communications among partitions. Communication reduction is important so that the network is not

overloaded, a situation that can be aggravated in a wireless connection shared with several devices.

Even though reducing communication may help any system, in several contexts, one of the main

objectives is to optimize (increase) the inference rate, especially on applications that need to process

a data stream [5,21–23].

In this work, we extend this preliminary work and propose

Deep Neural Networks Partitioning for Constrained IoT Devices (DN2PCIoT), an algorithm to

automatically partition DNNs into constrained IoT devices, including inference rate maximization or

communication reduction as objective functions. Additionally, for both objective functions, this new

algorithm accounts more precisely for the amount of memory required by the shared parameters

and biases of Convolutional Neural Networks (CNNs) in each partition. This feature allows our

algorithm to provide valid partitionings even when more constrained setups are employed in the

applications.

We are concerned with scenarios in which data are produced within constrained devices and

only constrained devices such as the ones containing microphones and cameras are available to

process these data. Although constrained devices equipped with cameras might not be constrained

Future Internet 2019, 11, 209 3 of 30

in some of their resources, we have to consider that only part of these resources is available for extra

processing. After all, the devices have to execute their primary task in the first place.

Several IoT resources can be considered when designing an IoT solution to improve quality

of service. The main IoT issues include the challenges in the network infrastructure and the large

amount of data generated by the IoT devices, but other requirements such as security, dependability,

and energy consumption are equally important [24]. Additionally, minimizing communication is

important to reduce interference in the wireless medium and to reduce the power consumed by

radio operations [25]. These issues and requirements usually demand a trade-off among the amount

of memory, computational power, communication performance, and battery life of the IoT devices.

For instance, by raising the levels of security and dependability, offloading processing to the cloud,

and/or processing data on the IoT devices, energy consumption is raised as well, impacting on the

device battery life. In this work, we are concerned with the requirement that many DNN applications

presents: the DNN inference rate maximization. Our objective is to treat the large amount of data

generated by the IoT devices by executing DNNs on the devices themselves. We also address some

of the challenges in the network infrastructure by reducing communication between IoT devices.

We use the inference rate maximization objective function to partition the LeNet CNN model

using several approaches such as per-layer partitionings provided by popular ML frameworks,

partitionings provided by METIS, and by our algorithm DN2PCIoT. We show that DN2PCIoT

starting from random partitionings or DN2PCIoT starting from partitionings generated by the other

approaches results in partitionings that achieve up to 38% more inferences per second than METIS.

Additionally, we also show that DN2PCIoT can produce valid partitionings even when the other

approaches cannot. The main contributions of this article are summarized as follows:

• the DN2PCIoT algorithm that optimizes partitionings aiming for inference rate maximization

or communication reduction while properly accounting for the memory required by the CNNs’

shared parameters and biases;
• a case study whose results show that the DN2PCIoT algorithm is capable of producing

partitionings that achieve higher inference rates and that it is also capable of producing valid

partitionings for very constrained IoT setups;
• a case study of popular ML tools such as TensorFlow, DIANNE, and DeepX, which may not

be able to execute DNN models on very constrained devices due to their per-layer partitioning

approach;
• a study of the METIS tool, which indicates that it is not an appropriate tool to partition DNNs for

constrained IoT setups because it may not provide valid partitionings under these conditions;

• an analysis of the DNN model granularity results to show that our DNN with more grouping

minimally affects the partitioning result;

• an analysis of how profitable it is to distribute the inference rate execution among multiple

constrained devices; and
• a greedy algorithm to reduce the number of communications based on the available amount of

memory of the devices.

This paper is organized as follows. Section 2 provides the background in CNNs and neural

networks represented as a dataflow graph; it also presents the related work in ML and IoT tools and

in general-purpose, automatic partitioning algorithms. Section 3 presents the DN2PCIoT algorithm.

Section 4 explains how LeNet was modeled, the adopted approaches, and the experiment setups.

Section 5 presents and discusses the results. Finally, Section 6 provides the conclusions.

2. Background and Related Work

In this section, the background in CNNs and important concepts in modeling neural networks

as a dataflow graph are discussed, as well as the related work in specific ML and IoT tools and

general-purpose partitioning algorithms.

Future Internet 2019, 11, 209 4 of 30

2.1. Convolutional Neural Network

CNNs are composed of convolution layers, pooling layers, and fully connected layers [26].

The pooling layers transform the high-resolution input data into a coarser resolution and also make

the input invariant to translations. At the neural network end, a fully connected layer indeed classifies

the input. CNNs arrange the neurons of each layer in three dimensions: height, width, and depth.

The LeNet model that we used in this work was the first successful CNN, which was first

applied to recognize handwritten digits in images [27]. However, it can be applied to other kinds

of recognition as well [28]. In convolution layers, there is a set of shared parameters and biases for

each layer, which is shared among all the neurons of that layer. For pooling layers, in this version of

LeNet, there is a set of biases and trainable coefficients for each layer, which is also shared among all

the neurons of that layer. In fully connected layers, in this version of LeNet, each neuron has its own

parameter set and bias.

2.2. Dataflow Graphs and Neural Network Models

Some important concepts need to be defined before proceeding with the related work in ML,

IoT, and partitioning tools. Neural networks can be modeled as a dataflow graph. Dataflow graphs

are composed of a directed acyclic graph that models the computation of a program through its data

flow [29]. In a dataflow graph, vertices represent computations and may send/receive data to/from

other vertices in the graph. In our approach, a vertex represents one or more neural network neurons

and may also require an amount of memory to store the intermediate (layer) results and the neural

network parameters required by the respective neurons it represents. Dataflow graph edges may

contain weights to represent different amounts of data that are sent to other vertices.

Figure 1a shows a simple fully connected neural network represented as a dataflow graph. In this

graph, each dataflow vertex represents one neural network neuron. The first layer is the input layer

with two vertices; each vertex requires 4 bytes (B) to store the neuron input value, if we use data

represented by 4 B. The second layer is the hidden fully connected layer; each vertex requires 12 B,

being 4 B to store the neuron intermediate result and the other 8 B to store the neuron parameters,

which are the edge weights that are multiplied by each input value. It is worth noting that, in this

example, no bias is used, so the bias weight is not needed. Furthermore, in the case of CNNs, there

is only one set of parameters per layer in the case of convolution layers and not parameters per

neurons as in this example. Each vertex in this layer performs 4 floating-point operations (FLOP) per

inference, which correspond to the multiplication of the input values by the parameters, to the sum

of both multiplied values, and the application of a function to this result. The last layer is a fully

connected output layer that contains one vertex; this vertex requires 16 B, being 4 B to store the final

result and the other 12 B to store the neuron parameters. It performs 6 FLOP, which correspond to the

three multiplications of the parameters by the layer input values, to the two sums of the multiplied

values, and the application of a function to this result.

Figure 1b shows the same dataflow graph partitioned for distributed execution on two fictional

devices: device A, which can perform 18 FLOP/second (FLOP/s) and provide 20 B of memory

and device B, which can perform 18 FLOP/s and provide 52 B of memory. Additionally, the

communication link between these devices can transfer 4 B per second. The amount of transferred

data per inference in this partitioning is 8 B because, although six edges are crossing the partitions,

they represent the data transfer of only 8 B.

Future Internet 2019, 11, 209 5 of 30

x1

x2

a11

a12

a13

a21

8 bytes 16 bytes

12 FLOP

36 bytes

6 FLOP

(a)

x1

x2

a11

a12

a13

a21

8 bytes

0 FLOP

52 bytes

18 FLOP

transfer of

8 bytes

device A
18 FLOP/s18 FLOP/s

20 bytes 52 bytes

device B

(b)

Figure 1. Example of: (a) how a fully connected neural network may be represented as a dataflow

graph; and (b) how it can be partitioned for execution on two devices.

We define the cost of a partitioning as the calculation of the objective (or cost) function for

that partitioning. If we want to optimize the neural network for the inference rate, then this cost

is the inference rate calculation for the partitioning that we have at hand. Since all devices and

communication links can work in parallel, the inference rate of a partitioned neural network can

be calculated as the minimum value between the inference rate of the devices and the inference rate

of the communication links between each pair of devices, according to

inference rate = min(inference ratedevices, inference ratelinks). (1)

The inference rate of the devices is calculated as the minimum value between each device

computational power divided by the total computational requirement of the vertices that compose

the partition assigned to that device:

inference ratedevices = min

[(

computational power

computational load

)

d

]

, ∀d ∈ 1, ..., p, (2)

in which p is the number of devices in the system. The inference rate of the communication links

between each pair of devices is calculated as the minimum value between the transfer performance of

each link divided by the total communication requirement of the two partitions involved in this link:

inference ratelinks = min

[

(

link performance

communication load

)

dq

]

, ∀d, q ∈ 1, ..., p, (3)

in which dq represents the communication link between devices d and q.

Thus, taking into account the previous equations, in the partitioning of Figure 1b, device A

can perform 18/0 = ∞ inferences/s, which means device A does not limit the inference rate.

The communication link between device A and device B can perform 4/8 = 0.5 inference/s. Device B

can perform 18/18 = 1 inference/s. Therefore, the inference rate of this partitioning is 0.5 inference/s,

which is the minimum value among the inference rate of the devices and the communication links.

It is worth noting that this partitioning is valid because both partitions respect the memory limit of

the devices.

2.3. Problem Definition

In this subsection, we formally define the partitioning problem as a partitioning

objective-function optimization problem subject to constraints. First, we define a function that returns

1 if an element n is assigned to partition p and 0 otherwise:

Future Internet 2019, 11, 209 6 of 30

partition(p, n) =

{

1, if n is assigned to p;

0, otherwise.
(4)

The partitioning problem can be defined as a partitioning objective-function optimization

problem subject to memory constraints:

optimize cost

subject to ∑
N
n=1 mn × partition(p, n) + ∑

L
j=1 msbp j

× partition(p, j) ≤ mp, ∀p ∈ [1...P],
(5)

in which cost is the objective function (detailed below), N is the number of neurons in the DNN, mn

is the memory required by element n, L is the number of layers of the DNN, and sbp is the shared

parameters and biases.

If we want to reduce communication, we can define a function that returns 1 if two elements are

assigned to different partitions and 0 otherwise:

diff(i, j) =

{

1, if i and j are assigned to different partitions;

0, otherwise.
(6)

Then, we can define the communication cost as

communication cost =
N

∑
i=1

adj(i)

∑
j=1

edge weightij × diff(i, j), (7)

in which adj(i) are the adjacent neurons of neuron i and edge weightij is the edge weight between

neurons i and j.

If we want to maximize the inference rate, then Equation (1) represents the cost function and,

to formally define the optimization problem, we can rewrite the computational load of device d of

Equation (2) as

computational loadd =
N

∑
i=1

computational loadi × partition(d, i), (8)

and the communication load between devices d and q of Equation (3) as

communication loaddq =
N

∑
i=1

adj(i)

∑
j=1

edge weightij × diff(i, j)× partition(d, i)× partition(q, j). (9)

2.4. Machine Learning and IoT Tools

When dealing with the problem of deploying deep learning models on IoT devices, two

approaches are commonly used: either the neural network is reduced so that it fits constrained

devices (the neural network can use fewer neurons and/or fewer parameters) or the neural network

execution is distributed among more than one device, which is an approach that may present

performance issues.

One approach to reducing the neural network size to enable its execution on IoT devices is

the Big-Little approach [8]. In this approach, a small, critical neural network is obtained from the

original DNN to classify the most important classes that should be identified in real time such as the

occurrence of fire in a room. For other noncritical classes, data are sent to the cloud for inference in

the complete neural network. This approach depends on the cloud for the complete inference and

presents some accuracy loss.

Some accuracy loss also happens in the work proposed by Leroux et al. [10], which build several

neural networks with an increasing number of parameters. Their approach is called Multi-fidelity

Future Internet 2019, 11, 209 7 of 30

DNNs. The neurons of these neural networks are designed to match different IoT devices according to

their computational resources. This design aims to satisfy the heterogeneity of IoT systems. However,

there is some accuracy loss for each version of the original neural network that they used. This loss

may not be acceptable under some circumstances.

DeepIoT proposes a unified approach to compress DNNs that works for CNNs, fully connected

neural networks, and recurrent neural networks [13]. The compression makes smaller dense matrices

by extracting redundant neurons from the DNN. It can greatly reduce the DNN size, which also

greatly reduces the execution time and energy consumption without loss of accuracy. However,

as discussed in the Introduction, even after pruning a DNN, its requirements may still prevent it

from being executed on a single constrained device. Thus, this approach may not be sufficient and

we focus on distributing the execution of DNNs to multiple constrained devices.

Regarding the distributed execution of neural networks, TensorFlow is the Google ML

framework that distributes both the training and the inference of neural networks among

heterogeneous devices, ranging from mobile devices to large servers [14]. The partitioning must

be defined by the user, which is limited to a per-layer fashion to enable the use of TensorFlow’s

implemented functions. The per-layer partitioning not only produces suboptimal results [20] but

also cannot be deployed on very constrained devices. Additionally, TensorFlow aims to speed up

the training of neural networks and does not consider the challenges of constrained IoT systems,

for instance, memory, communication, computation, and energy requirements.

Distributed Artificial Neural Networks for the Internet of Things (DIANNE) is an IoT-specific

framework that models, trains, and evaluates neural networks distributed among multiple

devices [15]. The tool is optimized for streaming inference, but here again, the user must manually

partition the model into layers, which may limit the performance and may not work for very

constrained scenarios.

When it is not possible to run an application on a single IoT device, another approach is to

offload some parts of the code onto the cloud. DeepX is a hybrid approach that not only reduces the

neural network size but also offloads the execution of some neural network layers onto the cloud,

dynamically deciding between its local CPU, GPU, or the cloud itself [16]. Besides the fact that

the DeepX runtime may be computationally too heavy to run on constrained devices that are more

constrained than smartphones, the model must be partitioned into layers again. Additionally, DeepX

may not be able to distribute the neural network to other local devices.

The code offloading approach was also used by Benedetto et al. [30] in a framework that decides

if some general computation should be executed locally or should be offloaded onto the cloud.

Although this approach is interesting, as well as the fact that constrained IoT devices may prevent

their runtime program to execute on such a small device, in this work, we are considering a scenario

in which it is not possible to send data to the cloud all the time and we have only constrained devices

that can perform the inference of DNNs.

Li, Ota, and Dong [31] proposed the opposite situation: a tool to offload deep learning on cloud

computing onto edge computing, i.e., deep learning processing that would be first executed on the

cloud can also be offloaded onto IoT gateways and other edge devices. This offload aims to improve

learning performance while reducing network traffic, but it also employs a per-layer approach.

Finally, Zhao, Barijough, and Gerstlauer [32] proposed DeepThings, a framework for the

inference distribution with a partitioning along the neural network data flow to resource-constrained

IoT edge devices. However, they used a small number of devices and a high amount of memory,

avoiding the use of more constrained devices such as the ones used in this work.

We summarize all the ML and IoT tools discussed in this subsection in Table 1 with their main

characteristics.

Future Internet 2019, 11, 209 8 of 30

Table 1. Summary of ML and IoT tools discussed in the related work.

Approach
Reduce DNN to Fit Loss of Offload to Partitioning

Type
Constrained Memory? Accuracy? the Cloud? Type

Big-Little [8] Yes Yes Yes per layers ML IoT
DIANNE [15] No No No per layers ML IoT

DeepX [16] Yes Yes Yes per layers ML IoT
TensorFlow [14] No No No per layers ** ML

DeepIoT [13] Yes No No N/A * ML IoT
Li, Ota, and Dong [31] No No Yes per layers ML IoT

DeepThings [32] No No No
along the neural

ML IoT
network layers

Multifidelity [10] Yes Yes No N/A ML IoT
Benedetto et al. [30] No No Yes per neurons IoT

* Not applicable. ** To use implemented functions.

2.5. Partitioning Algorithms

As explained above, the computation distribution may affect inference performance.

One solution to avoid these issues is to use automatic, general-purpose partitioning algorithms to

define a profitable partitioning for the DNN inference. One of the tools to do that is SCOTCH,

which performs graph partitioning and static mapping [18]. The goal of this tool is to balance

the computational load while reducing communication costs. However, as SCOTCH was not

designed for constrained devices, there is no memory constraint treatment and it may produce

invalid partitionings. Additionally, this tool cannot factor redundant edges out, which are edges that

represent the same data transfer to the same partition, a situation that often happens in partitioned

neural networks.

Kernighan and Lin originally proposed an algorithm [33] to partition graphs that has a large

application in distributed systems [34–36]. First, their heuristic randomly partitions a graph that may

represent the computation of some application among the partitions. Then, the algorithm calculates

the communication cost for this random initial partitioning and tries to improve it by swapping

vertices from different partitions and calculating the gain or loss in performing this swap. The best

swap operation in each iteration is chosen and its respective vertices are locked for the next iterations

and cannot be selected anymore until every pair is selected. When every pair is selected, the whole

process may be repeated while improvements are made so that it is possible to achieve a near-optimal

partitioning, according to the authors. This algorithm also accounts for partition balance in the hope

of achieving an adequate performance while reducing communication.

Another tool is METIS, an open-source library and software from the University of Minnesota

that partitions large graphs and meshes and also computes orderings of sparse matrices [19]. This tool

employs an algorithm that partitions graphs in a multilevel way, i.e., first, the algorithm gradually

groups the graph vertices based on their adjacency until the graph presents only hundreds of vertices.

Then, the algorithm applies some partitioning algorithm such as Kernighan and Lin [33] to the small

graph and, finally, returns to the original graph also in a multilevel way, performing refinements with

the vertices of the edges of the partitions during this return. METIS also reduces communication

while balances all the other constraints, which may be memory and computational load, for instance.

However, METIS does not present an appropriate treatment of memory constraints either and, thus,

may produce invalid partitionings. Additionally, METIS cannot eliminate redundant edges either.

A multilevel Kernighan and Lin approach was developed aiming to achieve the near-optimal

solutions of Kernighan and Lin and the fast execution time of METIS to partition software

components in mobile cloud computing [37]. This solution takes into account the system

heterogeneity and local devices but does not consider memory constraints or redundant edges.

Furthermore, the aim is to minimize bandwidth (by reducing weighted communication), which may

Future Internet 2019, 11, 209 9 of 30

not yield the best result for other objective functions such as inference rate. This solution is fast but

sacrifices the bandwidth result.

All the general-purpose approaches discussed so far in this subsection are edge-cut partitionings,

i.e., the algorithms partition the graph vertices into disjoint subsets [38]. Another strategy to

general-purpose graph partitioning is vertex-cut partitioning, which partitions the graph edges into

disjoint subsets, while the vertices may be replicated among the partitions. Rahimian et al. [39]

proposed JA-BE-JA-VC, an algorithm that performs vertex-cut partitioning. Their approach attempts

to balance the partitioning aiming to satisfy memory constraints. The main disadvantage of

this approach is that it needs vertex replicas, that is, computation replicas, and synchronization,

which may involve more communication. When we consider constrained IoT devices and their

computational performance, the computation replicas may decrease the inference rate of neural

networks to a value that does not comply with the application requirements. As this algorithm is

for general purpose, it also does not eliminate redundant edges and does not account for the shared

parameters and biases of CNNs adequately.

The tools presented in this section may be useful for distributed execution of neural

networks, although the ML frameworks do not present an automatic, flexible partitioning and

the general-purpose partitioning algorithms do not treat memory restrictions, redundant edges,

shared parameters, and biases properly. We summarize the partitioning algorithms discussed in

this subsection in Table 2 with their main characteristics. The next section presents the proposed

DN2PCIoT and discusses how we deal with these issues.

Table 2. Summary of partitioning algorithms discussed in the related work.

Approach
Eliminate

Adequate
Memory Partition

Redundant
Objective- Account

Constraints? Balance?
Edges?

Function of Shared
Parameters?

SCOTCH [18] No
With some load

No
Reduce

No
unbalancing communication

KL [33] Yes
With some

No
Reduce

No
unbalancing communication
With some

Reduce
METIS [19] No unbalancing No

communication
No

in the constraints

Multilevel KL [37] Yes No No
Reduce

No
communication

JA-BE-JA-VC [39] No Yes No
Balance

No
partitions

Maximize

Our approach
inference

(DN2PCIoT)
Yes No Yes rate or Yes

reduce
communication

3. Proposed Deep Neural Networks Partitioning for Constrained IoT Devices (DN2PCIoT)

The DN2PCIoT algorithm is inspired by the Kernighan and Lin’s approach, which attempts

to find a better solution than its initial partitioning by swapping vertices from different partitions.

The Kernighan and Lin’s algorithm avoids some local minimum solutions by allowing swaps that

produce a partitioning that is worse than the previous one. This situation can happen if such a swap

is the best operation at some point in the algorithm.

DN2PCIoT accepts a dataflow graph as the input for the neural network, in which the vertices

represent the neural network neurons (input data, operations, or output data), and the edges

represent data transfers between the vertices. This same approach is used in SCOTCH and METIS.

DN2PCIoT also receives a target graph, which contains information about the devices (the number of

Future Internet 2019, 11, 209 10 of 30

them in the system, computational power, communication performance, and system topology) in a

way similar to SCOTCH.

To work with more than two partitions, the original Kernighan and Lin’s heuristic repeatedly

applies its two-partition algorithm to pairs of subsets of the partitions. This approach may fall into

local minima and we avoid some of these local minima by allowing the algorithm to work with

multiple partitions by considering swaps between any partitions during the whole algorithm.

The swap operation in the original Kernighan and Lin’s algorithm also led to other local minima

since it was limited to produce partitions with the same number of vertices of the initial partitioning.

To solve this limitation, we introduced a “move” operation, in which the algorithm considers moving

a single vertex from one partition to another, without requiring another vertex from the destination

partition to be moved back to the source partition of the first vertex.

In the case of the communication reduction objective (or cost) function, this move operation

allows all vertices to be moved to a single partition and, thus, the communication would be zero,

which is the best result for this objective function. However, the dataflow graph containing the

neural network model may not fit a single memory-constrained IoT device due to memory limitations.

Hence, we added memory requirements for each vertex in the dataflow graph and modified the graph

header to contain information about the shared parameters and biases for CNNs. Furthermore, we

designed the DN2PCIoT algorithm to consider the amount of memory of the devices as a restriction

for the algorithm, i.e., the operations cannot be performed if there is not sufficient memory in the

partitions. This feature allowed the initial partitioning and any partitioning in the middle and at the

end of the algorithm to be unbalanced. At this point, unlike SCOTCH and METIS, DN2PCIoT could

always produce valid partitionings.

The DN2PCIoT algorithm also includes a feature to factor redundant edges out of the cost

computation. Redundant edges represent the transfer of the same data between partitions, which

happens when there are multiple edges from one vertex to vertices that are assigned to the same

partition. Neither SCOTCH nor METIS considers redundant edges, i.e., they show a number of

communications that are much larger than the real value that must be indeed transferred.

Another feature that is not present in SCOTCH or METIS is the account for shared parameters

and biases in the memory computation. The shared parameters are an important feature in CNNs

because they can greatly reduce the amount of memory required to store the neural network. Besides

that, they also help in the training phase and in avoiding overfitting as there are fewer parameters to

train. A conservative solution that could be applied to SCOTCH or METIS would be to copy each set

of shared parameters and biases for every vertex that needs them, however, the resultant graph would

require much more memory than it is really necessary. DN2PCIoT accounts for shared parameters

and biases only when they are necessary, i.e., there is one corresponding set of shared parameters

and biases per partition only if there is at least one neuron that needs it in the partition. This feature

allows DN2PCIoT to produce valid partitionings that require a realistic amount of memory and to

produce valid partitionings even for very constrained devices, unlike METIS.

Finally, we designed DN2PCIoT to produce partitionings that maximize the neural network

inference rate or reduce the amount of transferred data per inference. Other objective functions can

be easily employed in DN2PCIoT due to its design. Different from METIS, which reduces the number

of communications while attempting to balance the computational load and memory requirements

in the hope of achieving good computational performance, DN2PCIoT directly optimizes the

partitioning for inference rate maximization, using the equations explained in Sections 2.2 and 2.3.

In the inference rate maximization, the device or connection between devices that most limit the

result is the maximum inference rate that some partitioning can provide.

The pseudocode of DN2PCIoT is listed in Algorithm 1. The first step of the algorithm is to

initialize bestP, which contains the best partitioning found so far, with the desired initial partitioning.

This initial partitioning can be random-generated or defined by the user in an input file, which can be

the result of another partitioning tool, for instance. It is worth noting that neither METIS nor SCOTCH

Future Internet 2019, 11, 209 11 of 30

can start from a partitioning obtained by another algorithm. After that, the algorithm runs in epochs,

which are the iterations of the outer loop (Lines 3–26). This outer loop runs some epochs until the best

partitioning found so far is no longer improved. For each epoch, the algorithm first unlocks all the

vertices (Line 5) and initializes the current partitioning with the best partitioning found so far (Line 6).

After that, the inner loop, which is a step of the epoch, searches for a better partitioning and updates

the current and best partitionings (Lines 7–25). In each step, DN2PCIoT seeks the best operation

locally to identify which operation (swap or move) according to the objective function is better for the

current partitioning (Line 8). This function is further detailed in Algorithm 2. Then, the best operation

chosen in this function is applied to the current partitioning and the corresponding vertices are locked

(Lines 10–15), i.e., they are not eligible to be chosen until the current epoch finishes. The best operation

in each step may worsen the current partitioning because, if there are no operations that improve the

partitioning, then the best operation is the one that increases the cost minimally. If there are no valid

operations, the current step and the epoch finish (Lines 16–18). This happens when all vertices are

locked or when there are unlocked vertices, but they cannot be moved or swapped due to memory

constraints, i.e., if they are moved or swapped, then the partitioning becomes invalid. When the

current partitioning is updated, its cost is compared to the best partitioning cost (Line 21) and, if the

current partitioning cost is better, then the best partitioning is updated and the bestImproved flag is set

to true so that the algorithm runs another epoch to attempt a better partitioning. Figure 2 shows the

flowchart related to Algorithm 1 and represents a general view of our proposal (DN2PCIoT).

Algorithm 1 DN2PCIoT algorithm.

1: function DN2PCIOT(initialPartitioning)
2: bestP ← initialPartitioning;
3: repeat

4: bestImproved← f alse;
5: unlockAllNodes();
6: currentP ← bestP;
7: while there are unlocked nodes do

8: op← f indBestValidOperation(currentP);
9: /* Perform the operation */

10: if op.type = SWAP then

11: currentP.swap(op.v1, op.v2);
12: lockVertex(op.v1); lockVertex(op.v2);
13: else if op.type = MOVE then

14: currentP.move(op.v, op.targetPartition);
15: lockVertex(op.v);
16: else if op.type = INVALID then

17: /* No valid operations */
18: break;
19: end if

20: /* Update the best partitioning */
21: if currentP.cost() < bestP.cost() then

22: bestP ← currentP;
23: bestImproved← true;
24: end if

25: end while

26: until bestImproved = f alse
27: return bestP;
28: end function

Future Internet 2019, 11, 209 12 of 30

Initialize bestP with initial partitioning

Unlock all vertices

Initialize currentP with bestP

Store the result of findBestValidOperation(currentP) on op

op.type

SWAP

MOVE

INVALID

swap op.v1 and op.v2 of currentP

lock vertices v1 and v2

move op.v to op.targetPartition

lock vertex v

Yes

Yes

Yes

No

No

No

currentP.cost < bestP.cost?

Update bestP with currentP

Is there
any unlocked

vertex?

Partitioning

improved?

Return bestP

Figure 2. Flowchart of Algorithm 1.

Algorithm 2 shows the pseudocode for the findBestValidOperation() function. First, the algorithm

initializes the op type with “invalid”. If this function returns this value, then there are no operations

that maintain the partitioning valid. After that, a loop runs through all the unlocked vertices

searching for the best valid operation for each vertex in this set (Lines 3–32). For each vertex,

the algorithm searches for the best move for it (Lines 4–15) and the best swap using this vertex (Lines

16–31). In the best move search, a loop runs through all the partitions (Lines 5–15). In this loop, the

algorithm changes the current partition of the vertex being analyzed (Line 6), checks if the partitioning

remains valid (Line 7), calculates the new cost of this partitioning according to the objective function

(Line 8), checks if this new partitioning has a better cost than the current one (larger inference rate or

fewer communications) or if no valid operation was found so far (Line 9), and updates, if necessary,

bestCost with the better value and op with the move operation and the corresponding vertex and

partition (Lines 10–12). In the best swap search, another loop runs through all the unlocked vertices

(Lines 16–31). In this loop, the algorithm changes the current partition of both vertices that are being

analyzed (Lines 17–19), checks if the partitioning remains valid (Line 20), calculates the new cost of

this partitioning according to the objective function (Line 21), checks if this new partitioning has

a better cost than the current one (larger inference rate or fewer communications) or if no valid

operation was found so far (Line 22), and updates, if necessary, bestCost with the better value and

op with the swap operation and the corresponding vertices and partitions (Lines 23–25). At the end

of the loop, the original partitions of the vertices being analyzed are restored to proceed with the

Future Internet 2019, 11, 209 13 of 30

swap search (Lines 28–29). After the outer loop finishes, the best operation found in this function is

returned to DN2PCIoT (or the “invalid” operation, if no valid operations were found).

Algorithm 2 findBestValidOperation function.

1: function FINDBESTVALIDOPERATION(currentP)
2: op.type← INVALID;
3: for i← unlocked. f irst to unlocked.last do

4: originalPi← currentP[i];
5: for p← 1 to numberO f Partitions do

6: currentP[i] ← p;
7: if validPartitioning(currentP) = true then

8: cost← computeCost(currentP);
9: if cost < currentP.cost or op.type = INVALID then

10: bestCost← cost;
11: op← moveOp(i, p);
12: op.type← MOVE;
13: end if

14: end if

15: end for

16: for j← unlocked. f irst to unlocked.last do

17: originalPj← currentP[j];
18: currentP[i] ← originalPj;
19: currentP[j] ← originalPi;
20: if validPartitioning(currentP) = true then

21: cost← computeCost(currentP);
22: if cost < currentP.cost or op.type = INVALID then

23: bestCost← cost;
24: op← swapOp(i, originalPi, j, originalPj);
25: op.type← SWAP;
26: end if

27: /* Restore current partitioning */
28: currentP[i] ← originalPi;
29: currentP[j] ← originalPj;
30: end if

31: end for

32: end for

33: return op;
34: end function

4. Methodology

In this section, we show the LeNet models and the device characteristics that we used in the

experiments as well as the experiment details and approaches.

4.1. LeNet Neural Network Model

In this work, we used the original LeNet-5 DNN architecture [27] as a case study. Although

LeNet is the first successful CNN, its lightweight model is suitable for constrained IoT devices.

In this paper, we show that even a lightweight model such as LeNet requires partitioning to

execute on constrained IoT devices. Furthermore, several works have been recently published using

LeNet [40–42], causing this CNN to be still relevant nowadays.

The LeNet neurons were grouped into vertices. The neurons in the depth dimension of the

LeNet convolution and pooling layers were grouped into one vertex because two neurons in these

layers in the same position of width and height but different positions in depth present the same

Future Internet 2019, 11, 209 14 of 30

communication pattern. Thus, a partitioning algorithm would tend to assign these vertices to the

same partition. For the inference rate, this modeling only affects the number of operations that a

vertex will need to calculate. In the fully connected layers, as the width and height have size one, the

depth was not modeled as having size one because this would limit too much the partitioning and the

constrained devices able to execute this partitioning. For instance, only one setup of our experiments

would fit a partitioning with this grouping, which is the least memory-constrained setup that we used

in this work.

Two versions of LeNet were modeled:

• LeNet 1:1: the original LeNet with 2343 vertices (except for the depth explained above); and

• LeNet 2:1: LeNet with 604 vertices, in which the width and height of each convolution and

pooling layer were divided by two, except for the last pooling layer, and the depth of the fully

connected layers was divided by four, i.e., every four neurons in each of these layers were

grouped to form one vertex in the model.

Figure 3 shows the dataflow graph of each LeNet version with the following per-layer data:

the number of vertices in height, width, and depth, the layer type, and the amount of transferred

data in byte required by each edge in each layer. In Figure 3, the cubes represent the original LeNet

neurons and the circles and ellipses represent the dataflow graph vertices.

..
. ..
. ..

.

..
.

...

...

...
...

...

..
. ..
. ..
.

..
.

...

...

...

...

...

..
. ..
. ..
.

..
.

...

...

...

...

...

..
. ..
. ..
.

......

............

...

..
. ..
. ..
.

..
.

... 1
1

1
1

1
1

11
1

11

32

32

eacheacheacheacheacheacheach
edge:edge:edge:edge:edge:edge:edge:
8B8B8B

input

28

28 48B48B

convolutionconvolution

14

14

poolingpooling

10

10

10

128B128B

5

5
120

fully connectedfully connectedfully connected

84

(a)

..
. ..
. ..

.

..
.

...

...

...
...

...

..
. ..
. ..
.

..
.

...

...

...

...

...

..
. ..
. ..
.

..
.

...

...

...

...

...

...

eplacements

1

1

1
1

1
1

11
1

1
1

16

16 32B32B32B

eacheacheacheacheacheacheach
edge:edge:edge:edge:edge:edge:edge:

input

14

14 192B192B

convolutionconvolution

7

7

poolingpooling

5

5

5

5

512B512B
30

fully connectedfully connectedfully connected

21 2

(b)

Figure 3. LeNet architecture and vertex granularity used in our experiments. Each cube stands for a

CNN neuron while each circle is a vertex in the source dataflow graph. Edges represent data transfers

and are labeled with the number of bytes per inference that each edge must transfer. (a) LeNet 1:1:

the original LeNet with 2343 vertices. (b) LeNet 2:1: LeNet with 604 vertices, in which the width and

height of each convolution and pooling layer were divided by two, except for the last pooling layer,

and the depth of the fully connected layers was divided by four.

The grouping of the LeNet neurons reduces the dataflow graph size as we can see by the

difference in the number of vertices for each graph. This reduction decreases the partitioning

execution time so that we can perform more experiments in a shorter time frame. LeNet 1:1 is a

more fine-grained model, thus, it may achieve better results than a less fine-grained model such

as LeNet 2:1. We are aware that this approach constrains the partitioning algorithm because it

cannot assign vertices in the original graph to different partitions since they are now grouped.

However, in this work, we also want to show that a coarse-grained model such as LeNet 2:1 can

achieve comparable results to a fine-grained model such as LeNet 1:1 and, thus, can be employed

for partitionings with adequate performance. It is also important to highlight that our approach for

grouping the vertices is different from the METIS multilevel approach and we show that DN2PCIoT

produces better results than METIS.

Future Internet 2019, 11, 209 15 of 30

Finally, Table 3 shows the number of shared parameters and biases per layer for each layer and

the amount of memory and computation (the number of FLOP per inference) required by each vertex

per layer per LeNet model. It is worth noting that, in the LeNet model used in this work, the pooling

layers present biases and trainable coefficients. In this table and hereafter, the convolution layers are

represented by C, the pooling layers are represented by P, and the fully connected layers, by FC.

Table 3. Per-layer and per-vertex characteristics of each LeNet model used in this paper.

Characteristic Model Input C1 P1 C2 P2 FC1 FC2 FC3

Memory of shared parameters
both 0 1248 96 12128 256 0 0 0

and biases per layer (B)

Memory per vertex (B)
LeNet 1:1 8 48 48 128 128 3216 976 688

LeNet 2:1 32 192 192 512 128 12864 3904 3440

Computation per vertex (FLOP)
LeNet 1:1 0 306 36 765 96 51 240 168

LeNet 2:1 0 1224 144 3060 96 204 960 840

4.2. Device Characteristics

Four different devices inspired the setups that we used in the experiments. These setups are

progressively constrained in memory, computational power, and communication performance and

these values are shown in Table 4. The first column shows the maximum number of devices allowed

to be used in each experiment. The second column shows the name of the device model that inspired

each experiment. The third column shows the amount of Random Access Memory (RAM) that each

device provides, which is available in the respective device datasheet [43–46]. The amount of RAM

that each device provides varies from 16 KiB to 388 KiB (1 Kibibyte (KiB) = 1024 B). The fourth column

represents the estimated computational performance of each device, which varies from 1.6 MFLOP/s

to 180 MFLOP/s. Finally, communication is performed through a wireless medium. As this medium

is shared with all the devices, the communication performance is an estimation that depends on the

number of devices used in the experiments. Therefore, considering connections able to transfer up to

300 Mbits/s, the communication performance for each device varies from 9.4 KiB/s to 6103.5 KiB/s.

The reasoning for the maximum number of devices allowed to participate in the partitioning is

the following. As the amount of memory provided by each device decreases, we need to employ more

devices to enable a valid partitioning. Furthermore, the memory of shared parameters and biases

should be taken into account when choosing the number of devices in an experiment because of the

experiments that start with random-generated partitionings. To make these experiments work, each

device should be able to contain at least one vertex of each neural network layer and its respective

shared parameters and biases. This condition, in some cases, may increase the number of needed

devices. For instance, the memory needed for LeNet (to store intermediate results, parameters, and

biases) is 546.625 KiB if each layer is entirely assigned to one device. If the devices provide up to

64 KiB, it is possible to achieve valid partitionings using nine devices to fit the LeNet model. However,

to start with random-generated partitionings and, thus, requiring that each device can contain at least

one vertex of each layer and its respective shared parameters and biases, the number of required

devices increases to 11 to produce valid random-generated partitionings.

Future Internet 2019, 11, 209 16 of 30

Table 4. Device data and the maximum number of devices allowed to be used in the experiments.

Number of Devices Device Amount Device Estimated
Communication

Allowed to Be Used Device Model of RAM Computational
Performance

in the Experiments (KiB) Power (FLOP/s)
between Each
Device (KiB/s)

2 STM32F469xx [43] 388 180× 106 6103.5

4 Atmel SAM G55G [44] 176 120× 106 3051.8
11 STM32L433 [45] 64 80× 106 332.9
56 STM32L151VB [46] 16 1.6× 106 11.9
63 STM32L151VB [46] 16 1.6× 106 9.4

For each experiment, the communication links between each device present the same performance,

which is constant during the whole partitioning algorithm. The difference in the communication

performance for the most constrained setups (with 56 and 63 devices) is due to the different number

of devices sharing the same wireless connection. Thus, for the experiment in which the system

can employ up to 63 devices for the partitioning, the communication links perform a little worse

than with up to 56 devices, although the same device models with the same available memory and

computational power are used.

4.3. Types of Experiments

For each setup in Table 4, two experiments were performed:

• the free-input-layer experiment, in which all the LeNet model vertices were free to be swapped

or moved; and
• the locked-input-layer experiment, in which the LeNet input layer vertices were initially

assigned to the same device and, then, they were locked, i.e., the input layer vertices could not

be swapped or moved during the whole algorithm.

The free-input-layer experiments allow all the vertices to freely move from one partition to the

others, including the input layer vertices. These experiments represent situations in which the device

that produces the input data is not able to process any part of the neural network and, thus, must

send its data to nearby devices. In this case, we would have to add more communication to send

the input data (the LeNet input layer) from the device that contains these data to the devices chosen

by the approaches in this work. However, as the increased amount of transferred data involved in

sending the input data to nearby devices is fixed, it does not need to be shown here. On the other

hand, the locked-input-layer experiments represent situations in which the device that produces the

input data can also perform some processing, therefore, no additional cost is involved in this case.

Nine partitioning approaches were employed for each experiment listed in this subsection

(for each setup and free and locked inputs). These approaches are explained in the next subsections

and the corresponding visual partitionings are shown for the approaches that cause it to be necessary.

It is worth noting that these visual partitionings are not considered the results of this paper and are

shown here for clarification of the approaches.

4.4. Per Layers: User-Made per-Layer Partitioning (Equivalent to Popular Machine Learning Frameworks)

The first approach to performing the experiments is the per-layer partitioning performed by

the user. In this approach, the partitioning is performed per layers, i.e., a whole layer should be

assigned to a device. This partitioning is offered by popular ML tools such as TensorFlow, DIANNE,

and DeepX. TensorFlow allows a fine-grained partitioning, but only if the user does not use its

implemented functions for each neural network layer type.

Considering the LeNet model [27] used in both versions of our experiments, it is possible

to calculate the layer that requires the largest amount of memory. This layer is the second fully

connected layer (the last but one LeNet layer), which requires 376.875 KiB for the parameters, the

Future Internet 2019, 11, 209 17 of 30

biases, and to store the layer final result. Thus, when considering the constrained devices chosen

for our experiments (Table 4), it is possible to see that there is only one setup that is capable of

providing the necessary amount of memory that a LeNet per-layer partitioning requires. This setup

is the least constrained in our experiments and allows a maximum of two devices to be employed in

the partitioning.

In the per-layer partitioning approach, the partitioning is performed by the user, so we

partitioned LeNet for the first setup and show the resultant partitioning in Figure 4. In this figure,

only the partitioning for LeNet 2:1 is shown because the partitioning for LeNet 1:1 is equivalent. It is

worth noting that each color in this figure and in all the figures that represent visual partitionings

corresponds to a different partition.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a a a a a a a a a a a a a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 a 0 0 0 0 0 a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a a a
a

a a a a a a a a a 1 a 1 a 0 a 0 a 0 a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 1 a 1 a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

input C1 P1 C2 P2 FC1 FC2 FC3

output

Figure 4. LeNet 2:1 per-layer partitioning provided by the user.

4.5. Greedy: A Greedy Algorithm for Communication Reduction

The second approach is a simple algorithm that aims to reduce communication. In this algorithm,

whose pseudocode is listed in Algorithm 3, the layers are assigned to the same device in order until

it has no memory to fit some layer. Next, if there is any space left in the device and the layer type

is convolution, pooling, or input, then a two-dimensional number of vertices (width and height) that

fit the rest of the memory of this device are assigned to it or, if the layer is fully connected, then a

number of vertices that fit the rest of the memory of this device are assigned to it. After that or if

there is any space left in the device, the next layer or the rest of the current layer is assigned to the

next device and the process goes on until all the vertices are assigned to a device. It is worth noting

that Algorithm 3 assumes that there is a sufficient amount of memory provided by the setups for the

neural network model. Furthermore, this algorithm can partition graphs using fewer devices than the

total number of devices provided. This algorithm contains two loops that depend on the number of

layers (L) and the number of devices (D) of the setup, which render the algorithm complexity equals

to O(L+D). However, it is worth noticing that both L and D are usually much smaller than the number

of neurons of the neural network.

Figure 5 shows the visual partitioning using the greedy algorithm for each experiment. It is

worth noting that this algorithm works both for the free-input-layer and the locked-input-layer

experiments because the input layer could be entirely assigned to the same device for all setups.

Furthermore, as the partitioning scheme is similar for LeNet 2:1 and LeNet 1:1 in the experiments

with 2, 4, and 11 devices, only the partitionings for LeNet 2:1 are shown in Figure 5a–c for the

sake of simplicity. For the experiments with 56 and 63 devices, the greedy algorithm results in

the same partitioning because the same device model is employed in these experiments. However,

as LeNet 2:1 employs 44 devices and LeNet 1:1 employs 38 devices, both results are shown in

Figure 5d,e, respectively.

Future Internet 2019, 11, 209 18 of 30

Algorithm 3 Greedy algorithm for communication reduction.

1: function GREEDYALGORITHM(lenet, setup)
2: for layer← 1 to lenet.numberO f Layers do

3: for device← setup. f irst to setup.last do

4: if lenet[layer].memory 6= 0 then

5: if lenet[layer].memory ≤ device.memory then

6: assign layer to device;
7: else if lenet[layer].type = conv or pooling or input then

8: assign a 2D number of vertices that fit device;
9: else if lenet[layer].type = f ully connected then

10: assign the number of vertices that fits device;
11: end if

12: device.memory← device.memory− assigned;
13: lenet[layer].memory← lenet[layer].memory− assigned;
14: else

15: break;
16: end if

17: end for

18: end for

19: end function

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 1 1 1

0 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1

0 1

0 1

0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(a)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1

0 1

0 1

0 1 2 2 2

0 1 2 2 2

0 2 2 2 3 3

0 1 2 2 2 3 3

0 1 2 2 2 3

0 1 2 2 2 3

0 1 2 2 2 3

0 1 2

0 1 2

0 1 2

0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(b)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4

0 1 4

0 2 5

0 2 5

0 2 5 7 8 8

0 1 1 1 1 1 1 1 1 1 1 2 5 7 8 8

0 1 1 1 1 1 1 1 1 1 1 2 5 7 8 8 8

0 1 1 1 1 1 1 1 1 1 1 3 6 7 8 8 8

0 1 1 1 1 1 1 1 1 1 1 3 6 7 8 8

0 1 1 1 1 1 1 1 1 1 1 3 6 7 8 8

0 3 6 8 8 8

0 3 6

0 4 7

0 4 7

0 4 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(c)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 23

0 1 1 1 1 1 1 1 1 9 24

0 1 1 1 1 1 1 1 1 10 25

0 1 1 1 1 1 1 1 1 11 26

0 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 12 27 38 39 41

0 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 4 4 4 5 5 7 7 7 7 7 13 28 38 40 41

0 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 4 4 4 5 5 7 7 7 7 7 14 29 38 40 42 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 4 4 5 5 5 7 7 7 7 7 15 30 38 40 42 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 6 6 6 6 5 7 7 7 7 7 16 31 39 40 42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 6 6 6 6 7 7 7 7 7 7 17 32 39 41 42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3 3 3 3 3 18 33 39 41 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 19 34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 3 3 21 36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 3 3 22 37

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(d)

0 0

0 8 14 20 26

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 14 20 26 32 33 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 14 20 26 32 33 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 14 20 26 32 33 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 14 20 26 32 33 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 15 21 27 32 34 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 15 21 27 32 34 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 15 21 27 32 34 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 15 21 27 32 34 35

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 15 21 27 32 34 36

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 10 16 22 28 32 34 36 37

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 10 16 22 28 32 34 36 37

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 7 7 7 7 7 10 16 22 28 32 34 36 37

0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 7 7 7 7 7 10 16 22 28 32 34 36 37

0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 7 7 7 7 7 10 16 22 28 32 34 36 37

0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 6 6 5 5 5 5 5 7 7 7 7 7 11 17 23 29 32 34 36 37

0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 5 5 5 5 5 7 7 7 7 7 11 17 23 29 32 34 36 37

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 5 5 5 11 17 23 29 33 34 36 37

0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 11 17 23 29 33 34 36 37

0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 7 11 17 23 29 33 34 36 37

0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 12 18 24 30 33 35 36

0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 12 18 24 30 33 35 36

0 2 12 18 24 30 33 35 36

0 2 12 18 24 30 33 35 36

0 2 12 18 24 30 33 34 36

0 2 3 13 19 25 31 33 35 37

0 2 3 3 3 13 19 25 31 33 35 37

0 2 3 3 3 13 19 25 31 33 35 37

0 2 3 3 3 13 19 25 31 33 35 37

0 13 19 25 31

0 0

a a

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(e)

Figure 5. Partitionings using the greedy algorithm: (a) LeNet 2:1 for the two-device experiments;

(b) LeNet 2:1 for the four-device experiments; (c) LeNet 2:1 for the 11-device experiments (used nine

devices); (d) LeNet 2:1 for the 56- and 63-device experiments (used 44 devices); and (e) LeNet 1:1 for

the 56- and 63-device experiments (used 38 devices).

4.6. iRgreedy: User-Made Partitioning Aiming for Inference Rate Maximization

The third approach is a partitioning performed by the user that aims for the inference rate

maximization. The rationale behind this greedy approach is to equally distribute the vertices of each

layer to each device since all the experiments present a homogenous setup. Thus, this approach

employs all the devices provided for the partitioning. Besides that, again, the partition vertices are

chosen in two dimensions for the input, convolution, and pooling layers.

Future Internet 2019, 11, 209 19 of 30

Figure 6a shows the visual partitioning for the 11-device free-input LeNet 2:1 experiment. It is

worth noting that, for the two- and four-device free-input experiments, the partitioning follows the

same pattern. For the 2-, 4-, and 11-device locked-input experiments, only the input layer partitioning

was changed to be assigned to only one device. Thus, these partitionings are not shown here.

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 0 5

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 0 0 0 0 0 1 1 1 1 2 2 2 2 3 0 5

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 0 0 0 0 1 1 1 1 1 2 2 2 2 3 0 5

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 0 0 0 0 1 1 1 1 2 2 2 2 2 3 1 6

0 0 0 5 5 1 1 1 4 4 2 2 2 3 3 3 0 0 0 0 1 1 1 1 2 2 2 2 3 3 0 0 1 1 2 2 3 1 6 0 7 10

6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 6 6 5 5 5 5 4 4 4 4 4 3 3 3 0 0 1 1 2 2 3 0 0 1 1 2 0 0 1 1 2 1 6 1 8 10

6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 6 6 5 5 5 5 5 4 4 4 4 3 3 3 6 5 5 4 4 3 3 4 4 3 3 2 4 4 3 3 2 2 7 2 10 10 9

6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 6 6 6 5 5 5 5 4 4 4 4 3 3 3 6 5 5 4 4 1 1 5 5 6 6 7 5 5 6 6 7 2 7 3 10 10 10

6 6 5 5 5 5 5 4 4 4 4 4 3 3 3 3 6 6 6 5 5 5 5 4 4 4 4 3 3 3 6 6 7 7 8 8 9 5 9 8 8 7 5 5 8 8 7 2 7 4 10 10

6 6 6 6 7 7 5 7 7 8 8 4 8 8 9 9 6 6 6 6 7 7 7 7 8 8 8 8 8 9 10 10 7 7 8 8 9 5 8 8 8 7 5 8 8 8 7 3 8 5 10 10

6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 6 6 6 7 7 7 7 7 8 8 8 8 9 9 10 10 10 7 9 9 9 3 8 6 10 10

6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 10 10 10 10 7 7 7 7 8 8 8 8 9 9 3 8

6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 10 10 10 10 7 7 7 7 8 8 8 8 9 9 4 9

10 10 10 10 7 7 7 7 8 8 8 8 8 9 9 9 10 10 10 10 7 7 7 7 9 9 9 9 9 9 4 9

10 10 10 10 10 10 10 10 10 10 9 9 9 9 9 9 10 10 10 10 10 10 10 10 9 9 9 9 9 9 4 9

10 10 10 10 10 10 10 10 10 10 10 9 9 9 9 9

a a

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(a)

0 0 1 1 16 16 16 16 16 16 16 16 16 16 16 16 0 15

16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 1 16

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 2 17

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 3 18

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 12 12 12 13 13 13 13 4 19 34 41 48

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 55 55 55 55 55 55 13 13 13 13 13 13 13 30 30 30 30 30 15 15 15 15 15 5 20 35 42 49

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 55 55 55 55 55 55 55 55 2 2 2 2 2 2 13 13 13 13 13 13 14 30 30 30 31 31 15 16 16 16 16 6 21 36 43 50 0

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 2 2 2 2 2 3 3 3 3 3 3 3 3 3 14 14 14 14 14 14 14 31 31 31 31 31 16 16 16 16 16 7 22 37 44 51 1

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 3 3 4 4 4 4 4 4 4 4 4 4 4 5 14 14 14 14 14 14 14 31 32 32 32 32 16 16 16 16 16 8 23 38 45 52

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 5 5 5 5 5 5 5 5 5 5 6 6 6 6 14 14 15 15 15 15 15 32 32 32 32 33 16 16 16 16 16 9 24 39 46 53

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 6 6 6 6 6 6 6 7 7 7 7 7 7 7 15 15 15 15 15 15 15 10 25 40 47 54

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 7 7 7 7 8 8 8 8 8 8 8 8 8 8 11 26

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 8 9 9 9 9 9 9 9 9 9 9 9 10 10 12 27

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 10 10 10 10 10 10 10 10 10 11 11 11 11 11 13 28

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 11 11 11 11 11 11 12 12 12 12 12 12 12 12 14 29

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

a a

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(b)

22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23

25 25 25 25 25 25 25 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 23 23 23 23 23 23 3 18 33 48

25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 4 19 34 49 19 47 23

28 28 28 28 28 28 28 28 28 28 28 28 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 22 22 22 22 22 22 22 22 22 22 22 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 20 20 4 19 34 49 20 48 24

28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 5 20 35 50 21 49 25

32 32 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 30 30 30 30 30 30 30 30 30 30 30 26 26 26 26 26 26 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 24 24 24 24 24 24 5 20 35 50 22 50 26

32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 6 21 36 51 23 51 27

35 35 35 35 35 35 35 35 35 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 33 33 33 33 30 30 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 28 28 28 28 28 28 28 28 28 28 28 6 21 36 51 24 52 28

35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 37 37 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 7 22 37 52 25 53 29

38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 34 34 34 35 35 35 36 36 36 37 37 37 38 38 7 22 37 52 26 54 30

38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40 40 40 40 40 35 35 35 35 35 35 35 35 35 35 35 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 33 33 43 42 42 42 41 41 41 40 40 40 39 39 39 38 8 23 38 53 27 55 31

42 42 42 42 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 40 40 40 40 40 40 40 40 40 35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 37 37 37 37 37 37 37 37 43 43 44 44 44 45 45 45 46 46 46 47 47 47 0 0 0 0 0 0 0 0 0 0 8 23 38 53 28 4 32 51

42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 39 39 39 39 39 39 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 37 37 37 37 37 37 52 52 51 51 51 50 50 50 49 49 49 48 48 48 0 0 0 0 0 0 0 0 0 0 9 24 39 54 29 5 33 52

45 45 45 45 45 45 45 45 45 45 45 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 43 43 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40 40 41 41 41 41 41 52 53 53 53 54 54 54 55 55 55 4 4 4 5 0 0 0 0 0 0 0 0 0 0 9 10 11 12 13 9 24 39 54 30 6 34 53

45 45 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 47 47 47 47 47 43 43 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 41 41 41 41 41 41 41 41 41 41 41 9 9 9 8 8 8 7 7 7 6 6 6 5 5 0 0 0 1 1 1 1 1 1 1 14 15 16 17 18 10 25 40 55 31 7 35 54

48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 47 47 47 47 47 47 47 47 47 47 47 47 47 47 43 43 43 43 43 43 43 43 43 43 43 43 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 10 10 10 11 11 11 12 12 12 13 13 13 14 14 1 1 1 1 1 1 1 1 1 1 19 20 21 22 23 10 25 40 55 32 8 36 55

48 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 50 50 50 50 50 50 50 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46 46 46 46 19 18 18 18 17 17 17 16 16 16 15 15 15 14 1 1 1 1 1 1 1 1 1 1 24 25 26 27 28 11 26 41 4 33 9 37 4

52 52 52 52 52 52 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 50 50 50 50 50 50 50 48 48 48 48 48 48 48 48 48 48 48 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 46 46 19 19 20 20 20 21 21 21 22 22 22 23 23 23 1 1 1 1 1 1 2 2 2 2 29 30 31 32 33 11 26 41 5 34 10 38 5

52 52 52 52 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 50 50 50 50 50 50 50 50 50 28 28 27 27 27 26 26 26 25 25 25 24 24 24 2 2 2 2 2 2 2 2 2 2 12 27 42 6 35 11 39 6

55 55 55 55 55 55 55 55 55 55 55 55 55 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 52 52 52 52 52 52 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 50 50 50 50 50 50 28 29 29 29 30 30 30 31 31 31 32 32 32 33 2 2 2 2 2 2 2 2 2 2 12 27 42 7 36 12 40 7

55 55 55 55 55 55 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 52 52 52 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53 53 54 54 54 54 54 45 44 43 42 41 40 39 38 37 36 35 34 33 33 2 2 2 2 2 2 2 2 2 3 13 28 43 8 37 13 41 8

7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 4 4 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 54 54 54 54 54 54 54 54 54 54 54 46 47 48 49 50 51 52 53 54 55 4 5 6 7 13 28 43 9 38 14 42

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 21 20 19 18 17 16 15 14 13 12 11 10 9 8 14 29 44 10 39 15 43

10 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 14 29 44 11 40 16 44

10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 9 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 15 30 45 12 41 17 45

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 15 30 45 13 42 18 46

13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 16 31 46 14 43 19 47

17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 15 15 15 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 16 31 46 15 44 20 48

17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 15 15 15 15 17 32 47 16 45 21 49

20 20 20 20 20 20 20 20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 32 47 17 46 22 50

20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 23 24 25 18 33 48 18

5 4 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(c)

57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 0 15

57 1 16

57 57 57 57 57 57 57 57 57 57 58 58 58 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57 57 2 17

58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 57 57 57 57 58 58 58 58 58 58 58 58 58 58 3 18

58 57 57 57 57 57 57 57 4 19 34 41 48

58 58 58 58 59 59 59 59 59 59 59 59 59 59 59 59 58 58 58 58 58 58 58 58 59 59 59 59 59 59 57 58 58 58 58 58 58 30 30 30 30 30 57 57 57 57 58 5 20 35 42 49

59 58 58 59 59 59 59 59 30 30 30 31 31 59 59 58 58 58 6 21 36 43 50 55

59 59 59 59 59 59 59 59 59 59 59 59 59 59 60 60 59 59 59 59 59 59 59 59 59 59 59 59 60 60 59 59 59 60 60 60 60 31 31 31 31 31 59 59 60 60 60 7 22 37 44 51 56

60 61 61 61 31 32 32 32 32 61 61 61 61 60 8 23 38 45 52

60 61 61 61 61 61 62 62 32 32 32 32 33 62 62 62 62 62 9 24 39 46 53

60 60 61 61 61 61 61 61 61 61 61 61 61 61 61 61 60 60 61 61 61 61 61 61 61 61 61 61 61 61 62 62 62 62 62 62 61 10 25 40 47 54

61 11 26

61 61 61 61 61 61 62 62 62 62 62 62 62 62 62 62 61 61 61 61 61 61 62 62 62 62 62 62 62 62 12 27

62 13 28

62 62 62 62 62 62 62 62 62 62 57 57 57 58 58 58 62 62 62 62 62 62 62 62 62 62 57 58 59 60 14 29

59 59 59 60 60 60 61 61 61 62 62 62 57 58 59 60

a a

a a

input C1 P1 C2 P2 FC1 FC2 FC3
output

(d)

Figure 6. Partitionings using the inference rate greedy approach: (a) LeNet 2:1 for the 11-device

experiments; (b) LeNet 2:1 for the 56-device experiments; (c) LeNet 1:1 for the 56-device experiments;

(d) LeNet 2:1 for the 63-device experiments.

For the 56- and 63-device experiments, it was not possible to employ the same rationale due

to memory issues. Thus, for these experiments, the rationale was to start by the layers that require

most memory and assign to the same device the largest number of vertices possible of that layer.

Furthermore, in these experiments, the vertices were assigned in a per-line way because the layers

were not equally distributed to all the available devices. This approach reduces the number of

copies of the shared parameters and biases and, thus, allows for a valid partitioning. For the

locked-input experiments, besides the input layer being changed to be entirely assigned to only one

device, some adjustments had to be performed to produce valid partitionings. Figure 6b,c show the

visual partitionings for the 56-device free-input LeNet 2:1 and LeNet 1:1 partitioning, respectively.

Additionally, in the 63-device experiments with LeNet 2:1, the vertices in the same positions of the

first layers were assigned to the same devices to reduce communication. The visual partitioning, in

this case, is shown in Figure 6d. As the approach for 63 devices in LeNet 1:1 was the same for the

56 devices, the visual partitioning for 63 devices in LeNet 1:1 is not shown here either. The two

approaches detailed in this subsection are greedy and, therefore, are also called inference rate greedy

approach (iRgreedy) in the rest of this paper.

4.7. METIS

In this approach, the program gpmetis from METIS was used to automatically partition LeNet

and compare the results with our approaches. The reason to choose METIS is that it is considered a

widely known state-of-the-art tool used to automatically partition graphs for general purpose.

This tool offers several parameters that can be modified by the user like the number of partitions,

the number of different partitionings to compute, the number of iterations for the refinement

algorithms at each stage of the uncoarsening process, the maximum allowed load imbalance among

the partitions, and the algorithm’s objective function. The number of partitions corresponds to the

maximum number of devices allowed to be employed in each setup described in Section 4.2. Thus,

as METIS attempts to balance all the constraints, it always employs the maximum number of devices

in each experiment. All the other parameters listed here were varied in our tests and, for our inference

rate maximization objective function, the maximum allowed load imbalance among the partitions

parameter was substituted for the maximum allowed load imbalance among partitions per constraint,

Future Internet 2019, 11, 209 20 of 30

which allows using different values for memory and the computational load. It is worth noting

that, for the objective function parameter, both functions were used: edgecut minimization and total

communication volume minimization. These parameters are detailed in the METIS manual [47].

For the locked-input experiments, the LeNet graph had the vertices from the input layer removed

to run METIS with a small difference between the constraints proportion (target weights in METIS)

related to the amount of memory and computational load that the input layer requires. After METIS

performs the partitioning, the input layer is plugged back into the LeNet graph and we calculate the

cost (inference rate or amount of transferred data) and if this partitioning is valid.

4.8. DN2PCIoT 30R

The fifth approach that we used for the experiments was the application of DN2PCIoT

starting from random-generated partitionings. This approach executed DN2PCIoT 30 times starting

from different random-generated partitionings and we report the best value achieved in these

30 executions. It is worth noting that this approach was only executed for the LeNet 2:1 model due

to the more costly execution of LeNet 1:1 starting from a random partitioning. This was the only

approach that did not employ LeNet 1:1. Furthermore, DN2PCIoT can discard some devices when

they are not necessary, i.e., if DN2PCIoT finds a better partitioning with fewer devices.

4.9. DN2PCIoT after Approaches

The last approach corresponds to the execution of the proposed DN2PCIoT starting from

partitionings obtained by the other approaches considered in this work. Thus, four experiments were

performed in this approach: DN2PCIoT after per layers, DN2PCIoT after greedy, DN2PCIoT after

iRgreedy, and DN2PCIoT after METIS. This approach also allows the partitionings to employ fewer

devices than the maximum number of devices allowed in each experiment. It is worth noting that no

other approach in this paper can start from a partitioning obtained by another algorithm and try to

improve the solution based on this initial partitioning.

5. Experimental Results

In this section, we show the results for all the experiments discussed in Section 4 (varying

number of devices, free and locked input layer, and all the approaches) for the inference rate

maximization objective function. After that, we show the pipeline parallelism factor for each setup

to compare the performance of a single device to the distribution performance. Finally, the results

of the inference rate maximization are plotted along with results for communication reduction to

see how optimizing for one objective function affects the other. Our approaches (greedy algorithm,

iRgreedy approach, DN2PCIoT 30R, and DN2PCIoT after the other approaches) were compared to

two literature approaches: the per-layers approach (equivalent to popular ML frameworks such as

TensorFlow, DIANNE, and DeepX) and METIS. We implemented DN2PCIoT using C++ and executed

the experiments on Linux-based operating systems.

5.1. Inference Rate Maximization

Table 5 shows the results for the inference rate maximization objective function for the

approaches detailed in Section 4 that are compared to DN2PCIoT. Table 6 shows the results for

the inference rate maximization objective function for DN2PCIoT 30R and DN2PCIoT after all the

approaches in Table 5. It is worth noting that both Tables 5 and 6 present normalized results, i.e., these

results are normalized by the maximum inference rate achieved in each experiment. For instance,

in the free-input two-device experiments, considering both Tables 5 and 6, the maximum inference

rate was achieved by DN2PCIoT after METIS with LeNet 2:1. We take this value and divide it

by each result of the free-input two-device experiments. Thus, we have a value of 1.0 for the

maximum inference rate in the DN2PCIoT after METIS with LeNet 2:1 and the values of the other

Future Internet 2019, 11, 209 21 of 30

approaches reflect how many times the inference rate was worse than the maximum inference rate.

In the first column of both tables, the number indicates the maximum number of devices allowed

in each experiment, “free” refers to the free-input-layer experiments, and “locked” refers to the

locked-input-layer experiments. For each experiment in the first column of both tables, there is a

range of colors in which the red color represents the worst results while the green color represents

the best results. Intermediate results are represented by yellow. As discussed in Section 4, some

approaches were not able to produce valid partitionings and this is represented by an “x”. For LeNet

1:1, as it is a large graph with 2343 vertices, we had to interrupt some executions and we report the

best value found followed by an asterisk (“*”).

Table 5. Normalized results for the naive approaches. The minimum and maximum consider

Tables 5 and 6.

Median Per Per
Greedy Greedy iRgreedy iRgreedy METIS METIS

Setup of 30 Layers Layers
2:1 1:1 2:1 1:1 2:1 1:1

Random 2:1 2:1

2 free 6.35 1.67 1.67 1.59 1.59 1.61 1.36 1.13 1.23
4 free 4.09 x x 2.06 2.06 1.43 1.21 1.09 1.14

11 free 2.32 x x 4.49 4.49 1.56 1.67 1.40 1.38
56 free 2.12 x x 29.25 29.53 24.00 1.45 x x
63 free 1.92 x x 27.53 27.80 6.59 1.32 x x

2 locked 5.25 1.37 1.37 1.31 1.31 1.73 1.52 1.11 1.12
4 locked 4.83 x x 2.03 2.03 1.90 1.68 1.27 1.33

11 locked 3.25 x x 4.08 4.08 3.33 2.83 1.29 1.34
56 locked 2.74 x x 17.50 17.66 11.25 1.34 x x
63 locked 2.15 x x 14.74 14.88 3.53 1.28 x x

Table 6. Normalized results for DN2PCIoT 30R and DN2PCIoT after approaches.

DN2PCIoT after

Setup 30R
per per

Greedy Greedy iRgreedy iRgreedy METIS METIS
2:1

Layers Layers
2:1 1:1 2:1 1:1 2:1 1:1

2:1 1:1

2 free 1.13 1.20 1.38 1.06 1.37 1.02 1.18 1.00 1.01
4 free 1.38 x x 1.16 1.25 1.16 1.14 1.00 1.01

11 free 1.19 x x 1.34 1.42* 1.18 1.09 1.04 1.00
56 free 1.12 x x 2.62 5.14* 2.12 1.00* x x
63 free 1.00 x x 2.59 5.84* 2.71 1.21* x x

2 locked 1.00 1.09 1.08 1.01 1.12 1.12 1.11 1.02 1.02
4 locked 1.27 x x 1.29 1.25 1.00 1.45 1.25 1.23

11 locked 1.29 x x 1.26 1.18 1.00 1.01 1.10 1.22
56 locked 1.46 x x 2.50 4.07* 1.91 1.00* x x
63 locked 1.17 x x 2.17 3.41* 2.14 1.00* x x

As general results, it is possible to see in Tables 5 and 6 that DN2PCIoT 30R and DN2PCIoT after

approaches led to the best values for all the experiments. DN2PCIoT 30R produced results that range

from intermediate to the best results, with only 20% of the experiments yielding intermediate results.

The DN2PCIoT 30R results show the robustness of DN2PCIoT, which can achieve reasonable results

even when starting from random partitionings.

There are some important conclusions that we can draw from Table 5. The per-layer partitioning

was the most limiting approach when considering constrained devices because it could only partition

the model for the least constrained device setup, which used two devices. It is worth noting that this

approach is the one offered by popular ML tools such as TensorFlow, DIANNE, and DeepX. Thus,

we show that these tools are not able to execute DNNs in a distributed way in very constrained

setups. Moreover, the per-layer partitioning produced suboptimal results for the only setup that it

Future Internet 2019, 11, 209 22 of 30

could produce valid partitionings. The quality of these results was due to the heavy unbalanced

partitioning in the per-layer approach, which overloaded one device while a low load was assigned

to the other device, as the least constrained setup offered two devices.

The state-of-the-art tool METIS also led to suboptimal results because it attempts to balance

all the constraints, which are memory and computational load. Additionally, several partitionings

provided by METIS were invalid because METIS does not consider a limit for the amount of memory

in each partition. METIS could not produce any valid partitionings at all for the 56- and 63-device

experiments because METIS cannot properly account for the memory required by the shared

parameters and biases of CNNs. One way to solve this issue would be to add the memory required by

the shared parameters and biases to every vertex that needs them, even if the vertices were assigned

to the same partition. However, this solution would require much more memory and no partitioning

using this solution would be valid for the setups used in this work. Thereby, we gave METIS the

LeNet model without the memory information required by the shared parameters and biases in the

hope that it would produce valid partitionings since our setups provided enough memory for LeNet

and one full set of shared parameters and biases for each device. Unfortunately, METIS was not able

to produce any valid partitionings in any of the 56- and 63-device constrained setups.

Finally, the greedy algorithm and the iRgreedy approach are simple approaches. Although they

produced poor results, they could produce valid partitionings for all the proposed setups. Thus,

considering the ability to produce valid partitionings, these approaches demonstrated to be better

than METIS and the per-layer partitioning offered by popular ML frameworks in the proposed setups.

In Table 6, we can see that DN2PCIoT starting from the partitioning produced by the other

approaches also achieved results that range from intermediate to the best results. When comparing

to the state-of-the-art tool METIS, DN2PCIoT after METIS could improve the METIS result by up to

38%. Additionally, DN2PCIoT after approaches is a better approach when compared to DN2PCIoT

30R because DN2PCIoT after approaches do not need to run 30 times to attempt to find the best

partitioning as in the DN2PCIoT 30R. Furthermore, the single execution required by DN2PCIoT after

each approach may run faster than DN2PCIoT 30R because it starts from the intermediate result

achieved by the other approaches instead of a random partitioning that usually requires several

epochs to stop.

DN2PCIoT after the greedy algorithm result also show the robustness of DN2PCIoT because the

greedy algorithm produced the worst results mostly. Nevertheless, DN2PCIoT after greedy could

improve the poor results of the greedy algorithm up to 11.1 times, yielding at least intermediate

results in comparison to the other approaches.

The LeNet 1:1 model runs in a considerably larger time than the LeNet 2:1 model due to the

difference in the number of vertices and edges of the graphs. When comparing the two LeNet models

used in the experiments, it is possible to see that DN2PCIoT for LeNet 2:1 led to the best result in 80%

of the experiments. Thus, the results for the proposed setups suggest that it is possible to employ

LeNet 2:1 for faster partitionings with limited impact on the results.

To conclude, our results show that DN2PCIoT starting from 30 random-generated partitionings

and DN2PCIoT after the other approaches achieved the best results for inference rate maximization

in all the proposed experiments and should be employed when partitioning CNNs for execution on

multiple constrained IoT devices.

5.2. Pipeline Parallelism Factor

After showing the results for the inference rate maximization objective function, it is interesting

to look at the pipeline parallelism factor to check if there is gain or loss when distributing the neural

network execution. In the first column of Table 7, we have the device model and the maximum

number of devices allowed to be used in each setup. The second column shows the inference rate if

the entire LeNet model fit one device’s memory, i.e., the inference rate based on the computational

power of the devices. In this column, it is possible to see that the diminishing computational power

Future Internet 2019, 11, 209 23 of 30

affects the inference rate performance, as expected. In the third column, there is the best inference rate

achieved in the corresponding experiments of the previous subsection. Finally, the fourth column

shows the pipeline parallelism factor, which is the best inference rate achieved in the experiments

(third column) divided by the inference rate if the entire LeNet fit one device’s memory (second

column). It is worth noting that the larger is the parallelism factor, the better, and results that are less

than one indicate that there is some loss in the distribution of the neural network execution.

Table 7. Pipeline parallelism factor for each experiment device.

Setups
Single Device Best Inference Rate Pipeline

Inference Rate * in the Experiments Parallelism Factor

2x STM32F469xx 507.265 864.22 1.70
4x Atmel SAM G55G 338.177 757.03 2.24

11x STM32L433 225.451 162.65 0.72
56x STM32L151VB 4.509 21.14 4.69
63x STM32L151VB 4.509 17.65 3.91

* In the case that the device fits the memory required by the whole LeNet model.

In Table 7, it is possible to note that there is a gain in the inference rate performance in using

2, 4, 56, and 63 devices. For the 11-device experiment, the communication among the partitions

surpasses the distribution computational gain and negatively affects performance. In this case, we

have 72% of the performance offered by a single device. However, we have to remember that this

device cannot execute this model alone due to its memory limit. Additionally, it is worth noting that

all the experiments in Table 7 were limited by the communication performance among the devices.

For the last device model, used in the 56- and 63-device experiments, we have different

values for the best inference rate in the experiments due to the communication link among them,

which is less powerful in the 63-device experiment and, consequently, its result is worse than for

56 devices, showing that communication impacts on the inference rate in this setup. Furthermore, the

computational power of the most constrained devices used in these experiments is so low that we

have gains of 4.7 and 3.9 when distributing LeNet, even considering the communication overhead.

These results show that, even if we could execute LeNet in a single device, it would be more profitable

to distribute the execution to achieve a higher inference rate, except for the 11-device setup.

It is important to note that, with this distribution, we enable such a constrained system to execute

a CNN like LeNet. This would not be possible if only a single constrained device were employed due

to the lack of memory. However, in the most constrained setups, the inference rate may be low. This

can be the case, for instance, in an anomaly detection application that classifies incoming images

from a camera. As most surveillance cameras generate 6–25 frames per second [48], most of the

setups presented in this work satisfy the inference rate requirement for this application. Nonetheless,

the most constrained setups do not satisfy the inference rate requirement of this application, thus the

system may lose some frames. In the worst case, we still have 71% of the required inference rate

(17.65/25), allowing the system to execute the application, even if the inference rate is not ideal.

Additional time may be required for synchronization so that a system provides correct results.

The synchronization guarantees that all the data that a vertex needs to calculate its computation

arrive in its inputs. Techniques such as retiming [49] can be applied to the partitionings provided

by DN2PCIoT to enforce synchronization. Such a technique would increase the amount of memory

required to execute the CNN in a distributed form. Although this is an important issue for the

deployment of CNNs on constrained IoT devices, in this work, we are not concerned by it because

one of our aims is to show how better DN2PCIoT can be in partitioning CNNs for constrained IoT

devices when comparing to one of the state-of-the-art partitioning algorithms, which does not include

synchronization overhead as well.

Future Internet 2019, 11, 209 24 of 30

5.3. Inference Rate versus Communication

Minimizing communication is important to reduce interference in the wireless medium and to

reduce the power consumed by radio operations. Common real-time applications that need to process

data streams in a small period of time such as anomaly detection from camera images, for instance,

the detection of vehicle crashes and robberies, may require a minimum inference rate so that there

is no frame loss while reducing communication or even energy consumption is desirable so that the

network is not overloaded and device energy life is augmented. On the other hand, applications that

process data at a lower rate such as non-real-time image processing may require a small amount

of communication so that device battery life is augmented while desirable characteristics are the

network non-overload and inference rate maximization.

Thus, in this subsection, we want to show how optimizing for one of the objective functions,

for instance, inference rate maximization, affects the other, for instance, communication reduction.

For this purpose, Figure 7 presents the results of Section 5.1 for the inference rate maximization along

with their respective values for the amount of transferred data per inference for each partitioning.

We also plotted in these graphs results for the communication reduction objective function, which

allow for a fair comparison in the amount of transferred data. For instance, when the objective

function is the inference rate, the amount of transferred data may be larger than when the objective

function is communication reduction. The inverse may also occur for the inference rate. These results

were obtained by executing all the approaches discussed in Section 4, including DN2PCIoT 30R and

DN2PCIoT after the other approaches with the communication reduction objective function.

Each graph in Figure 7 corresponds to one setup. In this figure, “comm” in the legend

parentheses stands for when the approach used the communication reduction objective function,

“inf” stands for the inference rate maximization objective function, “free” stands for the free-input

experiment, and “locked” stands for the locked-input experiment. It is worth noting that each

approach in the legend corresponds to two points in the graphs of Figure 7, one for the execution

of LeNet 2:1 and one for LeNet 1:1. DN2PCIoT 30R is an exception because it was executed only for

LeNet 2:1, thus each approach with DN2PCIoT 30R in the legend corresponds to only one point in

the graphs. Another exception is the per-layer partitioning, which yielded the same result for both

LeNet models and, thus, its results are represented by only one point. In this subsection, we do not

distinguish the two LeNet versions employed in this work because our focus is on the approaches

and so that the graphs do not get polluted.

As we want to maximize the inference rate and minimize the amount of transferred data, the

best trade-offs are the ones on the right and bottom side of the graph, i.e., in the southeast position.

We draw the Pareto curve [50] using the results for inference rate maximization and communication

reduction achieved by all the approaches listed in Section 4 to show the best trade-offs and we divided

the graphs into four quadrants considering the minimum and maximum values for each objective

function. These quadrants help the visualization and show within which improvement region each

approach fell.

In Figure 7a, for the two-device experiments, the Pareto curve contains two points, which

correspond to the free-input DN2PCIoT after METIS for the inference rate maximization and most

of the locked-input DN2PCIoT after approaches for communication reduction. The only approach

that falls within the southeast quadrant is the free-input DN2PCIoT after METIS for the inference rate

maximization, which is the best trade-off between the inference rate and the amount of transferred

data for this setup. Although several points fell within the southeast quadrant, it is worth noting that

the three points that are closest to this best trade-off all correspond to the free-input DN2PCIoT for

the inference rate maximization, showing the robustness of DN2PCIoT.

Future Internet 2019, 11, 209 25 of 30

eplacements

2000

1800

1600

1400

1200

1000

800

800

600

600
400

400

A
m

o
u

n
t

o
f

tr
an

sf
er

re
d

d
at

a

450 500 550 650 700 750 850 900
Inference rate

(a)

2000

1000

800600400

A
m

o
u

n
t

o
f

tr
an

sf
er

re
d

d
at

a

450
500

500 550 650 700 750
Inference rate

350

1500

2500

3000

3500

4000

4500

5000

(b)

1000

A
m

o
u

n
t

o
f

tr
an

sf
er

re
d

d
at

a

Inference rate

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2
20 40 60 80 100 120 140 160 180

×104

(c)

A
m

o
u

n
t

o
f

tr
an

sf
er

re
d

d
at

a

Inference rate

1
20

×104

4.5

4

3.5

3

2.5

2

1.5

0

5

5 10 15 25

(d)

1600

A
m

o
u

n
t

o
f

tr
an

sf
er

re
d

d
at

a

Inference rate

×104

4.5

4

4

3.5

3

2.5

2

2
1.5

0 6 8 10 12 1614 18

(e)

greedy algorithm

iRgreedy for inf rate (free)

iRgreedy for inf rate (locked)

per layers

METIS (comm free)

DN2 PCIoT 30R (comm free)

DN2 PCIoT after METIS (comm free)

DN2PCIoT after greedy (comm free)

DN2 PCIoT after iRgreedy (comm free)

DN2 PCIoT after per layers (comm free)

METIS (comm locked)

DN2 PCIoT 30R (comm locked)

DN2PCIoT after METIS (comm locked)

DN2PCIoT after greedy (comm locked)

DN2PCIoT after iRgreedy (comm locked)

DN2 PCIoT after per layers (comm locked)

METIS (inf free)

DN2PCIoT 30R (inf free)

DN2 PCIoT after METIS (inf free)

DN2 PCIoT after greedy (inf free)

DN2 PCIoT after iRgreedy (inf free)

DN2PCIoT after per layers (inf free)

METIS (inf locked)

DN2 PCIoT 30R (inf locked)

DN2 PCIoT after METIS (inf locked)

DN2 PCIoT after greedy (inf locked)

DN2 PCIoT after iRgreedy (inf locked)

DN2PCIoT after per layers (inf locked)

Pareto curve

(f)

Figure 7. Inference rate and communication values for: (a) 2-device experiments; (b) 4-device

experiments; (c) 11-device experiments; (d) 56-device experiments; and (e) 63-device experiments;

and (f) legend for all graphs.

In Figure 7b, for the four-device experiments, the approach that falls both in the Pareto curve

and closest to the southeast quadrant is the free-input DN2PCIoT after iRgreedy when reducing

communication. Therefore, this approach presents the best trade-off for the four-device setup.

Six points compose the Pareto curve for the 11-device experiments in Figure 7c. Three of

these points falls in the best trade-off quadrant and are the free-input DN2PCIoT after iRgreedy for

communication reduction and free- and locked-input METIS for inference rate maximization. In this

case, the final choice for the best trade-off depends on which condition is more important: if the

application requires a larger inference rate, then METIS is the appropriate choice. On the other hand,

if the application requires a smaller amount of communication, then DN2PCIoT after iRgreedy for

communication reduction is a better approach.

Future Internet 2019, 11, 209 26 of 30

Six points also compose the Pareto curve for the 56-device experiments in Figure 7d. In this

graph, the approach that falls both in the Pareto curve and closest to the southeast quadrant is the

free-input DN2PCIoT 30R when maximizing the inference rate. Therefore, this approach presents the

best trade-off for the 56-device setup.

Finally, in Figure 7e, for the 63-device experiments, the approach that falls both in the Pareto

curve and closest to the southeast quadrant is the free-input DN2PCIoT 30R when maximizing the

inference rate. This approach presents the best trade-off for the 63-device setup.

Back to the example of anomaly detection in Section 5.2, in which the application requirements

involve a minimum inference rate of around 24 inferences per second while reducing communication

is desirable, we can choose the best trade-offs for each setup analyzed in this subsection.

In Figure 7a–c, for the setups with 2, 4, and 11 devices, respectively, all the points in the Pareto

curve satisfy the application requirement of a minimum inference rate. Thus, we can choose the

points that provide the minimum amount of communication. However, in Figure 7d,e, for the setups

with 56 and 63 devices, respectively, the points in the Pareto curve with the minimum amount of

communication do not satisfy the application requirement of the minimum inference rate. Hence,

we have to choose the points with the largest inference rate in the Pareto curve of each setup, which

require more communication. These results evidence the lower computational power of the devices

used in the 56- and 63-device setup.

Our results suggest that our tool also deliver the best trade-offs between the inference rate and

communication, with DN2PCIoT providing more than 90% of the results that belong to the Pareto

curve. DN2PCIoT after the approaches or DN2PCIoT starting from 30 random partitionings achieved

the best trade-offs for the proposed setups, although these approaches only aim at one objective

function. Thus, DN2PCIoT 30R and DN2PCIoT after approaches are adequate strategies when both

communication reduction and inference rate maximization are needed, although it is possible to

improve DN2PCIoT with a multi-objective function containing both objectives.

5.4. Limitations of Our Approach

Our algorithm presents a computational complexity of O(N5), in which N is the number of

vertices of the dataflow graph. Thus, the grouping of the neural network neurons may be necessary

so that the algorithm executes in a feasible time. As our results suggest, the LeNet version that groups

more neurons presents a limited impact on the results while the algorithms may execute faster, as the

problem size is smaller. Other algorithms such as METIS performs an aggressive grouping and, thus,

can execute in a feasible time. However, it is worth noting that, with 30 executions, our algorithm

achieves results that are close to the best result that DN2PCIoT can achieve for an experiment. On the

other hand, we had to execute METIS with many different parameters to achieve valid partitionings

and find the best result that METIS can get, adding up to more than 98,000 executions. Thus, METIS

execution time is also not negligible.

Current CNNs such as VGG and ResNet would require more constrained devices and/or

devices with a larger amount of memory so that partitioning algorithms can produce valid

partitionings. However, as they are also composed of convolution, pooling, and fully connected

layers, the partitioning patterns [20] tend to be similar. Additionally, as current CNNs present

more neurons, strategies that groups more neurons similar to LeNet 2:1 or in multilevel partitioning

algorithms such as METIS may also be required so that the partitioning algorithm executes in a

feasible time.

Other strategies that we can use to reduce our algorithm execution time are to start from

partitionings obtained with other tools and to interrupt execution as soon as the partitioning achieves

a target value or the improvements are smaller than a specified threshold. Our algorithm can also

be combined with other strategies such as the multilevel approach, which automatically groups

graph vertices, but without the shortcomings of METIS, which are suboptimal values and invalid

Future Internet 2019, 11, 209 27 of 30

partitionings. Even with the limitations of our approach, the results suggest that there is a large space

for improvements when we consider constrained devices and compare to well-known approaches.

6. Conclusions

In this work, we partitioned a Convolutional Neural Network for distributed inference

into constrained Internet-of-Things devices using nine different approaches and we propose

Deep Neural Networks Partitioning for Constrained IoT Devices (DN2PCIoT), an algorithm that

partitions graphs representing Deep Neural Network for distributed execution on multiple

constrained IoT devices aiming for inference rate maximization or communication reduction. This

algorithm adequately treats the memory required by the shared parameters and biases of CNNs so

that DN2PCIoT can produce valid partitionings for constrained devices. Additionally, DN2PCIoT

makes it easy to use other objective functions as well.

We partitioned two versions of the LeNet model with different levels of neuron grouping into

five different setups aiming for inference rate maximization. Several approaches were employed for

the partitionings, including the per-layer approach, which is the approach offered by popular ML

tools such as TensorFlow, DIANNE, and DeepX, and the widely used tool METIS. We compared

these approaches to DN2PCIoT and showed that either the approaches could not produce valid

partitionings for more constrained setups or they yielded suboptimal results, with DN2PCIoT

achieving up to 38% more inferences per second than METIS. We also calculated the inference rate

for a single device of each experiment assuming the memory of this device was sufficient to execute

the whole LeNet. We showed that, even if it were possible to execute the inference on a single device,

there might be performance advantages of distributing its execution among multiple devices such

as gains from 1.7 to 4.69 times in the inference rate provided by DN2PCIoT. Finally, the results for

the inference rate maximization objective function were plotted along with the respective amount of

transferred data so that it was possible to see how optimizing for one objective function affects the

other. Our results suggest that our tool can also deliver the best trade-offs between the inference

rate and communication, with DN2PCIoT providing more than 90% of the results that belong to the

Pareto curve. The partitionings for both versions of LeNet achieved comparable results, with the less

fine-grained LeNet model leading to the best results in 80% of the experiments. Thus, we showed

that a less fine-grained model can be used in the partitionings with limited impact on the results.

Author Contributions: Conceptualization, F.M.C.d.O. and E.B.; Data curation, F.M.C.d.O.; Formal analysis,
F.M.C.d.O. and E.B.; Funding acquisition, E.B.; Investigation, F.M.C.d.O.; Methodology, F.M.C.d.O. and E.B.;
Project administration, F.M.C.d.O. and E.B.; Resources, E.B.; Software, F.M.C.d.O. and E.B.; Supervision,
E.B.; Validation, F.M.C.d.O. and E.B.; Visualization, F.M.C.d.O.; Writing—original draft, F.M.C.d.O.; and
Writing—review and editing, F.M.C.d.O. and E.B..

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
– Brasil (CAPES) – Finance Code 001 and PROCAD 2966/2014 –, by CNPq (142235/2017-2 and 313012/2017-2),
FAPESP (2013/08293-7), Microsoft, and Petrobras.

Acknowledgments: The authors would like to thank the Multidisciplinary High Performance Computing
Laboratory for its infrastructure and contributions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

B Byte

C Convolution layer

CNN Convolutional Neural Network

DIANNE Distributed Artificial Neural Networks for the Internet of Things

DN2PCIoT Deep Neural Networks Partitioning for Constrained IoT Devices

Future Internet 2019, 11, 209 28 of 30

DNN Deep Neural Network

FC Fully-connected layer

FLOP Floating-point operation

IoT Internet of Things

iRgreedy Inference rate greedy approach

KiB Kibibyte

ML Machine learning

P Pooling layer

RAM Random Access Memory

References

1. Vaquero, L.M.; Rodero-Merino, L. Finding Your Way in the Fog: Towards a Comprehensive Definition

of Fog Computing. SIGCOMM Comput. Commun. Rev. 2014, 44, 27–32. doi:10.1145/2677046.2677052.

[CrossRef]

2. Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based

Smart Cities: Recent Advances and Challenges. IEEE Commun. Mag. 2017, 55, 16–24.

doi:10.1109/MCOM.2017.1600514. [CrossRef]

3. Cisco Systems, I. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white-paper-c11-738429.html (accessed on 22 July 2019).

4. Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. Internet of Nano-Things, Things and Everything: Future

Growth Trends. Future Internet 2018, 10. doi:10.3390/fi10080068. [CrossRef]

5. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture,

Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142.

doi:10.1109/JIOT.2017.2683200. [CrossRef]

6. Bormann, C.; Ersue, M.; Keranen, A. Terminology for Constrained-Node Networks. Technical report,

Internet Engineering Task Force, 2014. Available online: https://doi.org/10.17487/RFC7228 (accessed on

4 April 2019).

7. Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning

applications and challenges in big data analytics. J. Big Data 2015, 2, 1. doi:10.1186/s40537-014-0007-7.

[CrossRef]

8. De Coninck, E.; Verbelen, T.; Vankeirsbilck, B.; Bohez, S.; Simoens, P.; Demeester, P.; Dhoedt, B. Distributed

neural networks for Internet of Things: The Big-Little approach. In Proceedings of the 2nd EAI International

Conference on Software Defined Wireless Networks and Cognitive Technologies for IoT, Rome, Italy,

26–27 October 2015; pp. 1–9.

9. Grimaldi, M.; Tenace, V.; Calimera, A. Layer-Wise Compressive Training for Convolutional Neural

Networks. Future Internet 2018, 11. doi:10.3390/fi11010007. [CrossRef]

10. Leroux, S.; Bohez, S.; Coninck, E.D.; Molle, P.V.; Vankeirsbilck, B.; Verbelen, T.; Simoens, P.; Dhoedt, B.

Multi-fidelity deep neural networks for adaptive inference in the internet of multimedia things. Future

Gener. Comput. Syst. 2019, 97, 355 – 360. doi:10.1016/j.future.2019.03.001. [CrossRef]

11. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both Weights and Connections for Efficient Neural Network.

In Advances in Neural Information Processing Systems 28, Proceedings of the 29th Conference on Neural Information

Processing Systems, Montréal, QC, Canada, 7–12 December 2015; Cortes, C.; Lawrence, N.D.; Lee, D.D.;

Sugiyama, M.; Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 1135–1143.

12. Guo, Y.; Yao, A.; Chen, Y. Dynamic Network Surgery for Efficient DNNs. In Proceedings of the

30th International Conference on Neural Information Processing Systems (NIPS’16), Barcelona, Spain,

5–10 December 2016; pp. 1387–1395.

13. Yao, S.; Zhao, Y.; Zhang, A.; Su, L.; Abdelzaher, T. DeepIoT: Compressing Deep Neural Network Structures

for Sensing Systems with a Compressor-Critic Framework. In Proceedings of the 15th ACM Conference on

Embedded Network Sensor Systems (SenSys ’17), Delft, The Netherlands, 5–8 November 2017; pp. 1–14.

https://doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1145/2677046.2677052
https://doi.org/10.1109/MCOM.2017.1600514
http://dx.doi.org/10.1109/MCOM.2017.1600514
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://doi.org/10.3390/fi10080068
http://dx.doi.org/10.3390/fi10080068
https://doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.17487/RFC7228
https://doi.org/10.1186/s40537-014-0007-7
http://dx.doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.3390/fi11010007
http://dx.doi.org/10.3390/fi11010007
https://doi.org/10.1016/j.future.2019.03.001
http://dx.doi.org/10.1016/j.future.2019.03.001

Future Internet 2019, 11, 209 29 of 30

14. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;

Isard, M.; et al. TensorFlow: A System for Large-scale Machine Learning. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation (OSDI’16), Savannah, GA, USA,

2–4 November 2016; pp. 265–283.

15. De Coninck, E.; Verbelen, T.; Vankeirsbilck, B.; Bohez, S.; Leroux, S.; Simoens, P. DIANNE: Distributed

Artificial Neural Networks for the Internet of Things. In Proceedings of the 2nd Workshop on Middleware

for Context-Aware Applications in the IoT (M4IoT 2015), Vancouver, BC, Canada, 7–11 December 2015;

pp. 19–24.

16. Lane, N.D.; Bhattacharya, S.; Georgiev, P.; Forlivesi, C.; Jiao, L.; Qendro, L.; Kawsar, F. DeepX:

A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices. In Proceedings of the

15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Vienna,

Austria, 11–14 April 2016; pp. 1–12.

17. STMicroelectronics. STM32 32-bit Arm Cortex MCUs. Available online: https://www.st.com/en/

microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html (accessed on 22 July 2019).

18. Pellegrini, F. Distillating knowledge about SCOTCH. In Combinatorial Scientific Computing, Proceedings of the

Dagstuhl Seminar, Dagstuhl, Germany, 3–8 May 2009; Naumann, U.; Schenk, O.; Simon, H.D.; Toledo, S., Eds.;

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2009.

19. Karypis, G.; Kumar, V. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

SIAM J. Sci. Comput. 1998, 20, 359–392. doi:10.1137/S1064827595287997. [CrossRef]

20. De Oliveira, F.M.C.; Borin, E. Partitioning Convolutional Neural Networks for Inference on Constrained

Internet-of-Things Devices. In Proceedings of the 30th International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD), Lyon, France, 24–27 September 2018; pp. 266–273.

21. De Assunção, M.D.; Veith, A.S.; Buyya, R. Distributed Data Stream Processing and Edge Computing.

J. Netw. Comput. Appl. 2018, 103, 1–17. doi:10.1016/j.jnca.2017.12.001. [CrossRef]

22. OpenFog Consortium Architecture Working Group. OpenFog Reference Architecture for Fog

Computing. Available online: https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_

09_17.pdf (accessed on 22 July 2019).

23. Zhao, H.; Zhang, W.; Sun, H.; Xue, B. Embedded Deep Learning for Ship Detection and Recognition. Future

Internet 2019, 11. doi:10.3390/fi11020053. [CrossRef]

24. Venckauskas, A.; Stuikys, V.; Damaševičius, R.; Jusas, N. Modelling of Internet of Things units for

estimating security-energy-performance relationships for quality of service and environment awareness.

Secur. Commun. Netw. 2016, 9, 3324–3339. doi:10.1002/sec.1537. [CrossRef]

25. W, W.; Xia, X.; Wozniak, M.; Fan, X.; Damaševičius, R.; Li, Y. Multi-sink distributed power control

algorithm for Cyber-physical-systems in coal mine tunnels. Comput. Netw. 2019, 161, 210–219.

doi:10.1016/j.comnet.2019.04.017. [CrossRef]

26. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016;

ISBN 978-0262035613.

27. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc IEEE 1998, 86, 2278–2324. doi:10.1109/5.726791. [CrossRef]

28. Tang, A.; Lu, K.; Wang, Y.; Huang, J.; Li, H. A Real-Time Hand Posture Recognition System Using Deep

Neural Networks. ACM Trans. Intell. Syst. Technol. 2015, 6, 21:1–21:23. doi:10.1145/2735952. [CrossRef]

29. Wolf, M. Chapter 5—Program Design and Analysis. In Computers as Components, 4th ed.; Wolf, M., Ed.;

Morgan Kaufmann: Burlington, MA, USA, 2017; pp. 221–319, ISBN 978-0-12-805387-4.

30. Benedetto, J.I.; González, L.A.; Sanabria, P.; Neyem, A.; Navón, J. Towards a practical framework

for code offloading in the Internet of Things. Future Gener. Comput. Syst. 2019, 92, 424–437.

doi:10.1016/j.future.2018.09.056. [CrossRef]

31. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge

Computing. IEEE Netw. 2018, 32, 96–101. doi:10.1109/MNET.2018.1700202. [CrossRef]

32. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. DeepThings: Distributed Adaptive Deep Learning Inference on

Resource-Constrained IoT Edge Clusters. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018,

37, 2348–2359. doi:10.1109/TCAD.2018.2858384. [CrossRef]

33. Kernighan, B.W.; Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 1970,

49, 291–307. doi:10.1002/j.1538-7305.1970.tb01770.x. [CrossRef]

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
https://doi.org/10.1016/j.jnca.2017.12.001
http://dx.doi.org/10.1016/j.jnca.2017.12.001
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://doi.org/10.3390/fi11020053
http://dx.doi.org/10.3390/fi11020053
https://doi.org/10.1002/sec.1537
http://dx.doi.org/10.1002/sec.1537
https://doi.org/10.1016/j.comnet.2019.04.017
http://dx.doi.org/10.1016/j.comnet.2019.04.017
https://doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
https://doi.org/10.1145/2735952
http://dx.doi.org/10.1145/2735952
https://doi.org/10.1016/j.future.2018.09.056
http://dx.doi.org/10.1016/j.future.2018.09.056
https://doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x

Future Internet 2019, 11, 209 30 of 30

34. Al-Arnaout, Z.; Hart, J.; Fu, Q.; Frean, M. MP-DNA: A novel distributed replica placement heuristic for

WMNs. In Proceedings of the 37th Annual IEEE Conference on Local Computer Networks, Clearwater, FL,

USA, 22–25 October 2012; pp. 593–600.

35. Wen, X.; Chen, K.; Chen, Y.; Liu, Y.; Xia, Y.; Hu, C. VirtualKnotter: Online Virtual Machine Shuffling for

Congestion Resolving in Virtualized Datacenter. In Proceedings of the IEEE 32nd International Conference

on Distributed Computing Systems Workshop, Macau, China, 18–21 June 2012; pp. 12–21.

36. Cao, B.; Gao, X.; Chen, G.; Jin, Y. NICE: Network-aware VM Consolidation scheme for Energy Conservation

in Data Centers. In Proceedings of the 20th IEEE International Conference on Parallel and Distributed

Systems (ICPADS), Hsinchu, Taiwan, 16–19 December 2014; pp. 166–173.

37. Verbelen, T.; Stevens, T.; Turck, F.D.; Dhoedt, B. Graph partitioning algorithms for optimizing

software deployment in mobile cloud computing. Future Gener. Comput. Syst. 2013, 29, 451–459.

doi:10.1016/j.future.2012.07.003. [CrossRef]

38. Guerrieri, A.; Montresor, A. Distributed Edge Partitioning for Graph Processing. arXiv 2014,

arXiv:1403.6270v1.

39. Rahimian, F.; Payberah, A.H.; Girdzijauskas, S.; Haridi, S. Distributed Vertex-Cut Partitioning. In Lecture

Notes in Computer Science, Proceedings of the Distributed Applications and Interoperable Systems, Berlin, Germany,

3–5 June 2014; Magoutis, K., Pietzuch, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 186–200.

40. Lopez-Jimenez, E.; Vasquez-Gomez, J.I.; Sanchez-Acevedo, M.A.; Herrera-Lozada, J.C.; Uriarte-Arcia, A.V.

Columnar cactus recognition in aerial images using a deep learning approach. Ecol. Inform. 2019,

52, 131–138. doi:10.1016/j.ecoinf.2019.05.005. [CrossRef]

41. Abd Mubin, N.; Nadarajoo, E.; Shafri, H.Z.M.; Hamedianfar, A. Young and mature oil palm tree detection

and counting using convolutional neural network deep learning method. Int. J. Remote Sens. 2019,

40, 7500–7515. doi:10.1080/01431161.2019.1569282. [CrossRef]

42. Ningbo, L.; Yanan, X.; Yonghua, T.; Hongwei, M.; Shuliang, W. Background classification method based

on deep learning for intelligent automotive radar target detection. Future Gener. Comput. Syst. 2019,

94, 524–535. doi:10.1016/j.future.2018.11.036. [CrossRef]

43. STMicroelectronics. STM32F469xx. Available online: https://www.st.com/resource/en/datasheet/

stm32f469ae.pdf (accessed on 24 July 2019).

44. Atmel. Atmel SAM G55G. Available online: http://ww1.microchip.com/downloads/en/devicedoc/

Atmel-11289-32-bit-Cortex-M4-Microcontroller-SAM-G55_Datasheet.pdf (accessed on 24 July 2019).

45. STMicroelectronics. STM32L433xx. Available online: https://www.st.com/resource/en/datasheet/

stm32l433cc.pdf (accessed on 24 July 2019).

46. STMicroelectronics. STM32L151x6/8/B. Available online: https://www.st.com/resource/en/datasheet/

stm32l151vb.pdf (accessed on 24 July 2019).

47. Karypis, G. METIS A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and

Computing Fill-Reducing Orderings of Sparse Matrices Version 5.1.0. Available online: http://glaros.dtc.

umn.edu/gkhome/fetch/sw/metis/manual.pdf (accessed on 30 March 2019).

48. Honovich, J. Frame Rate Guide for Video Surveillance. Available online: https://ipvm.com/reports/

frame-rate-surveillance-guide (accessed on 14 July 2019).

49. Leiserson, C.E.; Saxe, J.B. Retiming synchronous circuitry. Algorithmica 1991, 6, 5–35. doi:10.1007/BF01759032.

[CrossRef]

50. Kasprzak, E.; Lewis, K. Pareto analysis in multiobjective optimization using the collinearity theorem and

scaling method. Struct. Multidiscip. Optim. 2001, 22, 208–218. doi:10.1007/s001580100138. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2012.07.003
http://dx.doi.org/10.1016/j.future.2012.07.003
https://doi.org/10.1016/j.ecoinf.2019.05.005
http://dx.doi.org/10.1016/j.ecoinf.2019.05.005
https://doi.org/10.1080/01431161.2019.1569282
http://dx.doi.org/10.1080/01431161.2019.1569282
https://doi.org/10.1016/j.future.2018.11.036
http://dx.doi.org/10.1016/j.future.2018.11.036
https://www.st.com/resource/en/datasheet/stm32f469ae.pdf
https://www.st.com/resource/en/datasheet/stm32f469ae.pdf
http://ww1.microchip.com/downloads/en/devicedoc/Atmel-11289-32-bit-Cortex-M4-Microcontroller-SAM-G55_Datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/Atmel-11289-32-bit-Cortex-M4-Microcontroller-SAM-G55_Datasheet.pdf
https://www.st.com/resource/en/datasheet/stm32l433cc.pdf
https://www.st.com/resource/en/datasheet/stm32l433cc.pdf
https://www.st.com/resource/en/datasheet/stm32l151vb.pdf
https://www.st.com/resource/en/datasheet/stm32l151vb.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf
https://ipvm.com/reports/frame-rate-surveillance-guide
https://ipvm.com/reports/frame-rate-surveillance-guide
https://doi.org/10.1007/BF01759032
http://dx.doi.org/10.1007/BF01759032
https://doi.org/10.1007/s001580100138
http://dx.doi.org/10.1007/s001580100138
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	cnn
	Dataflow Graphs and Neural Network Models
	Problem Definition
	Machine Learning and IoT Tools
	Partitioning Algorithms

	Proposed dn2pciot (DN2PCIoT)
	Methodology
	LeNet Neural Network Model
	Device Characteristics
	Types of Experiments
	Per Layers: User-Made per-Layer Partitioning (Equivalent to Popular Machine Learning Frameworks)
	Greedy: A Greedy Algorithm for Communication Reduction
	iRgreedy: User-Made Partitioning Aiming for Inference Rate Maximization
	METIS
	dn2pciot 30R
	dn2pciot after Approaches

	Experimental Results
	Inference Rate Maximization
	Pipeline Parallelism Factor
	Inference Rate versus Communication
	Limitations of Our Approach

	Conclusions
	References

