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Abstract: We approach scalability and cold start problems of collaborative recommendation in this
paper. An intelligent hybrid filtering framework that maximizes feature engineering and solves cold
start problem for personalized recommendation based on deep learning is proposed in this paper.
Present e-commerce sites mainly recommend pertinent items or products to a lot of users through
personalized recommendation. Such personalization depends on large extent on scalable systems
which strategically responds promptly to the request of the numerous users accessing the site (new
users). Tensor Factorization (TF) provides scalable and accurate approach for collaborative filtering in
such environments. In this paper, we propose a hybrid-based system to address scalability problems
in such environments. We propose to use a multi-task approach which represent multiview data from
users, according to their purchasing and rating history. We use a Deep Learning approach to map
item and user inter-relationship to a low dimensional feature space where item-user resemblance
and their preferred items is maximized. The evaluation results from real world datasets show that,
our novel deep learning multitask tensor factorization (NeuralFil) analysis is computationally less
expensive, scalable and addresses the cold-start problem through explicit multi-task approach for
optimal recommendation decision making.

Keywords: multi-task framework; tensor factorization; sensors; pre-training; feature engineering;
collaborative recommendation

1. Introduction

The era of big data has led to the information overload problem as a result of the fact that,
information abounds in volume, variety and veracity and velocity on the internet and e-commerce
sites. Cichocki et al. [1] posit that big data is characterized not only by big Volume but also by other
specific “V” challenges: Veracity, Variety, Velocity and Value highlight big data characteristics for
information filtering related problems [2,3]. High Volume implies the need for algorithms that are
scalable; high Velocity is related to the processing of stream of data in near real-time; high Veracity
calls for robust and predictive algorithms for noisy, incomplete and/or inconsistent data, high Variety
require integration across different kind of data for instance, genetic and behavior data. Such attributes
pose complexity in such a manner that, existing standard methods and algorithms become woefully
inadequate for the processing and optimization of such data. In the big data world, machine learning
algorithms which provide efficient and innovative solutions and technologies to enhance feature
engineering and memorization is critical for better analytics for development. A recommender system
purposely provide users with personalized online products or services recommendations to handle the
increasing massive information to enhance customer relationship management and decision making
process [4,5]. Various recommender system techniques have been proposed since the mid-1990s and
many sorts of recommender system software have been developed recently for a variety of applications
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as a result of the cold start problem of users and items [6,7]. Researchers and managers recognize that
recommender systems offer great opportunities and challenges for business, government, education
and other domains with more recent successful developments of recommender systems for real-world
applications. According to [8], Multi-task learning on the other hand, is an approach designed to
improve predictive performance by learning from multiple related tasks simultaneously, taking into
account the relationships and information shared among the different tasks [9]. The multi-task learning
paradigm activates a great deal of model interpretability and it is able to provide explicit information
for further analysis on user behavior patterns according to current research in information filtering [10].
In this paper, we focus on explicit feedback, through user’s auxiliary data which directly depicts users’
preference through ratings and sentiments expressed [11]. A radial basis function [12] is used to filter
the complex interactions between the items, users and sentiments scores of users of an e-commerce site.
Compared to implicit feedback, this paper explores user information in more than two dimensions and
treats it as a tensor model. Deep neural network model for the existing relationships is then formulated
in a Multilayer Perceptron (MPL) model. Regarding the key content filtering effectiveness, MF when
used to fuse item and user characteristics with inner product sometimes hinders better performance
as a result of the cross product normally counted as cost. This paper mitigates the just mentioned
research constraints with a multi-modal data and models it as a multi-task algorithm, which is hybrid
in real sense. Therefore, a hybrid recommendation based on multi-task learning framework for solving
cold start and scalability problems is proposed for collaborative filtering in this paper. The main
contributions of this paper are:

(i) A novel tensor factorization strategy, which adapts radial basis of Gaussian type to solve the cold
start problem is proposed.

(ii) A hybrid collaborative system using the speed of the multilayer perceptron and the simplicity and
accuracy of Tensor Factorization to produce fast and accurate model for improved performance
to ensure a scalable processing of big data is proposed.

(iii) Our novelty lies in the fact that, our proposed models; MLP and MTF which are jointly trained
promotes feature engineering and memorization which could be used as basis for future learning
through our special tweaking strategy. We wish to draw readers attention to the fact that,
our model is not an ensemble where each model is trained disjointly and then combining
their predictions in the final stage. We train a deep neural network over the corresponding
user information over the latent factors from the user matrix via tensor factorization which
is innovative.

2. Review of Related Works

In recent times, there has been a hype in academia and industry about Artificial Intelligence
(AI) [13] and its associated technologies enhancing industry and academia. Al which encapsulates
Machine learning (ML) [14] and Deep leaning (DNN) [15] show up in countless articles out of
the technology motivated ones. A Deep neural network as proposed by [15,16] has the potential
of estimating both continuous and discrete function. Recently, various application areas such as
speech recognition, computer vision and text processing [17] among other fields have experienced the
potency of deep neural networks. However, few publications have employed tensor factorization for
filtering information with the subject matter considering the numerous amount of literature on MF
methods. Notwithstanding the fact that, some recent advances [18,19] used DNNs for filtering tasks
and shown encouraging consequences, auxiliary information of users were modelled, for instance,
in audio and images. From literature [20], the massive data generated in recent times is as a result
of generations from multi-modal, multi-dimensional datasets from current Recommender Systems
(Rss) Hybrid algorithms [21] as proposed in this paper and being represented are used to optimize
real-world implementations of algorithms and have received significant interest in recent years and
are increasingly used to solve real-world problems as propounded by [22]. These hybrid models
could include combination of two or more algorithms such as particle swarm optimization (PSO) [23],
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matrix factorization [24], genetic algorithms (GA) [25] and other computational strategies like artificial
intelligence or deep neural networks [26] including but not limited to fuzzy logic systems [27],
simulation, sigmoid functions or MLP [28], radial basis functions [29], just to mention a few. Deep
neural networks (DNNSs) are techniques of artificial intelligence (Al) that have the capability to learn
from experiences, it is robust [30] and improves performance by adapting to the changes in the
environment [22]. The underlying advantages of Deep Neural Networks are the possibility of efficient
operation of large amounts of data and its ability to generalize the outcome [19,31] proposed neural
collaborating filtering which showed significant improvements but used matrix factorization approach
which as far as we are concerned has additional computational burden.

In this paper, we wish to envisage hybrid models for real collaborative filtering environment in
the same way as those writers though differently with our tensor strategy and multimodal data that is
explicit in nature to solve the information overload problem. We prove that, DNNs have an excellent
capability for user-item modelling, which to our knowledge has not been investigated to a large extent
by researchers.

3. Materials and Methods

3.1. General Framework

Tensor factorization has emerged as a promising solution for the computational challenges of
collaborative recommendation [32] and it is the basic framework for this paper, Figure 1. Tensor [33]
as a multi-way array is multidimensional in nature and its order refers to the number of its
dimensions. Various schemes have been proposed to decompose a tensor into factor matrices,
which not only reduces dimensionality but also helps to discover latent factors in each modality and
identify group-wise interactions. Typically, matrix factorization approaches concatenate multiple data
modalities into a single second dimension of the matrix, thus disallowing explicit representation
of interactions among these modalities [34]. This explains our choice for tensor modelling in
this paper. Tensor integrates additional domain-specific prior knowledge to constraint the tensor
structure [35]. Thus tensor factorizations can easily integrate multiple data modalities, reduce
dimensionality and identify latent groups in each mode for meaningful summarization of both
features and instances as propounded by [36] in medical data analysis. According to Nickel et al. [37]
tensor as a factorization tool has a collective entity for filtering hidden factors related to massive
data. In Reference [38], it is proven that, tensor-based methods is ideal for mitigating personalized
tagging and link prediction recommendation. Tensor for efficient and simple parallelization [39],
sentiment-based tensor factorization for big data [40] our previous works provide sufficient basis for
tensor implementation in this paper. Regarding personalized tag recommendation system, singular
vector decomposition (HOSVD) [41] are based on Tucker Decomposition (TD), while LFTF [42] is a
Canonical Decomposition (CD) type. We now present the general framework of our model in Figure 1
explaining tensor and deep neural models for filtering customer interactions. U means user, I is I[tems
whiles S is review sentiments expressed.

3.2. Multi-Task Tensor Factorization

As in the case of MF in Recommender Systems (Rss), TF produces a predictive model by revealing
patterns from the data. The major advantage of a tensor based approach is the ability to take into
account a multifaceted nature of user-item interactions [43]. In the Google’s wide and deep model [44],
a generalized linear model was used to capture latent features in the wide perspective. In this paper,
tensor factorization model which is non-linear in nature is chosen to be a platform model as a result of
the fact that it has appealing property to efficiently impose structure on the vector space representation
of the data as propounded by [37]. We will regard an array of numbers with more than 2 dimensions
as a tensor. This is a natural extension of matrices to a higher order case. A tensor with N distinct
dimensions is called an N-way tensor or a tensor of order N. Tucker Decomposition (TD) factorizes
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a multi-dimensional array into a main tensor multiplied by a matrix [20]. Taking a 3rd-order tensor
A € RPI*K for instance,

Ri Ry Rs
,],k = Z Z Z CrlrrZ/VSO e ],7'2°Zk,73 )
r1=1r=1r3=1
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Figure 1. General Framework.

R1, Ry, R3 represent latent characteristics. However, CD factorizes a multi-way data which is a
tensor into a summation of rank-one modes. Let A € RI*/*K be a tensor and it can be written as;

A; k= Z Xl e Zk,r (2)

where X € RIXRY ¢ RI¥R 7 ¢ RKXR gnd R represents the number of features. X,Y,Z in
Equations (1) and (2) can be equated to the factor matrices SVD and core tensor C can be said to
be the eigenvalues [45]. Probabilistic Tensor factorization is applied to model the reviews sentiment
and rating scores with their item (IDs) which are the explicit user feedback [46] which are in line
with [12]. We treat dataset as three-dimensional tensor structure. We adapt notations of [12,47] for
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the formulation of our model. If I is the set of items, U is the set of users whiles is the set of review
sentiments, then the process that reviewer of an item S reviews or scores with sentiment s and how the
user u rates an item is symbolized by a triple (u,i,s). R € U x I x X denotes the set of review history
(Table 1). If a triplet (u,i,s € R) then the interactions between items, users and review sentiment for
personalized tag recommendation can be represented by a three-order tensor, which is depicted in
Figure 1. A ranking scheme propounded by [35] for personalized recommendation is employed in this
paper. If PS denotes the item-user pairs (1, i) in S, then a multi-task tensor factorization (MTF) using
Gaussian Kernel for the filtering job can be fitted. The triplicate interactions between items, users and
review sentiment is presented by a 3rd-order tensor with |1l items, |U| users and IS| sentiment
votes [40]. The tensor can then be factorized into three components, an item matrix I € ZMIXZ 3 user
matrix U € ZIUI*Z and a sentiment matrix § € ZI*1*Z, where R is the number of features. The entry
of the i-th row of the matrix I, matrix U and matrix S denotes the latent variables of the i = item, i-th
user and i-th sentiment vote, respectively. The columns of matrices I, U and S could be referenced as a
feature topic. Three paired relations are modelled with respect to this paper; user-sentiment, user-item
and user ratings. It is assumed that, if sentiment s and item i are relevant with the k-th topic, then S,
is a Gaussian pair of N(I;; ¢?) and the same is true with the other variables. Readers must note here
that, S, represents k-th characteristics of the sentiment whiles I;  is the k-th characteristic of item i.
Thus, the k-th character of the sentiment s as well as the k-th character of item 7 depicts a Gaussian-like
feature. Therefore,

1Lk — Sskl| ~ N(0,0?) 3)

whiles ¢ represents the standard deviation of the distribution. Three pairs of the dimensions items,
users and sentiments are respectively deduced assuming that,

|y, — I 1] ~ N(0,0?)
||U5,k_5151,kH ~ N(0,07)
115 — SLill ~ N(0,0?)

Table 1. Notations.

Symbol Description

User-tag
Item-tag matrix
Rating sentiments expressed
Tensor
Number of features in XYZ
Core tensor
RelUxIxS Rating history

NRP>R—~C

PS User item pairs
X Dimension layer
z Set of negativities
Doyt Mapping of output layer
zZ Observed relationship in Z
0 Training parameter
S tensor
Cpi c-th neural filtering layer
Ve first input dimensional vector
Vi second input dimensional vector
Bout interaction function for the final phase
Oy interaction function for deep neural filtering phase

ik is the k-th characteristic of item i
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Based on this assumption, a triplet (i; i; t) as well as its potential score (u; i; t) is deduced as;

fluiys) = %wzgl-eXP(—%AHU,ﬂ,k — 15 + %wl;;ls-eXP(—%AIIUS,k —S&IP)

S I (12
k= Ssxll%)

4)

+§w,{5.exp(—%)\|

Here, A =1/ az.w}{ll represents the k-th feature for the item-user features. Again, w,{s and Iisk
represent the value of the k-th topic for item-sentiment and user-sentiment interactions. ’

The matrices I, U and S columns feature topic are fused into a feed-forward MLP layer of the
deep model. On top of the input, the embedding layer maps the sparse representation to a deep vector.
The resultant item or user embedding labelled as the item or user feature vector in the field of feature
modelling. The item and user embedding are directly inputted into the multi-layer neural model,
we name it as; deep neural filtering layer which maps the feature vectors to a recommendation field.
The dimension layer X explains the potency of the model. A fully connected multilayer feed-forward
networks have nodal transfer function activation flows from the input layer through a hidden layer to
the output layer [48]. This is expressed as;

1=

z1 = f. ‘ (wi]-) + x; + b]'l %)

i=1

where x; is one of the N inputs nodes for processing node j, w;; denotes the weight of the connection
node, b_j is the bias for node y and z; is the output node. Each neuron is connected to each other in
the forward direction within the network.

3.3. Proposed Deep Neural Filtering Model

The general NeuralFil framework Figure 1, explains the learning propensity of NeuralFil with a
probabilistic concept which dwells on tensor factorization for explicit learning. Learning via tensor
factorizations is based on the idea of explaining an observed tensor Y through a set of latent factors.
We then show that multi-task tensor factorization (MTF) can be expressed and discretized as a
generalization under Neuralfil. We explore the use of deep neural networks for information filtering
with multi-layer perceptron (MLP) to learn the item- user interaction in this paper. Importantly,
a unique tensor factorization model with deep learning, which is jointly trained (MTF and MLP)
under the NeuralFil framework is revealed; The model brings a unification through the potency
and effectiveness of the Tensor Framework and non-linearity of Multi-Layer Perceptron (MLP) for
modelling interrelated factors. The factors of the final hidden layer C shows the model’s potency. z is
the output the predicted and a point-wise loss algorithm is used to train the model of z and the target
z. Thus we formulate Neuralfil’s predictive model as

Zyuir = H(ATUY, BTo!,CTTR|A, B,C,aH) (6)

where A € RM'K B ¢ RN'Kand C € RF'K signifies feature factor matrix for items, users, items and
ratings whiles aH signifies parameter of H which is the association function of the model. Thus H is
remains as the multi-layer neural network and it is re-formulated as;

H(ATVY, BTo],CTVE) = pout(p” ... (o1 (ATVY, BTo],CTVF))..) %

where &, and a, represent the mapping of the output layer and the c-th neural filtering layer, with X
in all.
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3.4. Learning the Joint Model of Non-Linear Tensor Factorization and Multilayer Perceptron

The explicit data is not binarized so our model is learned adopting pointwise methods [49,50]
which mainly implement a regression with squared loss:

qur = Z ‘Dui(zui - 2)2 (8)
u,i(zUz™)

where Z is the observed relationship in Z and z denotes refers to the set of negativities and @,;
is a hyper-parameter representing weights of training (i, 7). We explain squared loss on the mere
assumption that, observations are as a result of multivariate Gaussian distribution. Given S, the
learning task is to model parameter 6.

For the purpose of this work, the tensor model is then discretized by adopting the sigmoid
function which is a Gaussian-like kernel, by freezing the power parameter as;

o
Qa(y, ') = exp(~|I¥=1) ©)
In a form;
Qa(y,y') = exp(—ptf(y —y')),
v,y €N

and Qua =logsig(y,y”,y,y € N") respectively. The objective is to explore and remove this power
computation burden and apply it in a recommendation system through Tensor Factorization.
The function MLP and MTF which is adopted as a Radial Basis Function is given as z; = logsig(X),
zy = exp(—ptf(R)). Here log sig (R) is the function for multilayer perceptron or sigmoid (SBF) and
exp(—abs(R)) is the function for MTF, respectively.

3.5. Proposed Deep Neural Prediction Model

For a real neural network filtering model, we present a multi-layer algorithm such as [51] to
model a user interaction c;;. Here, the individual output stratum becomes the effort of the layer which
is above it. The underlying input stratum comprises double dimensional vectors V,» and V;i that
explains user P and item [ on top of the input stratum. The dimensional features of the very last
concealed stratum Y establishes the model’s efficacy. The last output stratum depicts the envisaged
grade. We at the moment put together the NeuralFil's prognostic model being referred to as ‘deep
neural collaborative filtering (NeuralFil)’ layers that maps the vectors of latency in the prediction space.
The dimensional feature Y of the last layer explains the efficacy of the model. The predicted score Cp;
is the output and training is implemented by a point-wise minimization between C,; and expected
value Cp;. NeuralFil’s predictive model is then formulated as;

A
cpi = f(ATv,, BT0]|A, B, 6f) (10)

and B € RN*K signifying the latent feature matrix for items and users; 6 represents model’s parameter
of f. f as a function is a multi-layer neural network and can be deduced that;

f(A o], BT 0] = Oous (6y(...62(61(ATvy, BT0))) ..)) (11)

where 0,,; and Gy stands for the interaction function for the final phase and a deep neural collaborative
filtering phase, where Y NeuralFil phases in length is available.

4. Model Integration

The two models of NeuralFil—MTF adapts a non-Gaussian kernel as a model that that learns
feature relations and MLP which adapts a non-linear kernel to learn the interaction function from
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massive datasets have been developed, Figure 2. This is for MTF and MLP to reinforce each other so as
to improve the user-item interactions. We also want to identify most parameter combinations in order
to determine the one that will give the right fusion to reduce the error, to maintain the speed if not to
increase it and to improve accuracy, to optimize various parameters well in a one-time engineering
complexity strategy. In this paper, it is assumed that, MTF and MLP share a similar embedding layer,
whiles their outputs are fused or jointly trained to enhance its generalization potential which is crucial
element in machine learning. Same idea as propounded in Neural Tensor Network (NTN) [52] and
NCEF [19]. For issues of tractability and adaptability of the integrated model, MTF and MLP are made
to be trained as isolated stratums which are thereafter combined by lashing the final hidden stratum as
depicted in Figure 1. We therefore formulate our model as follows; similar to [19].

Al
¢"TF = Al x B x C} MM = xL(w( (aL —1(...ap(w} | B! | +b2...)))+bL+cL (12
c?

z,i = O(mT ([ o' ]) (13)
ui gDMLP

Ab, Bf ,CF represent the user ingrain of MTF and the MLP side as in the case of [22]; ReLU is used
as the activation function of the MLP stratum. This model effectively joints the effectiveness of MTF
and efficiency of DNNSs harnessing the propensity of multimodal datasets of users of a recommender
system hence; “NeuralFil,” is short for Neural Tensor Filtering.

z(out,) = log P(S/6) > Eq[logP(A,B,C,S(8)]

Zout,) =log p(p/6)

Z(nybnd)= 7o) + (2(out,) *(- c0s))

Zont,) = exp(—pif (N))

~000 000

Inputs Layer Hidden Layer Qutput Layer
Figure 2. Integrating a non-linear with MLP.
Pre-Training

We believe in the initialization of deep neural networks as pertinent as to the convergence
and performance of the model [53]. Because NeuralFil is a mutation of MTF and MLP, we
present initialization of NeuralFil using pre-trained MLP and MTF. We train MTF and MLP with

initializations randomly for quick merging criteria. The model parameters are used to initialize.
ymPTF

m <— (1— )mMLP where m

MTEF, when tweaked; 7 is the trade-off hyper parameters of the pre-trained paradigms. Training

MTF and MLP from beginning, a mini-batch training model is adopted. The rate of learning for

PTF and mMLP is the m-th vector of the user stratum of MLP and
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each parameter updates are done and are applicable via online and offline trainings. The mini-batch
algorithm provides faster convergence for both models.

5. Results

5.1. Data Preparation

Two recommendation available accessible datasets: Amazon datasets, MovieLens (Table 2).
The movie rating dataset is an explicit feedback data containing one million ratings, We intentionally
chose this to investigate the performance of learning from the multimodal data [54]. The second
datasets, Amazon contains product reviews and metadata from Amazon, including 142.8 million
review [55]. This dataset includes reviews (ratings, text and helpfulness votes), product metadata
(descriptions, category information, price, brand and image features) and links. In order to study
MTF’s parallel performance, we process it into three 3-order tensors, where each mode correspond to
users, movies and calendar month, respectively. The rates range from 0.5 to 5. The hyper-parameters
are all determined by cross validation. The ratings of amazon datasets range from 1 to 5. NeuralFil
models are pre-trained and are inadvertently initialized with parameters of zero meaan and a deviation
of 0.01, then optimized with mini-batch inference. A rate of 0.0001, 0.0005, 0.001, 0.005 is used for
learning the parameters. Based on the fact that of the last hidden layer revealing the efficacy of the
model, the factors of {4, 8, 16, 32, 64} were evaluated. Large values might have brought about outliers
and hamper the proper efficiency thereby employing 3 hidden layers for MLP as proposed by [19] for
a predictive value of 4, the structure of the NeuralFil layers is 64—32—16—8—4, whiles the stratum
would be 8. In the NeuralFil’s pre-training strategy, y tuned around 0.5, permitting the pre-trained
values to work well in NeuralFil's strategy.

Table 2. Evaluation datasets.

Dataset Interaction# Item# User# Sparsity
MovieLens 1,000,209 3706 6040 95.53%
Amazon 1,500,809 9916 55,187 79.90%

The actual data is massive and sparsely distributed. So, the dataset is preprocessed in the same
way as the MovieLens data and maintained only users with at least 20 rating scores. Each relationship
signifies if a user rated an item or reviewed it.

5.2. Evaluation

The Normalized Discounted Cumulative Gain (NDCG) sorts all relevant documents in the corpus
by their relative relevance. This produces the maximum possible Discounted Cumulative Gain (DCG)
through position p, also called Ideal DCG (IDCG). For the quality of the proposed algorithm, the
normalized discounted cumulative gain or NDCG, is computed as;

DCGp

nbDCCr = 1566,

(14)

Thus
|REL| 2”’11 1

IDCGp = _
P l; log2(i+1)

(15)
NDCG value of (1) was obtained from the MTF algorithm which shows a degree of relevance of
the algorithm.
The model had an NDCG value of (0.0311926404933), showing the competitiveness of the MTF
model. In evaluating the effectiveness of the proposed model, the Normalized Discounted Cumulative
Gain (NDCG) as well as the Hit Ratio are used as the metric for that purpose [11]. The rank list is
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concatenated at 8 for both metrics. The HR actually calculates the extent of the test item on the top-8
list, whiles NDCG measures the position of hit allocating massive values to the top rank hits [19].
The two metrics were calculated as applicable to each test and weighted values are reported.

5.3. Efficiency of NeuralFil

Figure 3 shows the efficiency of HR@8 and NDCG@8 with respect to the number of predictive
factors. We can infer that, NeuralFil’s performs best on both datasets, significantly outperforming the
state of the-art methods GMF, NeuMF, NNMF by a relatively appreciable margin. This indicates the
high expressiveness of NeuralFil ‘s fusion strategy of MTF and non-linear MLP models. In the small
predictive factors, MTF outperforms GMF on both datasets; although MTF suffers from overfitting for
large factors, its best performance obtained is better. Lastly, MTF shows consistent improvements over

NNME, admitting the effectiveness of the log loss for collaborative recommendation task.
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Table 3
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Figure 3. Performance of NDCG and HR with their respective predictive factors on the datasets.

5.4. Pre-Training Strategy

In demonstrating the benefits of pre-training the NeuralFil, the performance of two scenarios
of NeuralFil with pre-training as well as no pre-training is implemented. As shown in Figure 4,
the NeuralFil with pretraining attained better prediction performance in most cases as depicted.
This result proves the effectiveness of our pre-training method for NeuralFil’s initialization strategy.

vo- e VovieLsns|
’ B Amazon

Accuracy
Factor

NDCG=10

HR10 P

Figure 4. Cont.
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I MovielLens
1.0 B Amazon e

Accuracy
Factor

HR10 NDCG=10
[Non pre-Training |

Figure 4. Deep Learning Performance.

5.5. The Efficacy of DNN for modelling User-Item Interaction

Research on item-user association modelling bluredwith deep learning is trivial. It is therefore
worth researching to prove whether using a deep network model is prudent on recommendation
systems. Working towards that objective, MLP with different hidden layers were further experimented.
Results are depicted in Figure 5. This result is highly encouraging, indicating the efficiency of using
deep models for collaborative filtering prediction task.

Table 4: HR=10 of MLP with different layers

0.7

Movielenz

MLP

8 16 32 64 128
Factors [8 16 32 64 128]

Figure 5. Performance of MLP.

5.6. Computational Complexity Analysis

NeuralFil needs two steps to update all variables once. The first step updates X", Y", Z". For each
value R;j the computational complexity of an update is (R). Since the total number of observed entries
in each process is about | Q)| /N, the time complexity of step one is O(| 2| R/N). The next step has to
update a matrix of size (J x R) and another of size (K x R) in every process, thus the computational
complexity is O(max{J,K]JR). In all, the computational complexity of NeuralFil in each iteration could
run down to O(1 QO IR/N + max{J,K}R). We compare our proposed NeuralFil strategies: ‘MTF and
MLP’ with the following methods: Neural Collaborative Filtering(NCF) [19]: This method optimizes
the MTF model of Equation (2) with a pairwise ranking loss, which is geared towards learning from
implicit feedback. It is a highly competitive baseline for item recommendation.
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Neural Network Matrix Factorization (NNMF) [56]: This method alternates between optimizing
the network for fixed latent features and optimizing the latent features for a fixed network. We used a
fixed learning rate, varying it and reporting the best performance. Neural Tensor Networks (NTN) [52];
an expressive neural tensor network suitable for reasoning over relationships between two entities.
Figures 3 and 4 depicts the results.

6. Conclusions

In this work, we present deep neural network modelling with multimodal datasets for
collaborative recommendation system. The general framework NeuralFil is proposed with two
different models—MTF, MLP—for modelling item-user associations in a novel way. Our framework is
simple and generalizes well [57]; it is not limited to the models presented in this paper but is designed
to serve as a basis for developing deep learning methods for recommendation. Our model networks
can generalize better to unseen feature combinations through low-dimensional dense embedding
learned for the sparse features through little dimensional re-engineering. In this paper, we have
applied a tensor-based deep neural network framework which propagates gradients from the output
to both the nonlinear tensor and MLP using a mini-batch stochastic algorithm which is novel. In this
paper, we have illuminated that tensor factorization, are very promising tools for big data optimization
problems. High Volume implies the need for algorithms that are scalable. We have used tensor
factorization as a framework which is scalable. Value refers to extracting high quality and consistent
data which could lend themselves to meaningful and interpretable results and in this paper, neural
networks has been used to achieve value associated with big data. High Volume implies the need
for algorithms that are scalable. We have used tensor factorization as a framework which is scalable.
One of the novel strategies implemented in this paper are pre-training initialization and mini-batch
stochastic gradient propagation strategies and our efficient tensor strategy makes this particular paper
distinct. In the future, temporal dynamics for parallel processing for social would be envisaged. This
novel multi-task learning which a hybrid transfer is shows outstanding performance and is competitive
over other existing models. It is robust as a result of the evidence from the baseline comparisons.
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