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Abstract: A conventional Wireless Sensor Network (WSN) cannot have an infinite lifetime without
a battery recharge or replacement. Energy Harvesting (EH), from environmental energy sources,
is a promising technology to provide sustainable powering for a WSN. In this paper, we propose
and investigate a novel predictive energy management framework that combines the Maximal
Power Transferring Tracking (MPTT) algorithm, a predictive energy allocation strategy, and a high
efficiency transmission power control mechanism: First, the MPTT optimal working point guarantees
minimum power loss of the EH-WSN system; Then, by exactly predicting the upcoming available
energy, the power allocation strategy regulates EH-nodes’ duty cycle accurately to minimize the
power failure time; Ultimately, the transmission power control module further improves energy
efficiency by dynamically selecting the optimum matching transmission power level with minimum
energy consumption. A wind energy powered wireless sensor system has been equipped and tested
to validate the effectiveness of the proposed scheme. Results indicate that compared with other
predictive energy managers, the proposed mechanism incurs relatively low power failure time while
maintaining a high-energy conversion rate.

Keywords: energy harvesting; wireless sensor node; power management; maximal power
transferring tracking; wind energy prediction; transmission power control

1. Introduction

The Internet of Things (IoT) is an emerging paradigm that aims to provide reliable access to
heterogeneous and distributed data and may represent a good solution for the smart lives of the future.
However, this new paradigm raises a number of scientific and technological challenges related to
sensor technology that must be addressed comprehensively, of which the Wireless Sensor Network
(WSN) issue has attracted much attention. Generally, the limited available lifetime is a key bottleneck
for most battery-powered WSN, therefore, harvesting energy from the environment has been widely
investigated to ensure the sustainability of WSN. As for this Energy Harvesting-WSN (EH-WSN),
many studies have been carried out and achieved some accomplishment [1–3]. However, there are
still existing problems: For many long-term applications, replacing the batteries of every EH-nodes
is not a feasible solution if they are deployed in a harsh environment or if the network has a large
size. A promising approach to tackle this is to enable the nodes to be entirely powered by the energy
harvested in their environment.

For a typical EH-WSN, each node is equipped with at least one energy harvester and one or
more energy storage devices. The purpose of storage device is to buffer energy to allow the node
surviving periods when the harvested energy is not enough. To achieve prolonged lifespan with
dynamic ambient power, an energy management strategy is indispensable in an EH-WSN system,
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with its main purpose to matching the system energy consumption with the ambient energy generation,
which enables “Energy Neutral Operation (ENO)” [4].

On the whole, the main research issue of power management in EH-WSN lies in two aspects:
How to maximize the harvested energy and how to maximize the energy utilization efficiency. Hence,
harvesting circuits designed for different energy sources has been deeply researched and the Maximal
Power Point Tracking (MPPT) algorithm has been implemented in some studies [5,6]. However,
concerning the conventional harvesting module, which is always cumbersome and massy, EH-WSN
systems with small physical size and constrained energy storage capacity (supercapacitor) are more
suitable for future smart applications (such as smart forest and smart agriculture) [7,8], and it is also
our focus. Concerning this light-weighted smart EH-WSN, power management faces great challenges
due to the small capacity of the supercapacitor and an ultralow energy harvesting rate, therefore the
existing harvesting method and energy allocation strategy should adapt to the individual characteristic
of environmental energy source, calculate the optimal working point efficiently, and reallocate the
energy effectively.

Besides the energy uncertainty, another concern is the interconnections of EH-nodes. For a smart
EH-node with constrained resource, it is nontrivial to achieve energy efficient communication over
varying wireless channel. Thus, the Transmission Power Control (TPC) function is needed to regulate
the wireless transmission power based on the link quality. Here two indexes: Received Signal Strength
Index (RSSI) and Packet Error Rate (PER), are often used as the indicator of wireless link quality [9,10].
Therefore, by periodically exploring the link quality, the transmission power can be updated to
maintain a stable RSSI or PER at the receiver.

Unlike traditional EH systems, smart EH-WSN has more constrained resources. With variable
environment (available ambient energy and wireless channel condition) and scarce hardware capability,
designing a specialized power manager to achieve a low power failure rate and high energy-utilization
efficiency becomes a challenging issue for a smart EH-WSN system. Here we study a novel predictive
power management framework, which combines optimal working point, predictive energy allocation,
and best-matching transmission power control for the EH-WSN system. The optimization purposes
are to minimize the power failure time, as well as maximize the energy utilization efficiency under
energy harvesting constraints. To the best of our knowledge, this is the first work to analyze energy
management optimization in EH-WSN jointly from the above three perspectives.

The remainder of paper is as follows: Section 2 discusses the related works; Section 3 describes
the model of the EH-WSN system; Section 4 presents the details of the power management strategy;
Section 5 uses real-world wind energy profile to evaluate the performance; Section 6 concludes
the paper.

2. Motivation and Related Work

Recently, there are several works in which the authors use MPPT, incoming energy prediction
and TPC techniques to optimize EH-WSN’s performance:

2.1. MPPT Mechanism

In a typical application of EH-WSN, power is harvested from the energy sources to a converter
usually in DC-DC type and then from the converter to the energy storage. The charge controller with
MPPT keeps track of the output of the energy sources and comparing it with the storage’s voltage.
Continuously, it figures out the best power that the sources can potentially put out in order to charge the
storage. Saroj Mondal et al. presented a fully integrated photovoltaic power harvesting system with a
low-overhead adaptive MPPT scheme for powering an IoT node [11]. The proposed scheme tracked the
maximum power point within 12 us by utilizing an inherent negative feedback loop, within a tracking
error of 0.6%. Using a commercially available solar cell of area 11.3 cm2, the proposed system could
provide 833 uW power with a light intensity of 600 lux. Amzar Omairi et al. introduced a Semi-Pilot
Cell Fractional Open-Circuit Voltage MPPT concept, it featured less complicated configuration with
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reduced hardware requirements and lower cost, the comparison result has shown improvement in
providing precise calculation of the new maximum power point whenever there is an irradiance
change [12]. Christos Konstantopoulos et al. designed a self-powered battery-less electric potential
wireless sensor that harvests near-maximum energy from the avocado plant and transmits a signal
tens of meters away. By designing the DC-DC power converter to operate in the input voltage range
0.5–0.7 V, the power generated by the plant kept close to the corresponding MPP in the time-varying
power-voltage curves during the day [13]. Base on all those studies, we find that although the energy
sources could work at its MPP, however, the DC-DC converter usually may not work with its maximum
efficiency, so the overall energy harvested into the storage also may not be the maximal value. Hence,
we need to solve an improved problem: Maximum Power Transfer Tracking (MPTT).

2.2. Predictive Energy Management

Trong Nhan Le et al. proposed a predictive wake-up power manager for wireless nodes
powered by periodic energy sources [14]. The main improvement was that the average number
of wake-up variations has significantly reduced. Fayçal Ait Aoudia et al. presented a gradual power
manager for EH-WSN powered by pseudo-periodic energy sources [15], it was able to supply high
average throughput while maintaining a low throughput variability with respect to time. Paper [16]
investigated how to design a wireless powered sensor network with minimal power requirements
optimally: it formulated an optimization problem to minimize the total energy consumption at two
remote radio units by jointly optimizing the energy beam forming and the time assignment.

In general, existing energy managements can be categorized into two main types: non-predictive
and predictive. Non-predictive scheme assigns workload according to the residual energy of the
storage device. As a conservative way of workload assignment, low energy utilization is ordinary.
On the contrary, the innovation of ambient energy predictor has made it feasible to anticipate and
pre-allocate the future incoming energy. Thus, the predictive energy allocation algorithm obviously
supports higher energy consuming rate comparing with the non-predictive allocation algorithm.
However, it has more power failure risk at the meantime, in fact energy predictor is error prone in
practical deployment and its working applicability is affected by many factors, such as temperature,
humidness and gas composition, etc.: If it ever predicts the incoming energy, the power allocation
mechanism will assign a higher power consumption rate to the node, which potentially leads to power
failure of the system.

2.3. Transmission Power Control

TPC is an efficient technique of power management in a wireless communication system. It needs
interactive information between the sender and receiver. By periodically probing the channel condition
(RSSI or PER), the sender can track the wireless link quality and select an efficient and effective
transmission power.

Yunquan Dong et al. investigated the weighted-sum distortion minimization problem in transmitting
two correlated Gaussian sources over Gaussian channels using two EH-nodes. They developed an off-line
and an online power control policies to optimize the transmission power of two nodes [17]. Alyssa Kody
et al. considered an EH-node equipped with a piezoelectric vibration energy harvester, which is excited
by a series of periodic base acceleration impulses. They maximized the bits of data transmitted from
the node over a fixed period through the control of transmission power and transducer current [18].

In addition to the above literatures, there are still some deep studies focused on the TPC
problem [19,20]. Nevertheless, due to the dynamic voltage of supercapacitor, a voltage regulator
is needed to supply stable voltage to the wireless sensor node. The power dissipation of this regulator
should also be taken into consideration when choosing the optimal working point. Therefore, it is
unclear whether the TPC technique can still achieve the best energy efficiency.
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2.4. Joint Optimization Design

Based on the above related works, some researchers continue to work on the strategy of
combining different techniques together to jointly optimize the performance of EH-WSN: wireless
energy harvesting, wake-up radio scheme, and error control coding are investigated as enabling
solutions to enhance the performance of WSN while reducing its carbon footprint in reference [21],
it formulates the data-utility lifetime trade-off problem by taking an approximated lifetime function
as well as the energy harvesting, wake up radio duty cycling, and retransmissions into the utility
function. Castagnetti et al. propose a global power management approach for EH-nodes. It is based
on a joint duty-cycle optimization and transmission power control. By simultaneously adapting
both parameters, the node can maximize the number of transmitted packets while respecting the
limited and time-varying amount of available energy [22]. Stefano Basagni et al. propose a strategy,
named wake-up and harvesting-based energy predictive forwarding, leverages the combination of
prediction-based techniques and Markov Decision Processes to allow each node in the network to take
pro-active forwarding and energy allocation decisions [23], results show that this approach delivers
up to 72% more packets, 1.6 times faster, and consuming 58% less energy than EHWA. Especially
reference [24] presents a power management technique for improving the efficiency of harvesting
energy from air-flows in WSN application. The architecture consists of a two-stage energy conversion
circuit: an AC-DC converter followed by a DC-DC buck-boost regulator with MPPT capability. The key
feature is the adaptive hybrid voltage rectifier, which exploits both passive and active topologies
combined with power prediction algorithms.

However, all these studies do not consider both the energy harvesting and consuming together
as a whole, so in order to maximize the entire energy efficiency of EH-WSN system while keeping
the network service acceptable, joint optimization of MPPT parameters, predictive energy allocation
algorithm and TPC settings are definitely essential and extremely important.

3. System Model

In this section, we present the EH-WSN system model, including the hardware model, the wireless
link model, and the energy consumption model.

3.1. Hardware Model

Recently, scientific explorations show that wind energy could become a potential source to
harvest for powering small autonomous sensors [25,26]. Such EH-sensor does not need harsh working
conditions and provide a new sight for EH-WSN in the forest. Accordingly, we conduct the research
and design of a prototype wind-powered wireless sensor node, with its block diagram shown below
in Figure 1.
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The wind-powered sensor node consists of three main blocks: (i) energy harvester incorporating
the wind turbine coupled to an electrical generator; (ii) power management unit, which contains power
conditioning circuit and energy storage; (iii) wireless sensor node itself. As shown above, a small
Wind Turbine Generator (WTG) harvests the wind energy into electrical energy, a Boost converter
continuously tracks its optimal working point and transfers the energy onto a DC Bus (here only one
set of harvester is mounted), and then a storage device (supercapacitor) would be charged gradually.
Simultaneously this supercapacitor could power the followed TPC-enabled wireless sensor node
through a Buck-Boost converter. Note all the drive signals of DC-DC converters are controlled by the
wireless node. A detailed description of each block is analyzed as follows.

3.1.1. WTG

Similar to our previous study [27], a plastic four-bladed horizontal-axis wind turbine is used
here, which has a radius of 6 cm and an AC peak voltage of 5.5 V. In addition, it is known: as for
a fixed airflow speed, there exists a load value, which could maximize the power generated by the
WTG. Therefore, we have tested this WTG under common wind speed and worked out that the load
value with maximal output lies between 370 Ω and 420 Ω. Thus, we choose a trade-off value of 400 Ω
as ROptimal (the optimal load resistance maximizing the power generation); i.e., once the external
followed-up load matches with ROptimal , the output power of WTG is always maximized towards any
incoming wind speed.

3.1.2. MPTT Unit

The aim of the MPTT unit is to consistently match the source (WTG) impedance and the load
(supercapacitor, DC-DC regulator, and sensor node) impedance. Only this can achieve optimal power
conversion efficiency. Therefore, we should design an energy harvesting circuit with a constant input
resistance around 400 Ω while transferring energy into the supercapacitor. As for the paper, a Boost
converter is chosen to accomplish this purpose. It works in a fixed-frequency discontinuous current
mode, as shown in Figure 2. The driving signal of NMOS1 is controlled by the wireless sensor node.
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3.1.3. TPC-Enabled Buck-Boost Converter

The variation of supercapacitor voltage VSC would change from 0 V to the nominal voltage VNom
(usually 5.5 V), so a Buck-Boost converter is essential to regulate the output voltage VOut to VDD
(usually 2.4 V for low-power electronics), it also optimizes the power efficiency of wireless sensor node.
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Furthermore, different transmission power of the wireless unit requires different supply power,
such as 20 mA for +7 dBm, 29 mA for +13 dBm, 87 mA for +17 dBm, et al. (LoRa SX1278,
Semtech Corporation, Camarillo, CA, USA). Thus, the operation process of DC-DC regulator should
be precisely managed to improve the conversion efficiency and reduce the dissipation. A TPC-Enabled
DC-DC converter circuit is shown in Figure 3. In addition, the NMOS2 controller is also controlled by
the wireless node.
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3.2. Wireless Link Model

In this section, the path loss based model [28] is adopted to setup the wireless link. In radio
propagation, the signal needs to overcome path loss to reach the receiver. This transmission loss is
always related with the distance from the sender to the receiver and their ambient environment, such
as obstacles, transmission medium, etc.

At the receiver side, the wireless transceiver continues measuring the received signal strength
Prece. Therefore, the Signal to Noise Ratio (SNR) can be expressed in Equation (1), where Ptran is the
transmission power and Pnoise is the noise strength. The receiver can feedback the received signal
indicator value through the handshake packets. In this way, the sender can track the variation of path
loss and select an efficient transmission power.

SNR = Prece − Pnoise = Ptran + 164− 20 · log(
r
λ
) + 2.5 · SF (1)

Here r is the communication range, λ is the wavelength and SF the spreading factor. With a proprietary
Chirp Spread Spectrum modulation scheme, the bit error rate eb can be indicated as a function of SNR,
as shown in Equation (2), where alpha and beta depend on the specific configuration of the SF and
coding rate [29].

eb = 10α·eβ·SNR
(2)

Due to the assumption that the bit errors are distributed randomly and independently, the packet error
rate ep can be deduced in Equation (3), where l is the packet size:

ep = 1− (1− eb)
l (3)

If a packet is not acknowledged, the sender will resend the packet. The average retransmissions
of a packet k can be described as:
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k =
∞

∑
i=1

i(1− ep)ei−1
p =

1
1− ep

(4)

3.3. Power Consumption Model

The wind powered EH-WSN system operates under a cyclic workload with period TW . The energy
consumption is calculated by both the power mode of the hardware (e.g., wireless communication
mode) and the active operating time in that mode. Duty cycle DC is just the ratio of active time
tactive to period TW , as defined in Equation (5). By duty cycling, the power consumption of load PLoad
is scaled, as defined in Equation (6). Pactive and Psleep are the active power and sleep power of the
system, respectively. Here Pactive is a variable subject to the wireless transmission power level, which
would be determined by the TPC module in Section 4. (For simplicity we consider Pactive is completely
determined by the radio unit, whereas the power consumption of MCU, sensors, and other modules
are out of the scope).

DC =
tactive
TW

(5)

PLoad = DC · (Pactive + PD_system) + (1− DC) · (Psleep + PD_system) + Pleak (6)

and Pleak represents the leakage power of supercapacitor: Pleak = V2
SC/Rleak, where Rleak is its leakage

resistance. Correspondingly PD_system is the total power dissipation of DC-DC converters that will be
analyzed below.

3.3.1. Energy Consumption of Boost Converter

In order to facilitate low-power operation, all the power converters have been made to operate in
the discontinuous conduction mode (DCM) in this work. As demonstrated by [30], the Boost converter
operating in fixed-frequency DCM has a constant input equivalent resistance on average, given by:

RIN =
2L1TBoost

t2
1

(7)

where TBoost is its working period, L1 is the inductance value, t1 is the time of inductor current ramps
up from zero to peak. Therefore, the fixed resistance value is only dependent on L1 and two time
parameters. Choosing the values of TBoost, L1 and t1 seemingly has three degrees of freedom. However,
there is still the following constraint to satisfy:

RIN = ROptimal = 400 Ω (8)

The above Equation (8) implies that two of the three parameters can be set randomly. Nevertheless,
the best way of fully utilizing this possibility is to choose the values that could minimize the power
dissipation of Boost converter, as well as maximize the energy conversion efficiency.

Commonly the power dissipation in DC-DC converter is composed of two parts:

Pdcdc = Pconduction + Pswitch (9)

Pconduction means the power dissipation due to the electric current flows through the equivalent
resistance of all elements in the converter. Pswitch is the dissipation of gate capacitance of MOSFET
switches: opening and closing switches by turns requires repeated charging of the gate capacitances.
Hence, we can deduce the conduction consumption of this PWM converter:

Pcond_Boost = I2
O1 · [D1 · RN1 + RL1] +

1
3
· (∆IL1

2
)

2
· [D1 · RN1 ++RL1 + RSC] (10)
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where IO1 is the output current (i.e., the supercapacitor charging current) of Boost converter. RN1, RL1

and RSC are the turn-on resistance of NMOS1, the equivalent series resistance of inductor L1, and the
equivalent series resistance of supercapacitor. D1 is the duty ratio and ∆IL1 is the ripple of electric
current flowing through L1, which could be described as follows:

D1 = 1− VIn
VSC

=
t1

TBoost
(11)

here VSC is the output supercapacitor voltage, and VIn is the input voltage of Boost converter.
Then the gate-switch power dissipation can be defined as the product of the input voltage,

the switching frequency, and the gate charge of NMOS1, as shown below:

PSwitch1 = VIn · fNMOS1 ·QSW1 (12)

QSW1 is just the gate charge of NMOS1, fNMOS1 is its switching frequency.

3.3.2. Energy Consumption of Buck-Boost Converter

The conduction consumption of this PWM converter is deduced as:

Pcond_BuckBoost = RN2 I2
P(

t′1
3TB−B

) + RL2 I2
P(

t′1 + t′2
3TB−B

) +
nVtL2 I2

P
2TB−BVOut

[ln(
IP
IS
)− 1

2
] (13)

where RN2 is the drain-source on-state resistance of the MOSFET NMOS2, IP is the peak value of
current flowing through inductor L2, RL2 is the parasitic equivalent series resistance of L2, t′1 is the
time of the inductor current ramps up from zero to peak and t′2 is the time of the inductor current
ramps down from peak to zero, TB−B is the converter’s working cycle, n is the ideality factor of the
diode D2, Vt is the thermal voltage of D2, and IS is the reverse bias saturation current of D2.

As well, the gate-switch power dissipation of Buck-Boost converter is:

PSwitch2 = VSC · fNMOS2 ·QSW2 (14)

QSW2 is the gate charge of NMOS2, VSC is the input voltage of Buck-Boost converter.
Almost all manufacturing parameters (i.e., RN1, RN2, RL1, RL2, RSC, . . ., etc.) can be obtained from the

datasheets of every detailed component. Moreover, as can be seen above, power consumption in DC-DC
converters is affected by miscellaneous parameters. These are composed of both the manufacturing
parameters, which cannot be modified at working time, and load-dependent parameters, such as
the output voltage and current of the DC-DC converters, which can be modified by advanced
power management techniques to matching the run-time workload. As a matter of convenience,
charging/discharging efficiency of the supercapacitor is not considered here. So referring to the
method designed in [31], a simplified and synthetic power consumption model can be described
as follow:

PD_system = Pcond_BuckBoost + Pcond_Boost + Pswitch1 + Pswitch2
= [( C1

WBoost
+ C2)I2

O1 + C3WBoost + C4] + [( C5
WBuck−Boost

+ C6)I2
O2 + C7WBuck−Boost + C8]

(15)

where IO1, IO2 are the output currents of each converter, WBoost, WBuck−Boost are the DC-DC converters’
configuration parameters which control a tradeoff between load independent power consumption
and load dependent power consumption (e.g., the time interval t1 and the gate width of NMOS1,
NMOS2), and C1, . . . , C8 are constants represent for all the rest manufacture-related parameters.
Since TPC module causes a drastic change of workload from one transmission mode to another, then
parameters WBoost and WBuck−Boost would vary with the specific applications of TPC-enabled EH-WSN
system, thus the energy-conversion efficiency changes accordingly. Therefore, an advanced power
management incorporates both the energy harvesting and TPC mechanism, which must be researched
and designed.
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4. Predictive Power Manager for EH-WSN

In this section, we present a novel predictive power management framework. It contains three
parts: (1) optimal work point tracking, (2) predictive energy allocation, and (3) energy efficient TPC.

4.1. Optimal Working Point

As can be seen above, the total power loss in a wind-powered WSN system is composed of two
parts: DC-DC dissipation PD_system and supercapacitor leakage Pleak. The DC-DC power loss PD_system
relates to the output current IO1, IO2 and WBoost, WBuck−Boost. The leakage power is determined by
supercapacitor voltage VSC. Among these parameters, IO2 is task-specific and primarily decided by the
transmission power Ptran. VSC could be calculated by VSC = VIn/(1− D1). VOut must be set to VDD
and it is always a constant voltage, it can be computed by VOut = VSC · (t′1/t′2). Therefore, configuring
the DC-DC converters to maximize the harvested energy and minimize the total energy dissipation
simultaneously is of great importance for the proposed EH-WSN, it can be analyzed as follows:

First, Step 1 refines the configuration of Boost converter (i.e., decides the optimal value of
parameters TBoost, L1 and t1 to match ROptimal , which is to accomplish maximal energy harvesting;
then Step 2 calculates the tradeoff parameters of two converters by considering the energy efficiency
under TPC scheme; finally Step 3 computes the corresponding VSC and the remaining parameters.

4.1.1. Step 1

The Boost converter’s configuration should be set according to the expected input energy level
and desired equivalent resistance. So we assume the values of VIn and PWind to be 2.75 V and 20 mW,
respectively, this is based on the power obtained by the WTG, which operates with the lowest wind
speed under RIN = 400 Ω. Similar to the method in our previous study [27], an inductor of L1 = 220 µH
is chosen. Then the other two parameters TBoost or t1 can be optimally set according to Equation (10)
temporarily. Also, remember that it should abide by the component’s hardware restriction.

4.1.2. Step 2

Here IO1 can be seen as a constant value due to the application of Step 1. Thus it can be known
that in the above Equation (15) there are three variables left: WBoost, WBuck-Boost and IO2. Then we
could minimize PD_system to improve the system-wide energy conversion efficiency by optimizing
parameters WBoost and WBuck-Boost based on a given TPC schedule Pi

tran. Notice that the values of WBoost
and WBuck-Boost should be constrained between an interval [Wmin, Wmax]. Therefore, the problem Min
PD_system would be simplified in this way: for a given TPC schedule, we want to find the values of
WBoost and WBuck-Boost within [Wmin, Wmax] that minimizing Equation (15). Here the downhill simplex
method is adopted. The proposed Algorithm 1, called DC-TPC, along with the Algorithm 2, are
shown below.

Algorithm 1 DC-TPC calculation

1 BEGIN
2 Input IO2(i) : multiple TPC-based current, i = 1, . . . , N, # of levels,
3 While (i ≤ N) Do
4 Wopt ← GetOptimal W(i, IO2(i));
5 If Wopt ∈Wmin, Wmax]
6 Then W = Wopt

7 Else If (W < Wmin) W = Wmin

8 Else W = Wmax

9 Return W
10 i = i + 1
11 END
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Algorithm 2 Wopt calculation algorithm

1 BEGIN
2 IO2(i) : multiple TPC-based current, i = 1, . . . , N, # of levels,
3 φ: maximum number of evaluations,
4 j = 1

5 Initialization: Generate an initial set of 3 points (
→

Wa,
→

Wb,
→
Wc), representing the vertices of the initial simplex,

in which
→

Wa is a vector [Wa
Boost, Wa

Buck−Boost] and so forth
→

Wb,
→
Wc

6 While (j ≤ φ) Do
7 Identify the vertices with the maximum, minimum value of the function PD_system, for the purpose of

explanation, let’s assume PD_system(
→
Wc) < PD_system(

→
Wb) < PD_system(

→
Wa)

8 Reflection: The highest point
→

Wa is then reflected to the opposite side (point
→

Wd) along the line
→

Wb −
→
Wc of

the original simplex

9 If PD_system(
→

Wd) < PD_system(
→
Wc)

10 Expansion: the reflected point
→

Wd is further extended to

11
→
We in the same direction according to:

12
→
We = 2

→
Wd −

(
→

Wb+
→

Wc)
2

13 Go to line 18

14 Else if PD_system(
→

Wd) > PD_system(
→

Wb)

15 Contraction: the reflected point
→

Wd is further contracted to
→
We according to:

16
→
We =

→
Wd −

→
Wd−

(
→
Wb+

→
Wc )

2
2

17 Go to line 18

18 if PD_system(
→
We) > PD_system(

→
Wb)

19 Collapse: the entire simplex collapses by 50%

20 in each dimension towards
→
Wc

21 Else go to line 7 with the new simplex
22 j = j + 1
23 Else go to line 7 with the new simplex
24 j = j + 1

25 Return
→

Wopt with which minimize PD_system

26 END

Once the optimal values of WBoost and WBuck−Boost have worked out, we should regulate WBoost
accordingly, which is just the parameter t1 in the Boost converter, and also WBuck−Boost, which is the
gate width of NMOS2 (D2 · TB−B); i.e., (t′1 + t′2). Therefore, we can improve the whole system’s energy
conversion efficiency under different wireless transmission power.

4.1.3. Step 3

Based on the former two steps, TBoost would be deduced accurately, so as VSC and Pleak. Thus,
the two converters have harvested the maximal wind energy and consumed the minimal dissipation
actually. This procedure can also be considered as the Maximum Power Transfer Tracking (MPTT).
In other words, the operation of optimal working point has been completely accomplished.

4.2. Predictive Energy Allocation

As a promising countermeasure to reduce the impact of ambient power variation, the energy
allocation algorithm adaptively assigns workload in a cyclic manner, with a period of every KTW
(K ≥ 1, recall that TW is the period of the workload). Otherwise, the energy prediction algorithm is
able to envision the future incoming energy with invocation round χKTW (χ ≥ 1). Because of the
heavier computational workload caused by the prediction algorithm, we should call the allocation
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algorithm more frequently to reduce energy overhead (In references [32,33], predictors are usually
called every 30 or 60 min, sometimes even longer, while the invocation time of the energy allocation
algorithms ranges from 1 to 10 min).

Considering reference [4], the proposed energy allocation algorithm enables “ENO” by matching
the average consumption power PLoad to the average harvesting power PHarv:

PHarv = PLoad (16)

Here PLoad should be calculated by Equation (6), in which PD_system and Pleak during every TW have
been obtained from the former MPTT operation, Pactive and Psleep can be recognized as the power
consumption of the wireless transferring unit for easy computation; i.e., Pactive just represents the
average transmission power Ptran in KTW periods, while Psleep is set to zero for simplicity (micro
controller’s current consumption is less than 12 uA in sleep mode [34]). Hence, the energy allocation
mechanism only has to regulate DC to satisfy the “ENO” working constraint.

As for the wind energy prediction method, there already exists few studies [24]. However, energy
prediction for EH-WSN has not been extensively explored, which calls for further research. Here we
propose an energy harvesting prediction algorithm based on Weather-Conditioned Selective Additive
Decomposition model (WCSAD): We first set the weather conditions of every day into three categories:
Strong breeze, Moderate breeze, and Breeze; then we proceed to forecast the weather that only belongs
to the same sort. In addition, we combine both the season variations during all the year and weather
changes over one day together to calculate the energy that could be harvested in the next EH-rounds.

Firstly, the EH-nodes need to record the harvested energy Ecal(d, s) in work round s of day d,
hence for the three categories there should be three matrixes |Ecal(d, s)|D that saves D days data
independently. The average harvested energy in three kinds are:

EStr = [
D
∑

i=1

S
∑

j=1
EStr(i, j)]/D

EMod = [
D
∑

i=1

S
∑

j=1
EMod(i, j)]/D

EBre = [
D
∑

i=1

S
∑

j=1
EBre(i, j)]/D

(17)

where EStr, EMod and EBre are the harvested energy in Strong breeze days, Moderate breeze days,
and Breeze days, respectively. Equation (17) should be updated every 24 h to ensure the weather
classification process. The detailed calculation rules are shown below in Algorithm 3.

Algorithm 3 Harvested energy classification algorithm for different weather conditions

1 BEGIN

2 If (
S
∑

j=1
E(i, j) > (1 + Di f f )EStr)

3 {day i is a Strong breeze day, update EStr}

4 Else if (
S
∑

j=1
E(i, j) < (1− Di f f )EBre)

5 {day i is a Breeze day, update EBre}
6 Else
7 {day i is a Moderate breeze day, update EMod}
8 END

Here Di f f (i, j) is a parameter concerns the seasonal changes:

Di f f (i, j) = υ · [Ecal(i− 1, j)− Ecal(i− 2, j)] + (1− υ) · [Ecal(i− 2, j)− Ecal(i− 3, j)] (18)
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υ is just a tuning coefficient. After these corresponding classifications of former days, then we can start
to predict the up-coming energy, which would be harvested during work round s in the present day.
The prediction value Eest(i, j) = PHarv · χKTW equals:

Eest(i, j) = τ · Ex(i, j) + (1− τ) · [Ecal(i,j−1)+Ecal(i,j−2)+Ecal(i,j−3)]
3

+ε · [Ecal(i, j− 2)− Ex(i, j− 2)] + (1− ε) · [Ecal(i, j− 1)− Ex(i, j− 1)]
(19)

here τ, ε are other adjustment coefficients. The four items in the above formula intend to represent
the applicable harvesting energy’s dynamic changes caused by different EH-rounds in different days.
Ex(i, j) is a weighted sum of corresponding rounds’ harvested energy in the past reference days that
belong to the same weather kind: Ex(i, j) = ω · Ex−1(i, j) + ω2 · Ex−2(i, j). ω is also a debug parameter.
Ex−1(i, j) just shows the corresponding round’ energy in the last time with the same weather kind, in
turn Ex−2(i, j) stands for the day before last time within the same weather type.

By default, we can take present day’ weather type as the same as yesterday. However, a detecting
mechanism is also designed to test the default hypothesis: we set up four testing points in a single day
and we compute the average harvested energy during the time from the beginning of the day to the
test point moment, if the value has a great difference with the last day’s data, we should regulate the
weather type immediately.

In this section, we discuss the proposed WCSAD energy prediction model, of which the aim
is to reduce the computational complexity while maintaining similar accuracy as compared to the
other models.

4.3. Transmission Power Control

We are here to solve the problem of energy efficient wireless communication. As stated in Section 3,
it is sensible to furtherly improve energy efficiency with dynamic transmission power. Algorithm 4
introduces the best-matching TPC with high-efficiency. The main purpose of this mechanism is to
adaptively choose an energy efficient transmission power according to the wireless link quality.

Algorithm 4 Energy Efficient Transmission Power Control

1 BEGIN
2 Input {IZ

O2}, VDD, Rate.
3 RSSI = post-backed message from the receiver;
4 Prece then can be deduced from a function with RSSI;
5 for Ii

O2 ∈
{

IZ
O2

}
do

6 SNRi = VDD · Ii
O2 + 164− 20 · log( r

λ ) + 2.5 · SF;
7 ebi = 10α·eβ·SNRi

;
8 ki = 1/(1− ebi)

l ;
9 Eui = ki · (Pcond_BuckBoost + Pswitch2 + Ii

O2 ·VDD)/Rate;
10 end for
11 Output

{
P∗tran, I∗O2

}
= min{Euk};

12 END

In a case where one connection is established, the receiver should measure the wireless link’s
RSSI value and post back to the sender. Based on the datasheet of the wireless unit [35], received signal
strength prece can be computed from this RSSI value through a specific equation. Thus, every available
transmission power’s SNR can be estimated.

For the purpose of selecting the optimal wireless transmission power, we adopt a specific metric:
energy per useful received bit Eu, to evaluate the energy efficiency of transmission power. Eu is defined
in line 9 of Algorithm 4, IO2 is the corresponding electric current of wireless sensor node and Rate is its
communication rate. To choose the transmission power with highest energy efficiency, Algorithm 4
investigates an integrated method by considering the Buck-Boost converter’s power consumption
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together during the wireless communication. When finding the optimal I∗O2 from the candidate IZ
O2

sequence, Algorithm 1 would be calculated automatically and output the other operation parameters.

5. Experimental Results

The entire wind-powered sensor node is a comprehensive system, which is composed of some
unique sub-units. For deep learning of the whole system’s working efficiency, it is important to
analyze the capability of each subsystem, and perform energy flow comparison at each energy transfer
stage. The proposed concept for this EH-node with predictive power manager technique has been
implemented in hardware prototype for laboratory testing. Some detailed components are shown
below in Table 1.

Table 1. Catalog of hardware components.

Parameter Value

Cin 220 uF
NMOS1/2 Si1563EDH

L1 220 uH
Supercapacitor 2 F, 5.5 V

D1/2 IN5819
L2 15 uH

Cout 47 uF
PWM generator LTC6906

The designed EH-WSN system is connected with a commercially wireless node supplied by
Arduino with LoRa, as shown in Figure 4. The WTG tail could adjust the wind-front direction to face
the incoming wind at the right angle. As such, the wind incident angle is always perpendicular to
the turbine plane. The LoRa node uses the ESP8266 32-bit ultralow-power microcontroller, and it is
paired with the SX1278 RF transceiver that is also designed for low-power application. A 2 F & 5.5 V
supercapacitor bank of Panasonic is chosen as the energy storage. Since the microcontroller’s strong
computation capability, it is very convenient to make use of it to achieve a more accurate and faster
MPTT scheme than a dedicated MPPT analog circuit.
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5.1. MPTT Testing

The experimental tests are conducted in accordance with the wind condition of the deployment
ground illustrated in Figure 5 where the average wind speed is given as 4.5 m/s, and we record the
variation of WTG’s output power under different wind speed when its subsequent load value changes,
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as shown below in Figure 6. Apparently, when ROptimal = 400 Ω WTG generates the maximal electrical
power. Therefore, if algorithm DC-TPC works out the parameters WBoost and WBuck-Boost, thus the
optimal working point could be achieved.
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Figure 6. The variation of Wind Turbine Generator (WTG) output power under different wind speed
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Figure 7 shows the variation of EH-WSN’s overall power loss PD_system with supercapacitor
voltage VSC and load current IO2 according to Equation (15). [Note: for the convenience of analysis
and comparison, the prediction mechanism in this step is prohibited, the TPC module sets to be a
given quantity, and the values of C1, . . . , C8, are (15, 0.25, 0.004, 0.09, 11, 0.12, 0.004, 0.075)]. As can be
seen here, the power dissipation is minimized when VSC changes near VDD = 2.4 V.

Figure 7. PD_system with VSC and IO2.
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Next, there are three exams to be conducted, which is to differentiate the performance of the
MPTT scheme in powering the load. The followed electrical load is at first powered with an EH system
but without the MPTT scheme, then with EH system carried on MPTT (IO2 = 20 mA), and finally with
EH system running MPTT (IO2 120 mA). The duration for each period is 180 s, and the supercapacitor
voltage variation under these conditions is compared in Figure 8.
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From the above figure we can find that the supercapacitor voltage VSC keeps decreasing during
the period when algorithm DC-TPC is not running. On the contrary, VSC could keep nearly balance
in the mode with MPTT but IO2 = 120 mA, this demonstrates that the harvested wind energy could
make the node self-sustainable in a continuous input situation. Finally, within the MPTT (IO2 = 20 mA)
mode our system yields the most superior performance, which shows a powerful survivability to
make VSC rise from 2.17 to 2.37 V. Therefore, the MPTT mechanism is obviously applicable for the
conditions of harvesting conventional wind energy.

5.2. Prediction Algorithm Analysis

We evaluate the performance of WCSAD by comparing the amount of energy actually harvested
during each timeslot against the predicted energy intake. To this end, we implement WCSAD into the
wind-powered sensor node and execute an outdoor 7 day continuous running. The invoked duty-cycle
is set to be 30 min, parameters υ, τ, ε and ω are 0.6, 0.45, 0.55 and 0.62, respectively, D is considered as 5
regarding the tradeoff between computational accuracy and limited working resources. The predictor
error has been compared with WCMA [36] and the selective statistical range is from slot 3 to slot 28,
i.e., from 07:30 to 20:00, the result is shown in Figure 9.

Here in the test the wind speed keeps in hybrid magnitude from day 1 to day 4, however, in the
5th day the air turns to breeze, therefore the harvested energy decreases dramatically, but at last,
the 6th day and 7th day just take on a strong breeze. As a result of the severe change between the
5th day and its previous days, WCMA cannot adapt to this variation and leads to a major error in
Figure 9a, while WCSAD considers the past data of the harvested energy for reference ingeniously and
keeps the error under 15%. In Figure 9b, WCMA slightly eases the impact of weather variation but still
cannot offer a predictive value with high confidence, however, WCSAD maintains the accuracy as in
the previous. In Figure 9c, the wind category keeps near the same with the day before, thus WCMA
and WCSAD both gain a relatively low error rate, whereas WCSAD performs even better with the
highest error of only 5%.

As can be seen from the above analysis, the WCSAD algorithm shows ideal predictive accuracy
and can provide reliable support for the “ENO” working requirement.
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5.3. TPC Execution

In this section, we evaluate the performance of proposed TPC. We take the wind-powered sensor
node serving as a sender. An unlimited power supply sink is responsible for receiving messages and
returning the RSSI data every minute. The programmable transmission power level ranges from 0 to
+20 dBm with a step size of 1 dBm and the corresponding power consumption Ptran comes from the
hardware measurement in the existing literature [29]. The noise power Pnoise is considered Gaussian
White Noise with a mean of −105 dBm and a standard deviation of 1.5 dBm. The transmission rate is
9.6 kbps and the data packet size is 32 bytes. The energy per useful bit Eu is used for evaluating.
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We validate the effectiveness of our TPC module by using two comparisons. The existing
RSS-based transmission power controller [17] is implemented as a reference, which is referred as a
fixed-RSS scheme. The fixed transmission power scheme is also implemented, which is referred
to as a fixed-TX scheme. The wind-harvesting IoT device and the sink are placed in outdoor
park surroundings.

Figure 10 demonstrates the average transmission energy of 10,080 packets (one packet per minute
during 7 days). We can see that the proposed method achieves the lowest energy consumption
compared with the other TPC strategies no matter the distance. Compared with the fixed-TX scheme,
our proposed module achieves energy reduction around 30%. Compared with the fixed-RSS scheme,
our proposed module lowers the transmission energy consumption around 15%. The wireless path loss
and the background noise are always time varying, a fixed RSSI value or transmission power definitely
cannot guarantee the optimal transmission energy efficiency. The proposed TPC module is effective in
dynamically selecting the optimal transmission power along with the lowest energy cost Eu.Future Internet 2018, 10, x FOR PEER REVIEW  19 of 23 
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5.4. Power Conversion Efficiency of the Whole System

The Line diagram in Figure 11 is to illustrate the input and output power available for each
subsystem so that the power-conversion efficiency can be resolved. Every value is measured and
calculated at the input and output of every subsystem. The data in blue color represents the value of
the reference system [24], while the data in red is ours. The test starts from the input with a wind speed
of 4.5 m/s where 128.2 mW of raw wind power is supplied to the wind turbine with an efficiency of
39% and 50 mW of mechanical power is available for harvesting. Due to the standard diode-based
full-bridge rectifier, 65% of the raw electrical power (ac) is generated at the output of the wind turbine
generator. Thus, approximately 20 mW is converted into raw electrical power (dc) of 13 mW. Then
after the supercapacitor-charging period (85 min), the energy stored in our system is 19.88 J. In contrast,
the reference system has a higher rectifier conversion efficiency because of its smart adaptive strategy.
Whereas it adopts a traditional MPTT scheme and gains a lower bit output. However, our system
gains significant enhancement in the next stages with a best-matching TPC based converter, where
the wireless sensor node has survived for 1.5 h other than the referenced 1.2 h under the working
cycle mentioned in a prior achievement [37]. Moreover, certainly in this “ENO” process, the prediction
module takes effect as a foundation stone while consuming a neglectable amount of energy.
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5.5. Power Failure Time Detection

The predictive power management algorithm has a risk of over-assigning energy that possibly
leads to power shortage. Therefore, we need to further investigate the power failure time tf. In this
section, we compare the proposed system with D-PEA and sta-PEA in reference [38], the test scenario is
just the same as step B, and the duty cycle ratio DC’s dynamic variation is shown in Figure 12 primarily
(for a direct perception, we classify the ratio into 5 sorts: 0%, 25%, 50%, 75%, and 100%):Future Internet 2018, 10, x FOR PEER REVIEW  20 of 23 
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Figure 12. Changes of duty cycle ratio (with 20% initial electricity).

The figure shows the detailed work/sleep ratio variations from day 1 to day 7, apparently the
ratio rises to 100% under a continuous wind blowing and drops to 0% when in breezeless, the average
ratio is lower than 40% in the first four days due to the incomplete work of WCSAD, and improves
to over 60% in the last three days because of the prediction management’s proper functioning. From
these data, we could infer that the proposed energy management algorithm can effectively charge the
EH-node that is given at a lower initial energy, and make it work reliably.

Then we detect and compare the power failure time, here we consider that system power failure
is caused by the depletion of the supercapacitor’s remaining energy; i.e., its terminal voltage VSC drops
below the start-up threshold of Buck-Boost converter (0.85 V). Figure 13 shows the measurement result.

We can see that D-PEA and the proposed scheme achieve consistently lower tf compared with
sta-PEA. The performance margin increases with the time elapsed particularly for our proposed
strategy because of the three efficient and effective integrated submodules. It demonstrates that
the proposed scheme can best react to the changing wind speed and avoid depleting the energy
storage device.
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6. Conclusions

In this paper, a predictive power management framework for improving the energy efficiency
of a wind-powered WSN is presented. Specifically, a prototype of the EH-WSN, a DC-DC converter
based MPTT technique; a wind-energy prediction algorithm, and an energy efficient TPC strategy
have been proposed. The key features of the proposed solution are: (i) dynamic impedance matching,
(ii) adaptive energy-dissipation minimization, (iii) predictive energy allocation, and (iv) transmission
power auto-regulation. The experiment result has demonstrated a system-wide optimal energy
conversion and utilization has been accomplished. With a wind speed of 4.5 m/s, the system is truly
self-sustainable and perform powerful survivability.

Future work will focus on the proposal of the cross layer optimization problem for EH-WSN and
consider cognitive radio network issues.
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