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Abstract: Provable Data Possession (PDP) protocol makes it possible for cloud users to check whether
the cloud servers possess their original data without downloading all the data. However, most
of the existing PDP schemes are based on either public key infrastructure (PKI) or identity-based
cryptography, which will suffer from issues of expensive certificate management or key escrow.
In this paper, we propose a new construction of certificateless provable group shared data possession
(CL-PGSDP) protocol by making use of certificateless cryptography, which will eliminate the above
issues. Meanwhile, by taking advantage of zero-knowledge protocol and randomization method,
the proposed CL-PGSDP protocol leaks no information of the stored data and the group user’s
identity to the verifiers during the verifying process, which is of the property of comprehensive
privacy preservation. In addition, our protocol also supports efficient user revocation from the group.
Security analysis and experimental evaluation indicate that our CL-PGSDP protocol provides strong
security with desirable efficiency.
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1. Introduction

In recent years, cloud computing [1] has received considerable attention from research
communities in academia, as well as industry. As an important part of cloud computing, cloud
storage has become a popular choice for people to deploy their data storage, which brings a number
of benefits. Users are relieved of the burden of the management of a great deal of data. Furthermore,
universal data access with independent geographical location is highly convenient.

However, a number of vulnerabilities that led to various attacks have left many potential users
worried [2]. Thus, many researchers focus on creating trusted cloud services that provide the necessary
security guarantees. Santos et al. [3] presented a trusted cloud-computing platform (TCCP), which
offers a closed box execution environment for IaaS services. TCCP guarantees confidential execution
of guest virtual machines. It also enables customers to attest to the IaaS provider and to determine if
the service is secure before their VMs are launched into the cloud. In 2016, Paladi et al. [4] presented a
security framework for cloud infrastructure. This framework included a trusted VM launching and
a domain-based stored data protection protocols. The trusted VM launching protocol is used before
deploying guest VMs, and trust is established by the remotely attesting host platform configuration.
Meanwhile, the domain-based storage protection protocol ensures data confidentiality in remote
storage by using cryptographic methods.

Furthermore, unlike traditional storage, the cloud stored data is outside of the control of the users,
which entails security risks in terms of confidentiality, integrity, and availability of data and service [5].
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One of the major concerns of cloud users is the integrity of their outsourced data. Moreover, the cloud
server may not be fully trusted to report incidents of data loss in order to protect its reputation [6–8].
As a result, it is necessary for cloud users to periodically check whether their outsourced data are
stored properly. Provable Data Possession (PDP) scheme is a primitive one that can be used to convince
cloud users that their data are kept intact.

As is well known, it is impractical for cloud users to frequently download all the cloud data due
to the expensive cost of bandwidth. Additionally, the traditional methods for data integrity checking,
like hash function and Message Authorization Code (MAC), cannot be applied directly, because
the cloud server may only store the hash code of the original data in order to reduce storage costs.
In 2007, Ateniese et al. [9] proposed a provable data possession scheme to check the integrity of
data, which employed RSA algorithm to construct homomorphic verifiable authenticators of the data
blocks, meaning that the cloud servers were able to prove the data integrity with low communication
overheads and computational costs. After that, many researchers proposed corresponding system
models and security models based on the first PDP scheme. Later, the POR model was introduced
in Juel et al. [10], which used an error-correcting code to establish a sentinel-based POR scheme.
Shacham et al. [11] developed a proof of retrievability scheme based on the BLS signature [12], which
not only eliminates the constraint on checking times, but also shortens the size of authenticator. In order
to support the dynamic data operation on cloud data, Ateniese et al. [13] presented a scalable and
efficient provable data possession scheme based on hash functions and symmetric key encryptions.
The limitation is that this scheme cannot support data block insertion. Erway et al. [14] proposed a
full-dynamic PDP Scheme by utilizing the authenticated flip table. Similarly, Cash et al. [15] proposed
a dynamic POR scheme that relies on oblivious RAM protocols. Wang et al. [16] made further
improvements to the previous dynamic PDP schemes by using Merkle hash tree (MHT). Liu et al. [17]
introduced a top-down, levelled, multi-replica, MHT-based data auditing scheme for dynamic big data
storage in the cloud, which supports fully dynamic data updates and authentication of block indices.

Public verifiability is one of the most important properties for PDP schemes, which means
that external verifiers are able to check the integrity of cloud data. With this practical property,
cloud users can delegate the rights to check data possession to a third-party auditor (TPA) to do
the periodical checking job. However, data privacy may be leaked to the TPA during the checking
process, which may cause financial loss for the users who have stored confidential or sensitive data
on cloud servers. Recently, a number of schemes [16,18–22] have been developed that allow a TPA
to check the integrity of the stored data. Wang et al. [20] proposed a privacy-preserving public
cloud data auditing system by combining the public key-based homomorphic authenticator with
random masking. This scheme explained the definition of data privacy against the TPA. Wang et al. [21]
performed further study on data privacy preservation and proposed the notion of ‘zero-knowledge
public auditing’ to defeat off-line guessing threat. Yu et al. [22] enhanced the privacy of remote data
integrity-checking protocol for secure cloud storage. The aforementioned schemes [16,18–22] all work
only in the public key infrastructure (PKI) [23]-based system, which may suffer from heavy public key
management. Yu et al. [24] further presented an identity-based PDP scheme to eliminate heavy public
key management. This scheme leaks no information of the stored data to the TPA, but cannot protect
the privacy of the user’s identity. If the data is shared by a group of users, such as a company, the TPA
will know all the details of the group users’ identities.

In order to reduce the complexity of the PDP scheme, many researchers [24–27] have focused on
studying identity-based PDP schemes. By utilizing identity-based cryptography (IBC) [28], there is no
need for a PKI to perform complex certificate management such as distribution, storage, revocation,
and verification. Unfortunately, IBC has an inherent drawback of key escrow. Wang et al. [29] first
proposed a certificateless public auditing mechanism for verifying data integrity in the cloud in order
to eliminate the problem of key escrow. In this scheme, Key Generation Center will generate only the
partial key, so that in any case it will not compromise the user’s private key. Li et al. [30] introduced a
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certificateless PDP scheme for shared group data, but it lost the privacy preservation of cloud data and
the user’s identity to the TPA.

Motivation: In this paper, we mainly focus on preserving the privacy of group shared data
against the third-party auditor (TPA) during the integrity checking process. Suppose there is a group
of users from one company who share company data on a given cloud server. Each user of the group
can upload and share their data on the cloud server. The manager of the group requires a TPA to
periodically check the integrity of the outsourced data, but he does not allow the TPA to extract any
information related to their data, not even the identity of the group users. Users of the group may
leave the company, so the problem of user revocation from the group needs to be considered. Thus, we
need a primitive to meet such requirements and to guarantee the integrity of the outsourced data on
the cloud server.

Our contribution: The contributions of this paper are summarized as follows:

• First, we propose a new PDP protocol (CL-PGSDP) for group shared data by utilizing certificateless
cryptography [31], which eliminates the problems of certificate management and key escrow.

• Second, by making use of the idea of zero-knowledge proof protocol, the equality of
discrete logarithm [32–34], and randomization method, we construct a privacy-preserving
CL-PGSDP protocol. On the one hand, our protocol leaks no information of the group shared data
to the TPA. On the other hand, all the data blocks are signed by group users to get corresponding
authentication tags, and the TPA cannot learn any identity information from the challenged data
block during the auditing process.

• Third, based on CDH and DL assumptions, we provide detailed security proofs of our new
protocol. Additionally, our protocol supports efficient group user revocation. We perform some
experiments and show the practicality of our protocol.

Organization: The rest of the paper is organized as follows: In Section 2, we review some
preliminaries used in CL-PGSDP construction. In Section 3, we formalize the system model and
security model of CL-PGSDP protocol. We describe the concrete construction of the CL-PGSDP
protocol in Section 4. We formally prove the correctness, soundness, and comprehensive privacy
preservation of our protocol in Section 5. We report the performance and implementation results in
Section 6. Section 7 concludes our paper.

2. Preliminaries

In this section, we review some preliminaries knowledge used in this paper, including bilinear
pairing, certificateless Cryptography, zero-knowledge proof, and Complexity assumption.

2.1. Bilinear Pairing

Denote G1 and G2 as two multiplicative groups with the prime order q. g is a generator of group G1.
A function e : G1 × G1 → G2 is called a bilinear pairing [12] if it has the following properties:

• Bilinearity: For all u, v ∈ G1. and a, b ∈ Zq, e(ua, vb) = e(u, v)ab holds.
• Non-Degeneracy: e(g, g) 6= 1G2 , in which 1G2 is the identity of G2.
• Efficient Computation: e(u, v) can be computed efficiently for all. u, v ∈ G1.

2.2. Certificateless Cryptography

A Certificateless Cryptography (CLC) [31] scheme is specified by seven randomized algorithms.

1. Setup: This algorithm takes security parameter k as input and returns the system parameters
params and master-key.

2. Partial-Private-Key-Extract: This algorithm takes params, master-key, and entity’s ID as inputs
and returns a partial private key skID for the entity.
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3. Set-Secret-Value: This algorithm takes params and entity’s ID as inputs and outputs this entity’s
secret value yID.

4. Set-Private-Key: This algorithm takes params, entity’s ID, partial private key skID, and secret
value yID as inputs and outputs private key SID.

5. Set-Public-Key: This algorithm takes params and secret value yID as inputs and outputs public
key YID.

6. Encrypt: This algorithm takes params, message m, and public key YID as inputs and entity’s ID
and generates ciphertext σ of the message m if success.

7. Decrypt: This algorithm takes params, σ, and SID as inputs and returns message m.

By making use of certificateless cryptography, we will construct new authenticator of data block.

2.3. Zero-Knowledge Proof

Zero-knowledge proofs [33] are defined as those proofs that convey no additional knowledge
other than the correctness of the proposition in question. Here, we introduce one of the zero knowledge
protocol: equality of discrete logarithm [34]. Let G be a finite cyclic group with the prime order q;
g1, g2 are generators of G. The protocol shows that a prover (P) can prove to a verifier (V) that
logg1

Y1 = logg2
Y2, Y1, Y2 ∈ G without leaking the secret key to V.

1. P randomly chooses ρ ∈ Zq, and computes X1 = gρ
1 , X2 = gρ

2 , then sends X1, X2 to V.

2. V also randomly chooses ν ∈ {0, 1}λ and sends ν to P.
3. P computes y = ρ− vx(modq), in which x is the secret key of P, and returns y to V.
4. V accepts the proof if and only if X1 = gy

1Yv
1 and X2 = gy

2Yv
2 .

2.4. Security Assumption

Discrete Logarithm (DL) problem [35]: G1 is a multiplicative cyclic group, g is a generator of G1.
Given (g, ga) ∈ G1, compute a.

Definition 1 (DL Assumption). For any probabilistic polynomial time (PPT) algorithm A, the advantage for A

to solve the DL problem in G1 is negligible, which can be defined as AdvDl
A = Pr

[
A(g, ga) = a : a R← Z∗p

]
≤ ε.

Computational Deffie-Hellman (CDH) Problem [36]: G1 is a multiplicative cyclic group, g is a
generator of G1. Given (g, ga, gb) ∈ G1, compute gab.

Definition 2 (CDH Assumption). For any PPT algorithm A, the advantage for A to solve the CDH problem

in G1 is negligible, which can be defined as AdvCDH
A = Pr

[
A(g, ga, gb) = gab : a, b R← Z∗p

]
≤ ε.

The ε denotes a negligible value in the above definitions.

3. System Model and Security Model

In this section, we introduce the system model and security model of CL-PGSDP protocol.

3.1. CL-PGSDP System

The system model of our scheme is composed of three different entities: user group, cloud service
provider (CSP), and the third party public auditor (TPA). Figure 1 illustrates the relationships and
interactions among the three entities of the system. The user group includes numbers of users, who
have large amount of data to be stored on cloud without keeping a local copy (each user is able to
upload, access, and update the outsourced group shared data). We suppose one of the users is the
group manager, who sets up the system and generates system parameters. The CSP has significant
storage space and computation resources and provides data storage services for cloud users. The CSP
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could be semi-trusted and might even hide data corruption incidents to cloud users to maintain their
good reputation. The TPA has expertise and capabilities to be delegated by the cloud users to check
the data possession of the cloud, but the TPA is also curious in the sense that he is willing to learn
some information during the data integrity checking procedure.
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3.2. System Components

Eight algorithms are involved in CL-PGSDP system.

1. Setup is a probabilistic algorithm run by the group manager. It takes a security parameter λ as
input and outputs the system parameters params and the master key msk.

2. Partial-Private-Key-Gen is a probabilistic algorithm run by the group manager. It takes the master
key msk, a random value δ, and the identity IDi ∈ {0, 1}∗ of the user ui as inputs, and outputs
the ui’s partial private key pskIDi .

3. Secret-Value-Gen is a probabilistic algorithm run by the group user who randomly selects yIDi as
the secret value. Thus, the private key of the group user contains two parts: secret value yIDi and
partial private key pskIDi .

4. Public-Key-Gen is a probabilistic algorithm performed by the group user ui to compute the
public key. It inputs the ui’s secret value yIDi and outputs the ui’s public key pkIDi .

5. Tag-Gen is a probabilistic algorithm executed by the group user ui to generate authentication
tags for data blocks. It takes the ui’s partial private key pskIDi , the secret value yIDi , and the data
block mj as inputs, and outputs the tag σj of mj.

6. Challenge is a randomized algorithm run by the TPA. It takes the system parameters params,
a unique file name, and the count c of the challenged data blocks as inputs, and outputs the
challenge information chal.

7. Proof-Gen is a probabilistic algorithm run by cloud server to obtain a data possession proof P
of the challenged blocks. The inputs include chal, the challenged data blocks and tags of the
challenged data blocks.

8. Proof-Check is a deterministic algorithm run by the TPA. It inputs the proof P, the challenge
information chal, and the user’s public key. If P is correct, this algorithm outputs 1, otherwise it
outputs 0.
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3.3. System Security

We consider three security properties, namely, completeness, soundness, and comprehensive
privacy preservation against the TPA in our CL-PGSDP protocol.

• Completeness means the cloud server can pass the possession checking procedure as long as the
cloud server properly stores the group shared data.

• Comprehensive privacy preservation means that the TPA achieves no information on the data
blocks and the user’s identity during the integrity checking procedure.

• Soundness states that whenever the cloud server convinces a TPA to accept its proof, the
cloud server should actually store the challenged data blocks. According to certificateless
cryptography [30,31], we consider three types of probabilistic polynomial-time (PPT) adversaries,
namely, A1, A2, A3, and a challenger C in our security model and define the security of our
protocol by three games. The details are as follows:

Game 1: This game is played by challenger C and adversary A1 who wants to substitute the
user’s public key with any other value, but A1 cannot access the master key of the system.

Setup: Challenger C runs the Setup algorithm to obtain the system parameters params and the
master secret key msk, and forwards params to the adversary A1, while keeps msk confidential.

Queries: A1 can adaptively issue the following queries to C. C maintains the corresponding query
lists, which are initially empty, and responds to the queries to A1 as follows.

(1) Hash Query. A1 makes hash function queries to C for any identity ID, and C responds to the hash
values to A1.

(2) Partial Private Key Query. A1 adaptively chooses different ID and summits it to C for querying
the partial private key of the ID. C executes the Partial-Private-Key-Gen algorithm to obtain the
partial private key for the ID and sends it to A1.

(3) Secret Value Query. A1 adaptively chooses different ID and summits it to C for querying the
secret value of the ID. C runs the Secret-value-Gen algorithm to generate the secret value for the
ID and sends it to A1.

(4) Public Key Query. A1 adaptively chooses different ID and summits it to C for querying the public
key of the ID. C performs the algorithm Public-key-Gen to compute the public key for the ID and
sends it to A1.

(5) Public Key Replacement. A1 can repeatedly select a value to replace the public key of any ID.
(6) Tag Query. A1 adaptively chooses the tuple (ID, m) and submits it to C for querying the tag of the

data block m. C runs Tag-Gen algorithm to generate the tag of data block m and sends it to A1.

Forge: Finally, A1 outputs a forged tag σ for the m with the identity ID and the public key pkID.
If the forged tag σ is valid after the above queries, then A1 wins the game.
Game 2: This game is played by challenger C and adversary A2 who is able to get the master key

but cannot substitute the group user’s public key.
Setup: Challenger C runs the Setup algorithm to obtain the system parameters params and the

master secret key msk, and forwards params and msk to the adversary A2.
Queries: A2 can make a number of queries to C adaptively. C maintains the corresponding query

lists, which are initially empty, and responds to the queries to A2 as follows.

(1) Hash Query. A2 makes hash function queries to C for any identity ID, and C responds the hash
values to A2.

(2) Secret Value Query. A2 adaptively chooses different ID and summits it to C for querying the
secret value of the ID. C runs the Secret-value-Gen algorithm to generate the secret value for the
ID and sends it to A2.
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(3) Public Key Query. A2 adaptively chooses different ID and summits it to C for querying the public
key of the ID. C performs the algorithm Public-key-Gen to compute the public key for the ID and
sends it to A2.

(4) Tag Query. A2 adaptively chooses the tuple (ID, m) and submits it to C for querying the tag of the
data block m generated by the ID. C runs Tag-Gen algorithm to generate the tag of data block m
and sends it to A2.

Forge: Finally, A2 outputs a forged tag σ for the m with the identity ID.
If the forged tag σ is valid after the above queries, then A2 wins the game.

Definition 3. A CL-PGSDP scheme is secure against adaptive impersonation and forging tag attacks if any
PPT adversary A (A1 or A2) who plays the above games with the challenger C has only negligible probability ε of
winning the games, that is,

Pr(Awin) ≤ ε

in which the probability ε is taken over all coin tosses made by A and C.

Game 3: This game is played by challenger C and adversary A3 who aims to forge the data
integrity proof to cheat the TPA. A3 is regarded as the untrusted CSP. From the Definition 3, we know
that it is hard to forge the tag of single data block. Thus, we will focus on the issue of whether A3 can
forge the integrity proof without correct data to pass the challenge.

Setup: Challenger C runs the Setup algorithm to obtain the system parameters params, the master
secret key msk, and partial private key for all users, and only forwards params to the adversary A3.

Tag Queries: A3 adaptively chooses the tuple (ID, m) and sends it to C for querying the tag of
data block m. C runs the algorithm Tag-Gen to generate the tag of m and returns it to A3.

Challenge: C makes a random challenge chal to A3 and requests A3 to provide the corresponding
data possession proof for chal.

Forge: For the challenge chal, A3 generates a proof and sends it to C. If the proof can pass the
integrity verification while A3 does not possess the correct data, A3 wins the game.

Definition 4. A CL-PGSDP scheme is secure against adaptive impersonation and forging proof attacks if any
PPT adversary A who plays Game 3 with the challenger C has only negligible probability ε of winning the games,
that is,

Pr(Awin) ≤ ε

in which the probability ε is taken over all coin tosses made by A and C.

4. Our Construction

In this section, we provide a concrete construction of certificateless provable group shared data
possession protocol supporting comprehensive privacy preservation for cloud storage. We suppose
the number of users in the group is z, and IDi represent the unique identity of the user ui, in which
1 ≤ i ≤ z. Without losing the generality, we set u1 as the group manager who will set up system
and generate system parameters and the partial private keys for other users. The group shared data
M is split into n blocks, denoted as M =

{
mj

∣∣∣1 ≤ j ≤ n, mj ∈ Z∗q
}

. In the Partial-Private-Key-Gen
algorithm, we employ short signature [12] and randomization method to produce the partial private
key for each user of the group. In the Tag-Gen algorithm, we take the advantage of the idea of
certificateless cryptography [31] to construct the tags of the data blocks using the partial private key
and the secret value. In the challenge phase, the TPA randomly chooses some indexes of the data
blocks and corresponding random values as a challenge to the CSP. In the proof generating phase, the
CSP computes a response to the TPA. We utilize the idea of zero knowledge proof [33,34] to design
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the details of the interaction between the TPA and the CSP. The details of the proposed protocol are
as follows:

• Setup. This algorithm is run by u1. On input of security parameter λ, u1 chooses
two cyclic multiplicative groups, G1 and G2, with prime order q, log2 q ≤ λ. g is a
generator of G1. There exists a bilinear map e : G1 × G1 → G2 . u1 selects three secure
hash functions H1, H2 : {0, 1}∗ → G1 , H3 : G2 → {0, 1}l , a pseudo-random permutation (PRP)
π : Z∗q × {1, . . . , n} → {1, . . . , n} , and a pseudo-random function (PRF) φ : Z∗q × Z∗q → Z∗q .
u1 initializes a public log file LF, which is used to record the information of the indexes of the
data blocks and the information of the corresponding tag generators. u1 randomly chooses
x ∈ Z∗q as master secret key msk and δ ∈ Z∗q as secret value, and computes Ppub = gx.
u1 keeps the master secret key msk and δ privately, and publishes the system parameters
params =

{
G1, G2, Ppub, H1, H2, H3, e, g, q, LF, π, φ

}
.

• Partial-Private-Key-Gen. This algorithm is run by u1. When receiving the identity IDi ∈ {0, 1}∗

of the user ui, u1 computes the ui’s partial private key pskIDi = H1(IDi + δ)x and sends pskIDi

and H1(IDi + δ) to ui.
• Secret-Value-Gen. This algorithm is run by group user. ui randomly selects yIDi ∈ Z∗q as the secret

value and keeps it privately.
• Public-Key-Gen. This algorithm is run by group user. ui uses the secret value to compute the

public key YIDi = gyIDi .
• Tag-Gen. Each user in group can generate tags of data blocks using partial private key and secret

value. Suppose user ui (0 < i ≤ z) generates an authentication tag for data block mj (0 < j ≤ n).
It takes ui’s partial private key pskIDi , the secret value sIDi , and the data block mj as inputs and
outputs the tag σj of mj. The equation for computing tag is σj = pskIDi

mj · H2(ωj)
yIDi , in which

ωj = j
∣∣∣∣ f name , j is the index of data block mj, and f name denotes the unique identity of data

block mj. Each time the ui generates a tag for data block mj, ui will update the information in
public log file LF with the index j of mj, YIDi , and H1(IDi + δ). Actually, LF is a table, and one
line of it can be showed as follows:

j H1(IDi + δ) YIDi

• The user ui uploads the data blocks and its tags to the CSP. The CSP can check the validation of
each tag using the following equation:

e(σj, g) = e(H1(IDi + δ)mj , Ppub) · e(H2(ωj), YIDi ) (1)

• Challenge. This algorithm is run by the TPA, who randomly picks c-element subset J of the
set [1, n] by pseudo-random permutation (PRP) π; each element in J denotes the index of the
challenged data block. The TPA chooses a random element υj ∈ Z∗q for each element in J by
pseudo-random function (PRF) φ. Let Q be the set

{
(j, υj)

}
j∈J. To generate a challenge, the TPA

will search the log file LF according the set J to get the information {(j, H1(IDi + δ))}. The TPA
picks a random value t ∈ Z∗q as secret value and computes T1 = gt, T2j = e(H(IDi + δ), Ppub)

t.
Let T2 =

{
T2j
}

, j ∈ J. The TPA sends the chal = {Q, T1, T2} to the server.

• Proof-Gen. Upon receiving the chal = {Q, T1, T2}, the CSP computes µ = ∏
j∈J

T2j
υjmj , σ = ∏

j∈J
σj

υj

and proo f = H3(e(σ, T1) · µ−1), then sends proo f as a response to the chal from the TPA.
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• Proof-Check. Upon receiving the proo f from the CSP, the TPA first searches the publish log file
LF to get the information

{
(j, YIDi )

}
and checks the equation:

proo f = H3( ∏
j ∈ J
j→ i

e(H2 (j|| f name) υj , Yt
IDi

))

in which j→ i means the information of ui can be find from public log file LF by the index j of
data block mj. If the equation holds, the TPA accepts the proof; otherwise, the proof is invalid.
The process of Challenge, Proof-Gen, and Proof-Check are summarized as Figure 2.
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• Revocation-Tag-Gen. If user um, 2 ≤ m ≤ z leaves the group, and user un will be the successor
of um. The following procedure will efficiently update the tags generated by um. It needs um, un

and the CSP online simultaneously.

(1) The CSP randomly selects α ∈ Z∗q , and sends it to un.

(2) Upon receiving α, un computes (K1 = (pskIDn)
1

yIDn , K2 = α · yIDn) and sends (K1, K2)

to um.
(3) um computes (R1 = K1

yIDm
skIDm

, R2 = K2
yIDm

) and sends it to the CSP.

(4) When receiving (R1, R2), the CSP computes R3 = R2
α =

yIDn
yIDm

. The CSP will update the

tag of the data block mi′ by computing the equation σ′i′ = (R1
mi′ · σi′)

R3 , in which σi′ is
the tag generated by um. The proof of the correctness of algorithm Revocation-Tag-Gen is
as follows:

σ′i′ = (R1
mi′ · σi′)

R3 =

 skIDn

yIDm
yIDn

skIDm

mi′

· skIDm
mi′ · H2(ωi′)

yIDm


yIDn
yIDm

=

((
skIDn

yIDm
yIDn

)mi′

· H2(ωi′)
yIDm

) yIDn
yIDm

= skIDn
mi′ · H2(ωi′)

yIDn
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5. Security Analysis of the New Protocol

In this section, we show that our protocol is secure with the properties of completeness, soundness,
and comprehensive privacy preservation.

5.1. Completeness

If the CSP properly stores data, it can always pass the verification. The completeness of the
protocol can be demonstrated as follows:

proo f = H3(e(σ, T1) · µ−1) = H3

 e(σ,T1)

∏
j∈J

T2j
vjmj

 = H3


e(σ,T1)

∏

j ∈ J
j→ i

e(H1(IDi + δ),Ppub)
tvjmj



= H3


e(∏

j∈I
σj

vj ,T1)

∏

j ∈ J
j→ i

e(pskIDi
,T1)

vjmj


= H3

 ∏
j ∈ J
j→ i

e(σj
vj ,T1)

e(pskIDi
mj ,T1

vj )

 = H3

 ∏
j ∈ J
j→ i

e(
σj

pskIDi
mj , T1

vj)



= H3

 ∏
j ∈ J
j→ i

e(H2(ωj)
yIDi , gtvj)

 = H3

 ∏
j ∈ J
j→ i

e(H2(ωj)
vj , gtyIDi )

 = H3

 ∏
j ∈ J
j→ i

e(H2(ωj)
vj , Yt

IDi
)


5.2. Soundness

Theorem 1. In the random oracle model, if a PPT adversary A1 wins Game 1 defined in Section 3 with
non-negligible probability ε, then there is an algorithm B that can solve the CDH problem.

Proof of Theorem 1. Algorithm B is given (g, ga, gb) ∈ G1; its goal is to output gab ∈ G1. Algorithm B
simulates the challenger and interacts with as A1 follows.

Setup: B produces the system parameters params, secret key δ ∈ Z∗q , and sets P = ga, while a
keeps unknown.

H1-Query: At any time, A1 can query the random oracle H1. To respond to these queries,
algorithm B maintains a list of tuples (ID, k1, K) as Tab1. When A1 queries the oracle H1 at the identity
ID′, Algorithm B responds as follows:

(1) If ID′ ∈ Tab1, then algorithm B retrieves the tuple (ID′, k1
′, K′) and responds with K′ to A1.

(2) Otherwise, B picks a random k1
′ ∈ Z∗q and computes K′ = gbk1

′
. Then, it adds the tuple

(ID′, k1
′, K′) to Tab1 and responds with K′ to A1.

PartialKey-Query: At any time, A1 can query partial key for any identity ID′. If ID′ /∈ Tab1, B
makes the H1-Query. Otherwise, B maintains a list of tuples (ID, psk) as Tab2. When A1 queries the
oracle PartialKey-Query at the identity, Algorithm B responds as follows:

(1) If ID′ ∈ Tab2, then algorithm B retrieves the tuple (ID′, psk′) and responds psk′ to A1.
(2) Otherwise, B computes psk′ = (K′)a. Then, it adds the tuple (ID′, psk′) to Tab2 and responds psk′

to A1.

SecretValue-Query: At any time, A1 can query secret value for any identity ID′, if ID′ /∈ Tab1 or
ID′ /∈ Tab2. B firstly makes the H1-Query or PartialKey-Query for the identity ID′. Then, B randomly
chooses a value x′ ∈ Z∗q as response to A1.
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PublicKey-Query: At any time, A1 can query public key for any identity ID′, if ID′ /∈ Tab1 or
ID′ /∈ Tab2. B first makes the H1-Query or PartialKey-Query for the identity ID′. Then, B computes
PK′ = gx′ , in which x′ is the secret value from SecretValue-Query and responds PK′ to A1.

H2-Query: At any time, A1 can query the random oracle H2 for ω′. Algorithm B also maintains a
list of tuples (ω, W) as Tab3. If ω′ ∈ Tab3, then algorithm B retrieves the tuple (ω′, W ′) and responds
W ′ to A1. Otherwise, B randomly selects k2 ∈ Z∗q and computes W ′ = gk2 . Then, it adds the tuple
(ω′, W ′) to Tab3 and responds W ′ to A1.

Tag-Query: At any time, A1 can query tag with (m′, ID′). B first checks whether ID′ ∈ Tab1,
ID′ ∈ Tab2, and ω′ ∈ Tab3. If not, B will compute corresponding tuple and update Tab1, Tab2, and Tab3.
After that, B can get corresponding information from Tab1, Tab2, and Tab3 and compute the tag T′ for
(ω′, m′, ID′) by the algorithm Tag-Gen and returns it to A1.

Forge: Eventually, A1 outputs (ID′, K′, psk′, x′, PK′, W ′, m′, T′). T′ is the forged tag of the data
block m′ on the identity ID′ with the public key PK′.

Analysis: If A1 wins Game 1, on the one hand, B can get

e(T′, g) = e(H1(ID′ + δ)
m′ , P) · e(H2(ω

′), PK′)

according to the verification Equation (1). On the other hand, B can retrieve H1(ID′ + δ) = gbk1
′

from
Tab1 and H2(ω

′) = gk2 from Tab3. Thus, B gets e(T′, g) = e(gbk1
′m′ , ga) · e(gk2 , PK′). Finally, we can

derive that

gab =

(
T′

(PK′)k2

) 1
k′1m′

which means that B can solve the CDH problem with non-negligible probability ε. However, according
to CDH assumption, the advantage for B to solve the CDH problem in G1 is negligible. Thus, A1 cannot
win Game 1. This completes the proof. �

Theorem 2. In the random oracle model, if a PPT adversary A2 wins Game 2 defined in Section 3 with
non-negligible probability ε, then algorithm B can solve the CDH problem.

Proof of Theorem 2. Algorithm B is given (g, ga, gb) ∈ G1; its goal is to output gab ∈ G1. Algorithm B
simulates the challenger and interacts with as A2 follows.

Setup: B produces the system parameters params, secret key δ ∈ Z∗q , and sets P = gs, in which s
is master key. B sends params, δ, s, and P to A2.

H1-Query: At any time, A2 can query the random oracle H1. To respond to these queries,
algorithm B maintains a list of tuples (ID, l1, L) as Tab1. When A2 queries the oracle H1 at the identity
ID′, Algorithm B responds as follows:

(1) If ID′ ∈ Tab1, then algorithm B retrieves the tuple (ID′, l1′, L′) and responds with L′ to A2.

(2) Otherwise, B picks a random l1′ ∈ Z∗q and computes L′ = gl1 ′ . Then, it adds the tuple (ID′, l1′, L′)
to Tab1 and responds with L′ to A2.

SecretValue-Query: Because A2 knows the master key, there is no need for A2 to query the
partial key. At any time, A2 can query secret value for any identity ID′. If ID′ /∈ Tab1, B makes
the H1-Query. Otherwise, B maintains a list of tuples (ID, y, Y) as Tab2. When A2 queries the oracle
SecretValue-Query at the identity ID′, Algorithm B responds as follows:

(1) If ID′ ∈ Tab2, then algorithm B retrieves the tuple (ID′, y′, Y′) and responds with y′ to A2.
(2) Otherwise, B randomly selects l2 ∈ Z∗q and makes y′ = l2. Then, it adds the tuple (ID′, y′) to Tab2

and responds with y′ to A2.

PublicKey-Query: At any time, A2 can query public key for any identity ID′, if ID′ /∈ Tab1 or
ID′ /∈ Tab2. B first makes the H1-Query or PartialKey-Query for the identity ID′. Then, B computes
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Y′ = gay′ = gal2 , in which y′ is the secret value from SecretValue-Query, and updates Tab2. B responds
with Y′ to A2.

H2-Query: At any time, A2 can query the random oracle H2 for ω′. Algorithm B also maintains a
list of tuples (ω, W) as Tab3. If ω′ ∈ Tab3, then algorithm B retrieves the tuple (ω′, W ′) and responds
W ′ to A2. Otherwise, B randomly selects l3 ∈ Z∗q and computes W ′ = gbl3 . Then, it adds the tuple
(ω′, W ′) to Tab3 and responds with W ′ to A2.

Tag-Query: At any time, A2 can query tag with (m′, ID′, ω′). B first checks whether ID′ ∈ Tab1,
ID′ ∈ Tab2, and ω′ ∈ Tab3. If not, B will compute corresponding tuple and updates Tab1, Tab2, and
Tab3. After that, B can get corresponding information from Tab1, Tab2, and Tab3, and computes the tag
T′ for (ω′, m′, ID′) using the algorithm Tag-Gen and returns it to A2.

Forge: Eventually, A2 outputs (T′, ω′, m′, ID′). T′ is the forged tag of the data block m′ on the
identity ID′.

Analysis: If A2 wins Game 2, on the one hand, B can get

e(T′, g) = e(H1(ID′ + δ)
m′ , P) · e(H2(ω

′), Y′)

according to the verification Equation (1). On the other hand, B can retrieve H1(ID′ + δ) = gl1 ′ from
Tab1, Y′ = gal2 ′ from Tab2, and H2(ω

′) = gbl3 from Tab3. Thus, B gets e(T′, g) = e(gl1
′m′ , P) · e(gbl3 , gal2).

Finally, we can derive that

gab =
(
T′
) 1

l′1 l2 l3sm′

which means that B can solve the CDH problem with non-negligible probability ε. However, according
to CDH assumption, the advantage for B to solve the CDH problem in G1 is negligible. Thus, A2

cannot win Game 2. This completes the proof. �

Theorem 3. If the DL assumption holds, the adversary A3 wins Game 3 only at negligible probability.

Proof of Theorem 3. Let the challenge information be chal = {Q, T1, T2}. If A3 outputs proo f ′ and
wins Game 3 at non-negligible probability, we can get the verification equation:

proo f ′ = H3(e(σ′, T1) · µ′−1) = H3(∏
j∈I

e(H2 (j|| f name) υj , Yt
IDi

))

in which σ′ is the forged tag for the forged data block m′ and µ′ is produced by A3. Assume the real
proof is proo f and the corresponding information is (σ, µ). We also get the verification equation:

proo f = H3(e(σ, T1) · µ−1) = H3(∏
j∈I

e(H2 (j|| f name) υj , Yt
IDi

))

Thus, we can derive from the above two verification equations that

e(σ, T1)

e(σ′, T1)
=

µ

µ′

Because A3 wins the Game 3, there exists σ = σ′ and at least one data block mj 6= mj
′.

Suppose mj − mj
′ = ∆mj. Then, we get µ

µ′ = 1, which is
∏
j∈I

T2j
υjmj

∏
j∈I

T2j
υjmj

′ = 1. We can get ∏
j∈I

T2j
υj∆mj = 1.

Based on this conclusion, the DL problem can be solved as follows: Given two elements g, y ∈ G1 in
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which y = ga, we will compute a ∈ Zq
∗. We randomly select αj, β j ∈ Z∗q and let T2j

υj= Xj = gαj yβ j . We
can get following equation:

∏
j∈I

T2j
υj∆mj = ∏

j∈I
Xj

∆mj = ∏
j∈I

(gαj yβ j)
∆mj = g

∑
j∈I

αj∆mj
y

∑
j∈I

β j∆mj
= 1

Then, we can derive y = g
−

∑
j∈I

αj∆mj

∑
j∈I

βj∆mj
. Since ∆mj 6= 0, β j is the random value from Zq

∗, so the
probability of ∑

j∈I
β j∆mj = 0 is only 1

q . Therefore, we can output the right value of a with non-negligible

probability 1− 1
q . This completes the proof. �

5.3. Comprehensive Privacy Preservation

5.3.1. Data Privacy Preservation

Upon receiving the challenge from the TPA, the cloud server responds with the proof:
proo f = H3(e(σ, T1) · µ−1), in which we hide the information of σ and µ using
hash function H3. Furthermore, the TPA just needs to check the following equation:
proo f = H3( ∏

j ∈ J
j→ i

e(H2 (j|| f name) υj , Yt
IDi

)), without knowing any information about data file

blocks {mi} or their corresponding tags {σi}.

5.3.2. User Identity Privacy Preservation

In CL-PGSDP protocol, we design a log file that is used to record the information of the index of
data block and the information of its tag generator, including the hash value H1(IDi + δ) and the
public key YIDi of user ui. During the auditing process, the TPA gets the hash value H1(IDi + δ) for
the challenged data block mj from the log file. Because the user identity is randomized by δ ∈ Z∗q in
Partial-Private-Key-Gen, it is impossible for the TPA to obtain user’s real identity. Therefore, the user
identity cannot be known by the TPA.

6. Performance and Implementation

In this section, we give the performance analysis and experimental results of our protocol.

6.1. Performance Analysis

We summarize the computational and the communicational cost of our protocol as follows.
Computational cost: For simplicity, we denote by ExpG2 and ExpG2 the exponentiations in G1

and G2, by MultG1 and MultG2 the multiplication in G1 and G2, by P the pairing computation, and by
H the map-to-point hash function, respectively. The original hash function, PRF and PRP operation,
addition and multiplication on Z∗q , and so on are omitted in our evaluation, because the computational
cost of them is negligible. Suppose the data is split into n blocks. The main computation of the group
manager is generating system parameters and partial private key for each group user. Thus, the main
computational cost is 2ExpG1 + H. The primary computation of group users is generating tags for
data blocks, which is the most expensive operation in our protocol, but fortunately part of it can
be done offline. The cost of group users is (2n + 1) ExpG1 + nH. The dominated computation of the
TPA is generating a challenge and checking the validity of a proof. We suppose all the group users
have generated tags and the challenge involves their corresponding tags. Thus, the cost for the TPA
is zP + zExpG2 + ExpG1 at most for one challenge. When checking a proof, the cost for the TPA is
2cExpG1 + cPG1 + cH + (c − 1) ExpG2. The main computational cost for the CSP is to generate a proof
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for a challenge, and the total cost is (2c − 1) MultG1 + cMultG2 + cExpG2 + cExpG1 + P. We make a
detailed comparison with Li’s protocol [30] in Table 1.

Communicational cost: In the challenge phase, the TPA summits chal = {Q, T1, T2} to the CSP.
The CSP responds with a proof to the TPA that is a hash value from H3. Thus, the communicational
cost is 2c log2 λ + (c + 1) log2 q + l.

Table 1. Comparison with Li [30].

Li [30] Our CL-PGSDP

Tag Generation cost 2nExpG1 + nH 2nExpG1 + nH
Challenge cost Negligible cost zP + zExpG2 + ExpG1

Proof Generation cost cExpG1 + (c − z) MultG1
(2c − 1)

MultG1 + cMultG2 + cExpG2 + cExpG1 + P

Proof-Check cost (z + 2) P + (c + d) ExpG1 + (c + 2d)
MultG1 + dMultG2

2cExpG1 + cPG1 + cH + (c − 1) ExpG2

Working scenario Group data Group data
Support data privacy-preserving No Yes

Support user identity
privacy-preserving No Yes

6.2. Experimental Results

To evaluate the efficiency of our proposed protocol, we conduct experiments on
Ubuntu 16.04 operation system with Intel i5-6200CPU @ 2.40 GHz and 4 GB memory. We implement the
algorithm in C with the Pairing-based Cryptography (PBC) library [37] and the GNU Multiple Precision
Arithmetic (GMP) library [38]. We utilize the parameter a.param, which provides a symmetric pairing
with the fastest speed among all default parameters. The implementation time overhead of the protocol
is displayed in following two parts.

In the first part, we carry out an experiment to evaluate the tag generation cost of our protocol.
We set the number of the group users at 50, and the size of data ranges from 0.2 MB to 2 MB. The order
of G1 is set at 160-bit, which has the equivalent security level of 1024-bit RSA. Hence, the number of
data blocks ranges from 10,000 to 100,000. Figure 3 depicts the comparison on computation cost for tag
generation. From Figure 3, we can see that the phase of tag generation of our protocol is separated
into two parts: offline and online. As its computational cost is the most expensive one, the group
user ui can preprocess H2(ωj)

yIDi , which can be conducted in offline phase. In the online phase of
tag generation, group user ui needs to compute pskIDi

mj for each data block, which is more practical
than Li’s protocol. The time cost of offline computation of tag generation for 1 MB data file is 150.5 s,
while the online time cost is 25.3 s. Without loss of generality, we suppose the blocks are, on average,
assigned to group users, which makes the result more acceptable. As we expected that both online and
offline time of generating tags increases almost linearly with the increase of the data size. Thus, one
shall be able to anticipate the time cost of generating tags for any size of data files.

In the second part, we increase the number of challenged data blocks from 50 to 1000 with an
increment of 50 for each test to see the time cost of Challenge, Proof-Gen, and Proof-Check steps.
We suppose all the users in the group will get involved in generating the tags of the challenged
data blocks. Figure 4 demonstrates the time cost of these three parts, which increase with the increase
of the number of challenged data blocks, which is consistent with our previous computational analysis,
because when the number of challenged data blocks rises, more random values in Q need to be
produced and more T2 =

{
T2j
}

need to be computed. The CSP has increasing computation on µ and σ.
According to [9], if the CSP has polluted 1% of the data blocks, the TPA can achieve the probability of
CSP’s misbehavior detection of at least 99% while only needing to make 460 data blocks for a challenge.
We can see that it costs the TPA only about 5.75 s to verify a response and the CSP costs about 1.1 s to
generate a response when the number of challenged data blocks is 460. We compare the Proof-Check
performance between Li’s protocol and our protocol in Table 2. We find that our mechanism requires
more checking time compared to Li’s protocol. Based on our analysis of computation cost from
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Table 1, we find that there are more pairing operations (P) during the phase of Proof-Check, which is
consistent with our experimental results, because one pairing operation takes more time than other
cryptographic operations. However, our mechanism is of comprehensive privacy preservation, while
Li’s not.Future Internet 2018, 10, x FOR PEER REVIEW  15 of 18 
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Table 2. Comparison of Proof-Check with Li [30].

Li [30] Our CL-PGSDP

Number of challenged blocks 460 460
Time cost 2.16 s 5.75 s

7. Conclusions

In this paper, we propose a new PDP protocol for group shared data at untrusted cloud storage,
which aims to solve the problems of privacy preservation, including data privacy and the group
user identity privacy. By utilizing certificateless cryptography, we eliminate the issues of expensive
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certificate management and key escrow. We prove that our protocol is secure, and further illustrate
its efficiency through practical experiments. The results show that the proposed protocol is efficient
and practical.
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