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Abstract: TCP protocol has good performance on the Internet, but its performance is significantly
reduced when it is applied to Marine Internet (MI). How to improve the performance of TCP
protocol in Marine Internet has become an important research topic. In this paper, an improved
Semi-TCP is adopted for Marine Internet, and the implementation scheme of Semi-TCP congestion
control is introduced. The exposed terminal problem and congestion control problem of high
load networks are analyzed in detail. By using a timer, the congestion control algorithm is
improved. Performance analysis and comparison of TCP-Lite, Semi-TCP-RTS, and improved
Semi-TCP (Semi-TCP-RTS-V2) are carried out on Exata simulation platform, and the experimental
results show that Semi-TCP-RTS-V2 has better transmission performance in ship ad hoc networks.

Keywords: Marine Internet; ship ad hoc network; TCP protocol; congestion control; network
performance

1. Introduction

Marine Internet aims to provide Internet services in marine environments for users and
applications on the water surface and under water. One type of user comes from civil sectors, including
seamen, fishermen, and yacht passengers. These users have to be provided with seamless Internet
access and kept connected with the rest of the world during their sea voyages. Another kind of user is
from industry sectors, such as maritime transportation and offshore oil industry. TCP protocol has
good performance for terrestrial Internet, but its performance in marine Internet declines significantly.
The traditional TCP protocol always considers that the loss of data packets is caused by network
congestion, but in the marine Internet, which consists of shore-based networks, ship ad hoc networks,
high-altitude communication platforms, and satellite networks [1–3], it is easy to cause packet loss
due to channel loss and dynamic routing rather than by congestion. When TCP is applied to wireless
ad hoc networks, such non-congestion packet loss will lead to misjudgment of the TCP congestion
and reduction of the transmission rate. Finally, it causes a waste of channel resources when there is no
congestion, and is not conducive to relieving congestion quickly when there is congestion. Aiming
at solving the above problems, people have proposed a variety of TCP improvement schemes for
wireless ad hoc networks [4,5]. But, most of the improvements are based on the original TCP protocol
structure, such as ADTCP [6–8], TCP-AP [8], and so on; their congestion control [9,10] function is still
implemented in the transport layer [11], they show certain advantages only in specific environment or
applications, but the overall performance is not satisfying.
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Different from the above-mentioned TCP variants proposed for wireless networks, Semi-TCP puts
the congestion control function originally in the transport layer to the data link layer [12] so that the
controller can learn accurately and quickly the congestion status of the network. Through hop-by-hop
control, it can improve the efficiency of congestion control. The marine Internet has the characteristics
of low node density, high channel loss rate, and relatively stable node movement speed [13]. Combined
with the characteristics of the Marine Internet, this paper enhances the congestion control method of
Semi-TCP using RTS/CTS (Request To Send/Clear To Send) to improve TCP transmission performance
in the Marine Internet.

2. Overview of Related Algorithms

2.1. Semi-TCP Congestion Control Algorithm Based on RTS/CTS

According to the characteristics of the Marine Internet, the simplest and most efficient way to
control congestion in the MAC layer through hop-by-hop congestion control is achieved by using the
existing MAC layer protocol. In the IEEE802.11 wireless network, the RTS/CTS for the Distributed
Coordination Function (DCF) access control mode has very extensive application. The following is
a detailed introduction of the Semi-TCP congestion control algorithm based on RTS/CTS.

2.1.1. Overview of the RTS/CTS Handshake Protocol

The RTS/CTS handshake protocol is an optional scheme on top of the Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) protocol [14] for a four-way handshake mode
(RTS-CTS-DATA-ACK) [15]. It is proposed to solve the hidden terminal [11] problem, which refers
to a node that is outside the coverage of the sending node but in the coverage of the receiving node,
as illustrated in Figure 1.
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In Figure 1, node A sends data to node B, and node C also sends data to node D. Node C is a
hidden terminal. Without RTS/CTS handshaking, node C is listening to the channel, and sends data to
node D when the channel is idle. However, node B is in the receiving range of nodes A and C at the
same time, which will cause collision at node B when receiving data. With RTS/CTS handshaking,
a node can send data to node B only after it receives a CTS frame from node B, otherwise, it has to
back off to avoid the hidden-terminal problem. The Semi-TCP to be discussed below is based on such
a handshaking protocol.

2.2. Introduction to the Basic Idea of the Algorithm

The RTS/CTS-based Semi-TCP algorithm is also divided into intra-node and inter-node
congestion control [16,17]. The principle of intra-node congestion control is not described here.
The following is a detailed introduction of the congestion control between nodes.

According to the RTS/CTS protocol, when node A wants to send data to node B, after obtaining
a transmission opportunity, it needs to send an RTS frame to node B before sending the data, and node B
responds to node A with a CTS frame after receiving the RTS frame. With the RTS/CTS-based Semi-TCP
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congestion control algorithm, the idle bits in the RTS and CTS frames are used to carry congestion
information to indicate whether they are in a congested state [18,19]. Thus, two control frames,
RTS-with-Congestion-status (RTSC) frame and Clear-To-Send-with-Congestion status (CTSC) frame
are introduced, and a new type of frame, named nCTS (negative-CTS), has been added. The function
of the three frames are analyzed as below:

1. RTSC: The sending node A sends data to node B. If A is in congestion, RTSC will be sent;
otherwise, RTS will be sent.

2. nCTS: After receiving the RTS frame, the receiving node B judges its own congestion status. If it
is congested, it returns an nCTS frame and refuses to receive data; otherwise, it returns a CTS
frame. If node A receives an nCTS, it cannot send packets to node B.

3. CTSC: The introduction of CTSC frames is mainly to solve the deadlock situation. A deadlock
means that two congestion nodes, say A and B, need to send data to each other to relieve
their own congestion, but they are in a state of mutually rejecting each other. If both node
A and node B are in a congested status, node A and B send head-data in cache to each other.
The sending node A will send the RTSC frame first, and node B will reply an nCTS to reject the
data. Due to node B’s rejection, nodes A and B will be in a dead-end state until they exceed the
upper limit of retransmission to drop the packet. Therefore, when node B receives the RTSC, if it
is determined that a deadlock may occur, the CTSC frames are returned to each other to help
relieve the congestion.

Using the above three new frames, when a node in the network is congested, it can rapidly
transmit congestion information to the upstream nodes. Each upstream node performs hop-by-hop
congestion control, and ultimately transmits congestion information to the source node, reducing the
number of data transmissions from the source, resulting in better network performance.

3. Improvement Measures of the Algorithm

According to the introduction of the RTS/CTS handshake protocol in Section 2.1.1, the RTS and
CTS frames reserve slot-time in the Network Allocation Vector (NAV) field (the specific value is the
duration bit in the control frame) to indicate how long the node needs to back off after receiving the
frame, so it can avoid collisions in sending data frames. The RTS/CTS protocol is proposed to solve
the hidden terminal problem, but the exposed terminal problem also affects the network performance
due to channel wastage caused by exposed terminals. An exposed terminal refers to a node that is
within the coverage of the sending node and outside the coverage of the receiving node.

As shown in Figure 2, node C sends data to node F, but node A wants to send data to B too. Node
A in this case is an exposed terminal. After receiving the RTS of node C, node A will perform a backoff.
However, in reality, the respective receiving nodes are not within the receiving range of the sending
node. Therefore, the two types of data do not collide at the receiving end so that node A can send data
to node B. This exposed terminal problem causes a waste of channels.
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Not only the exposed terminal problem, but for a congested network with heavy traffic loads,
there will naturally be interactions of many nCTS frames. This will also cause great trouble. Suppose
that node A needs to send data frames to node B, and node B replies an nCTS, then node A will
not send data in the originally reserved time slot after receiving the frame. As shown in Figure 3,
the surrounding neighboring nodes can be considered separately.
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Node D is a hidden terminal, after receiving an nCTS, it will perform a backoff according to its
duration. Node C, as an exposed terminal, will also perform a backoff after receiving an RTS. Node
E can receive two control frames and will select the larger duration of the RTS and nCTS to back
off. At this point, nodes A, C, D, and E will all be unable to send data, which will result in waste of
channels and increase the network congestion.

In order to solve the above problems and optimize the performance of Semi-TCP, we have
designed the following algorithm:

1. Set the duration of an nCTS to 0 to solve the backoff problem of the hidden terminal in Figure 2.
2. After the node receives an RTS frame that is not destined to itself, the node records the sending

address of the frame, and at the same time initiates a Timer-for-Exposed-Terminal (TET). If no CTS
or retransmitted RTS to this address is received within the certain time interval, it is determined
that there is an exposed terminal and the backoff can be cancelled.

3. If an nCTS is received before the Timer-for-Exposed-Terminal (TET) times out, cancel the backoff.
4. When the node receives an RTS frame that is not sent to itself before the TET times out: (i) if it

receives an RTS frame from another node that is not for itself, it records a new address and resets
the timer; (ii) if receiving a CTS frame that is not addressed to itself, it unconditionally backs off
according to Duration.

5. If the node receives any control frame sent to itself when the TET is on, it will be treated as
a backoff state.

Regarding the duration of the TET, we have to consider the case of retransmission RTS and set
the minimum value that meets the requirement. After analyzing the RTS/CTS protocol, the node will
start a retransmission timer after sending the RTS frame. The value of this retransmission timer is
shown in formula (1), where PropDelay is the propagation delay and SIFS is the short frame interval,
transmitDelay (CTS) is the transmission delay of the CTS frame, and slotTime is the waiting time.

holdForCts = PropDelay + SIFS + transmitDelay(CTS) + PropDlay + slotTime (1)

After the interval, if no response is received from the other nodes within the specified time,
the RTS frame will be retransmitted. Therefore, after a node receives an RTS frame that is not sent
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to itself, if it does not even receive a retransmission RTS, it determines that it is an exposed terminal.
The TET timer duration is as in formula (2), and transmitDelay is the transmission delay of the RTS.

holdForBackup = (holdForCts− PropDelay) + transmitDelay(RTS) + PropDlay (2)

Figure 4 shows the processing flow of the algorithm in the state that the TET timer is off when the
node receives null pointers not sent to itself.Future Internet 2018, 10, x  5 of 9 
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4. Experimental Simulation and Analysis

Throughput and delay are important network performance indicators and are used as the main
criteria in the performance testing of Semi-TCP. The average throughput of the network intuitively
indicates the transmission performance of the network. Increasing the throughput is the most
important for the network optimization. Packet delay refers to the time interval from when the
packet is sent by the sending node to when the destination node receives the packet. It includes queue
delay, transmission delay, and propagation delay. In the statistics of the EXata simulation, the above
parameters will be directly given to facilitate observation and comparison. EXata is a network emulator
that lets one evaluate on-the-move communication networks faster and with more realism than any
other tool. It uses a software virtual network (SVN) to digitally represent the entire network, the various
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protocol layers, antennas, and devices. The system can interoperate at one or more protocol layers,
with real radios and devices to provide hardware-in-the-loop capabilities [20].

4.1. Simulation Scene and Parameters

This section simulates a ship ad-hoc network, which is a main component of the marine Internet.
To reflect the characteristics of the marine Internet, it is necessary to establish a long-distance dynamic
simulation scenario, which can be achieved by using the industrial version WiFi. Some nodes at
sea move at certain speeds and cooperate with appropriate channel attenuation models. To test the
congestion control algorithm, we established a congestion scenario. Therefore, multiple application
data flows were added to reflect the differences in network throughput, packet loss rate, and average
packet delay. The abstract scene of the simulation is shown in Figure 6.
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The transmission range of each node in the scenario only covers the nodes adjacent to it. The data
flow from node A to node C and node F needs to be forwarded by the intermediate node. The data
flow from node J to node K is mainly to verify the performance of the improved Semi-TCP algorithm
when node A is an exposed terminal, and the two data flows from node B are mainly used to create
network congestion.

The basic parameters of the scene are set as Table 1 [21,22]:

Table 1. Basic parameters of the scenario.

Simulation Parameters Values

Nodes’ moving speed 7~10 m/s
Channel model TwoRayGround

Attenuation model Ricean, K = 5
Frequency channel 2.4 G

MAC rate 11 Mbps
Sending queue FIFO, Length 150 Kb

Transmission power 33 dBm
Routing protocol AODV

For the ease of description, the semi-TCP congestion control protocols based on RTS/CTS will be
abbreviated as Semi-TCP-RTS, and the improved one as Semi-TCP-RTS-V2. We compared the three
algorithms: Semi-TCP-RTS, Semi-TCP-RTS-V2, and TCP-Lite—a lightweight version of TCP.

4.2. Simulation Results Analysis

In order to analyze the effect of the threshold value on the performance of the protocols, we varied
the threshold settings in the simulation. As a lot of data is flowing at the same time, we summed up
the average throughput of each data stream and compared them, with the results shown in Figure 7.
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From Figure 7, it can be seen that the two Semi-TCP protocols have a significant improvement in
the throughput of the network compared to TCP-Lite. This is because TCP-Lite misjudges the network
congestion status inferred from packet loss for the bad channel quality and mistakenly reduces the
sending window, which limits the network performance. The nodes judge themselves to determine
whether they are congested or not depending on the congestion threshold. From this figure, we can
also see that the change of the threshold value does not have a great impact on the overall throughput
of the network. However, as the threshold value increases, the average length of the queue will
inevitably increase, and the average queue delay increases as well. The following data statistics are
collected from the average queue delay of node J in the J→ K data stream. At the same time, the total
throughput of Semi-TCP-RTS-V2 is slightly lower than Semi-TCP-RTS, and the results are explained
jointly by using Figure 8 below.
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From Figure 8, it is found that the load of node A is much smaller than the sum of the average
throughput of the entire network. In fact, there is even a failure of a data stream connection in node A
in the Semi-TCP-RTS test. This is because node A is affected by node J and node B while sending data;
it is not only acting as an exposed terminal for J→ K and B→ C data streams, but also is in the B→ D
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data stream while node D is in its receiving range, which affects the data-sending of node A. Apart
from that, the congestion caused by the two data streams of node B restrict node A from sending data,
resulting in the above phenomena.

In addition, it can be clearly observed that in the improved protocol, node A will increase its load
when the entire network throughput decreases. This shows that the gap between node A and the other
2 sending nodes has shrunk, meaning that the fairness of the data stream has improved. Because the
exposed terminal problem with the Semi-TCP-RTS-V2 has been relieved at a certain level, the load has
also been increased. The overall throughput shown in Figure 7 is lower than Semi-TCP-RTS, because it
takes time to define the exposed terminal with the improved protocol. At the same time, the other
two sending nodes enter into the process of the exposed terminal’s judgment when node A is sending
packets, yielding the above result.

As shown in Figure 9, as the threshold is consistent, there is no difference between Semi-TCP-RTS
and Semi-TCP-RTS-V2, which is also in line with the expectations.
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In the marine Internet, both the wireless ad hoc networks and the opportunistic networks can use
the IEEE 802.11 protocol standard. This paper elaborates on the proposed Semi-TCP-RTS congestion
control algorithm and proposes an improved Semi-TCP-RTS called Semi-TCP-RTS-v2. It solves
the exposed terminal problem and the waste of channel resources due to the interaction of nCTS
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