
future internet

Article

MinHash-Based Fuzzy Keyword Search of Encrypted
Data across Multiple Cloud Servers

Jingsha He, Jianan Wu ID , Nafei Zhu * and Muhammad Salman Pathan ID

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
jhe@bjut.edu.cn (J.H.); wjnfighting@163.com (J.W.); salman@emails.bjut.edu.cn (M.S.P.)
* Correspondence: znf@bjut.edu.cn

Received: 14 March 2018; Accepted: 24 April 2018; Published: 1 May 2018
����������
�������

Abstract: To enhance the efficiency of data searching, most data owners store their data files in
different cloud servers in the form of cipher-text. Thus, efficient search using fuzzy keywords
becomes a critical issue in such a cloud computing environment. This paper proposes a method
that aims at improving the efficiency of cipher-text retrieval and lowering storage overhead for
fuzzy keyword search. In contrast to traditional approaches, the proposed method can reduce the
complexity of Min-Hash-based fuzzy keyword search by using Min-Hash fingerprints to avoid the
need to construct the fuzzy keyword set. The method will utilize Jaccard similarity to rank the
results of retrieval, thus reducing the amount of calculation for similarity and saving a lot of time
and space overhead. The method will also take consideration of multiple user queries through
re-encryption technology and update user permissions dynamically. Security analysis demonstrates
that the method can provide better privacy preservation and experimental results show that efficiency
of cipher-text using the proposed method can improve the retrieval time and lower storage overhead
as well.

Keywords: cloud storage; multi-server; multi-user; fuzzy keyword search

1. Introduction

With the advancement of cloud computing, more and more enterprises and individuals choose
the option of storing their data in cloud servers to enjoy the on-demand high quality applications and
services from a shared pool of configurable computing resources as well as to reduce the burden of
managing their own storage. Cloud, as an honest-but-curious platform, on the other hand, may pose a
significant threat to privacy of user data. To prevent sensitive data from being leaked, user data should
be encrypted before being outsourced to the cloud servers. However, data encryption would make the
utilization of user data a great challenge due to the need of retrieving a large amount of cipher-texts as
compared to plain-texts that can be easily identified through keyword search. In addition, users may
sometimes be interested only in retrieving some specific files from the cloud, making keyword-based
search a primary tool to access cloud data. Thus, it has become a serious issue to find the required files
from a large number of cipher-text documents.

For the retrieval of cipher-text files, a lot of research has been done on fuzzy keyword search
over encrypted data in the cloud. Song et al. proposed an encryption-searchable method in which
an encryption keyword search scheme was implemented based on symmetric encryption system for
cipher-text retrieval [1]. This scheme uses pseudorandom function, deterministic encryption and XOR
algorithm to construct an encrypted keyword index and relies on the function of keyword search
for encrypted data located on the server side to ensure that cipher-text information is not exposed.
Chang et al. improved the above scheme through building a corresponding index for each document
to improve the efficiency of retrieval, where each index contains the keyword threshold information of

Future Internet 2018, 10, 38; doi:10.3390/fi10050038 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0001-7136-8492
https://orcid.org/0000-0002-0210-3121
http://www.mdpi.com/1999-5903/10/5/38?type=check_update&version=1
http://dx.doi.org/10.3390/fi10050038
http://www.mdpi.com/journal/futureinternet

Future Internet 2018, 10, 38 2 of 18

a document [2]. Wang et al. proposed a keyword order search scheme, mainly utilizing the technique
of order preserving encryption to protect the relevance score as well as achieving the exact sort of
search results [3]. Cao et al. introduced the vector space model and the secure KNN (secure K-Nearest
Neighbor) method in which a document vector is constructed for each document, a reversible matrix is
used with document vector multiplication to encrypt the document vector and the similarity between
the index vector and the search vector inner product is calculated to achieve multiple keyword ranked
search over encrypted data in the cloud [4].

The above solutions only support the exact keyword search over encrypted data. However,
it is common to see typos and misspellings in practical scenarios, making it necessary to develop
solutions that can handle this issue in real applications. Li et al. proposed a wildcard-based fuzzy set
construction method that takes wildcards into consideration in the formation of a fuzzy set whose size
may be drastically large [5]. Suresh also proposed a fuzzy set construction method based on Grams
with more space efficiency [6] in which a symbolic index tree is used to improve the efficiency of search.
Liu et al. improved the above method by constructing a dictionary-based fuzzy set to reduce the size
of index [7], but the method suffers from the problem of search accuracy. Wang et al. later proposed to
use wildcard and index tree to make fuzzy search more efficient [8]. Afterwards, the verifiable fuzzy
search scheme was improved by extracting the path information of the index tree structure. However,
to find the most similar keywords, both schemes need to construct a fuzzy keyword set, which not
only incurs heavy computation load and communication overhead, but also costs a large amount of
storage space in the cloud servers. Besides, these schemes can only sort the search results by editing
distance with rough results without being able to return accurate search results.

Compared to the single user model, the multi-user models for searchable encryption have become
more practical in actual cloud storage environments because they allow more than one authorized users
to share data files that are outsourced to the cloud. Zirtol et al. proposed a multiple user searchable
encryption scheme based on the general access structure [9] that allows any user to add encrypted data
to the outsourced database and any authorized user to retrieve and decrypt cipher-texts. Li and Chen
proposed a searchable encryption scheme based on mixed structure, which could provide accurate
keyword retrieval and fine-grained access control on encrypt data [10]. However, the scheme makes it
possible for the server to obtain keyword information, which is not regarded as a secure practice.

In this paper, we propose a fuzzy keyword search scheme for the scenarios of multiple servers
and multiple users that has the property of preserving security and privacy of data. Our contribution
in this work can be summarized as follows:

• The proposed multiple server searchable encryption scheme can provide the functionality of
cipher-text retrieval for multiple servers. Compared to the single server model, our method can
offer the capability of processing big data while securing data in the cloud.

• The proposed scheme provides more flexible control of user access rights on cipher-text files.
Access rights of different users on the same file are not required to be the same. Moreover,
the scheme supports dynamic updating of user access rights to provide better security over shared
data in the cloud.

• The proposed scheme can reduce the complexity of Min-Hash by eliminating the construction
of the fuzzy keyword set by performing fuzzy keyword search using Min-Hash fingerprints.
The scheme utilizes Jaccard similarity to order the results of retrieval, which not only reduces the
amount of calculation for similarity, but also lowers the space overhead to achieve high efficiency
of retrieval.

• Through constructing an efficient fuzzy keyword index tree, the proposed scheme uses the
Min-Hash to generate the fingerprint index for the keywords without having to set the index
storage space and define dictionary library in advance, which greatly reduces the complexity of
search and saves a lot of storage space.

Future Internet 2018, 10, 38 3 of 18

The rest of this paper is organized as follows. Section 2 introduces some related work on searchable
encryption. Section 3 describes the proposed scheme, which includes the system model, the design
goal, and a detailed description of the scheme. Section 4 contains the security analysis and provides
the experiment results of the proposed scheme. Finally, Section 5 concludes the paper.

2. Related Work

Song et al. were among the first who put forward the notion of searchable encryption and
proposed the encrypted keyword search scheme (SWP scheme) based on symmetric cryptography,
which caught the attention of the academic community on the research of searchable encryption
technology. In the SWP scheme, each word in the files is encrypted in a double encryption fashion
using a specially designed structure. Whenever a user wants to search a file, the cipher-text of the
keywords should be generated and sent to the server. Through scanning and contrasting the cipher-text
using the encrypted keywords, the server can confirm the authentic keywords and count the number
of occurrences. Thus, the overhead of search is proportional to the size of the database, causing the
efficiency to be low.

Goh et al. proposed a scheme to improve the efficiency of encrypted search that uses the Bloom
classifier to perform screen and preprocess for the encrypted search [11]. The scheme would construct
a Bloom classifier through keyword index and use the classifier as the filter during preprocessing.
Through a series of Hash operations, some invalid query thresholds can be excluded, thus avoiding
invalid thresholds from complicated encrypted queries. The computational complexity of a search in
the scheme can be reduced to be in direct proportion to the number of encrypted files. In addition,
the security definition of IND-CKA (adaptive Chosen Keyword Attack) was also provided in the work.
Chang et al. proposed a scheme that is very similar to the above scheme without using the Bloom
filter [12].

Curtmola et al. improved the definition of security by considering the trapdoor issues and used
the inverted index for the first time to improve the efficiency of retrieval [13]. In this scheme, a hash
index table is set up for the entire encrypted files each record of which contains the trapdoor keyword
information and the corresponding encrypted file address set that contains the keyword. The cost of
retrieval was shown to be reduced to be proportional to the number of keywords, not the number
of files in the database. Besides, the SSE-2 scheme proposed in the work could support multi-user
search, but only the data owners are allowed to upload encrypted data. Curtmola et al. also proposed a
method for symmetric searchable encryption. Through using a pseudo-random function and an array
structure, the scheme would construct a new file index structure to optimize the query mechanism and
provide fast retrieval of encrypted data.

The development of public key cryptography has helped keyword search to meet new
requirements for applications. Boneh developed a public key-based keyword search scheme (PEKS),
defined the corresponding security model, successfully proved the security of the scheme, and applied
the encryption search technology in public key cryptosystems [14]. Li et al. proposed a scheme based
on BF-IBE, a public key encryption with keyword index and the trapdoor retrieval through the linear
Hash function, and showed that the method could resist keyword attacks during query processing [15],
ensuring that it is not possible for the server to obtain any information about the encrypted keyword
through using Hash as well as the bilinear function.

It should be noted that the public key encryption with keyword search scheme introduced above
is designed for single user environments. The user, as the owner of the data, owns the private key of
the query and only the user can query the encrypted database stored in the server. In the cloud data
sharing model, since data owners can authorize other users to share data resources, it would be too
hard for single users to manage user access privileges in such encrypted keyword search schemes.
There is thus the need to develop multi-user encryption search schemes that would allow dynamic
authorization or revocation of user access privileges. In recent years, some research has been done on
the development of multiple user encryption key search schemes in the cloud environment [16] that

Future Internet 2018, 10, 38 4 of 18

can support multi-user encryption keyword search through using linear pair and proxy re-encryption
technologies. Yang et al. introduced the idea of proxy re-encryption into public key searchable
encryption and used query trapdoor conversion on the server side to allow multiple users to perform
keyword query through query trapdoor generated by different keys [17]. A user authorization and
revocation system was also designed. The multiple keyword search was mostly focused on the logic
with connectives support. Bijral et al. proposed a ranking search algorithm that can also protect privacy
through encrypting the frequency of keywords using an order preserving encryption algorithm [18].

To improve the utilization of data, Li et al. proposed a fuzzy keyword search scheme that can still
return relevant data in case that the user input had minor errors or format inconsistencies [19].
The scheme makes use of two fuzzy set construction methods based on grams and wildcards,
respectively, and defines the similarity between keywords based on the edit distance. Wang et al.
performed further research on fuzzy keyword search with formal proof of security [20].

Due to security and performance considerations, it has become increasingly likely that the owner
of big data wants to spread massive amount of data across multiple cloud servers, making it necessary
to develop solutions for the multi-server model. This paper will propose a fuzzy keyword search
scheme for multiple servers and multiple users that can preserve the security and privacy and, at the
same time, improve the efficiency of data retrieval.

3. The Proposed Fuzzy Keyword Search Scheme Based on MinHash

3.1. Preliminaries

LSH (Locality Sensitive Hashing) was first proposed by Indyk et al [21] to solve the problem of
approximate nearest neighbor search. The basic idea is to generate the same hash key value for the
points that are close in terms of their distance in the dataset. It has been shown that LSH algorithm has
the obvious advantages of lowering the consumption of space and improving the efficiency of query
processing compared to other schemes. The LSH method can thus help to return approximate nearest
neighbor query results quickly in a probabilistic way, ensuring the accuracy of query results as well as
the efficiency in terms of space and time.

LSH provides an effective way of retrieving one or more data points that are adjacent to the query
data point in a massive and high dimensional dataset. LSH can not only find the most adjacent data
to the query point while minimizing the number of data points that need to be matched, but also
ensure a high probability of finding the nearest neighbor data points. As one of the most commonly
used methods of LSH, the MinHash algorithm uses Jaccard similarity as a measurement standard to
detect the similarity of two objects. The higher the Jaccard similarity, the more similar the two objects.
In addition, the smaller the distance between two objects, the greater the possibility that two objects
belong to the same class. Traditional methods are not very efficient in measuring the similarity between
two datasets with a large number of elements, i.e., the dimension of the feature space is very large.
In such cases, MinHash can deal with the problem with great efficiency.

3.1.1. Jaccard Similarity

Jaccard similarity, also known as Jaccard coefficient, is a measure of similarity based on the metrics
of distance [22]. The definition of Jaccard coefficient is as follows:

Definition 1 (Jaccard coefficient). Given two finite sets A and B, the Jaccard coefficients of A and B J(A, B)
is defined by the following equation:

J(A, B) =|A∩B|/|A∪B| (1)

As can be seen in Equation (1), the Jaccard similarity of sets A and B is equal to the number of
common elements of the two sets divided by the total number of elements in them. It is clear that
Jaccard similarity falls into the range [0, 1].

Future Internet 2018, 10, 38 5 of 18

Definition 2 (Jaccard coefficient). Jaccard similarity (A, B) can convert to Jaccard distance using the
following equation:

Jaccard Distance (A, B) = 1 − J(A, B) (2)

It is thus clear from Equation (2) that the bigger the Jaccard similarity, the more similar the two
objects that are involved and the smaller the distance between the two objects.

To derive the similarity of object sets, we can use a feature matrix in which each column represents
a set and each row expresses the same element of all the object sets. If an element appears in the
corresponding row of a set, then the value of the row is set to 1, otherwise, it is set to 0. For example,
for the set S = {a, b, c, d, e} in which the four object sets are S1 = {a, d}, S2 = {c}, S3 = {b, d, e} and
S4 = {a, c, d}, the matrix of the four object sets is shown in Table 1.

Table 1. The feature matrix of four object sets.

Element S1 S2 S3 S4

a 1 0 0 1
b 0 0 1 0
c 0 1 0 1
d 1 0 1 1
e 0 0 1 0

Using Equation (1), the Jaccard similarity of sets S1 and S4 is 2/3 in the above example.

Definition 3 (MinHash Signature). Given a random sequence A of n elements, the MinHash signature
hmin(A) of the sequence is defined as follows:

hmin(A) = min︸︷︷︸
j∈A

π(j) (3)

Definition 4 (MinHash Function). Given two finite sets A and B, the probability that the two sets have the
same value of MinHash is defined as:

Pr{hmin(A) = hmin(B)} = J(A, B) (4)

In applications, the MinHash function generates multiple hash for the target items so that similar
items are more likely to hash into the same bucket than dissimilar ones. Moreover, if a document with
at least one element being hashed into the bucket is considered to be a candidate, similarity between
candidates can be examined to find similar documents in the candidate set.

For two sets A and B, hmin(A) = hmin(B) means that any element with its MinHash value in A∪B
is also in A∩B. The hypothesis is that h(x) is a good Hash function if it has good homogeneity since
it can map different elements to different integers. Therefore, the similarity of sets A and B is the
same as the probability that the MinHash values of A and B are the same after passing through the

Hash. Furthermore, the probability that they become the candidate pair is 1− (1− SL)
K

, where S is
the Jaccard similarity of sets A and B.

3.1.2. Order Preserving Encryption

Order preserving encryption (OPE) [23] is a kind of encryption that would keep the encrypted data
elements in the same sequential order as that of the original data elements before encryption. With OPE,
comparison of ciphertext data can be realized. For example, if a < b, then OPE(k, a) < OPE(k, b),
where k is the key used for the encryption.

Future Internet 2018, 10, 38 6 of 18

3.1.3. Definition of Parameters

Following are a list of parameters that will be used throughout our discussion.

F = (f1, f2, . . . , fk): the set of plaintext documents;
U = (u1, u2, ..., um): the group of authorized users;
C = (c1, c2, . . . , ck): the set of ciphertext documents corresponding to F;
W = (w1, w2, . . . , wn): the set of keywords extracted from F;
FIDt = (FID1, FID2, . . . , FIDt): the set of identifiers for a document;
Si: the fingerprint of keywords wi;
Score: the score of the correlation degree of keywords;
IDwi : the set of addresses for a document that contains the keyword wi;
Tw: the trapdoor of the keyword w;
∆ = {αi}: a predefined set of symbols, where |∆| = 2n and each symbol can be expressed by n bits;
GW: the index tree that contains all the fuzzy keywords;
h(hk, •): one-way hash function using key hk;
(sk, •): the symmetric encryption algorithm using key sk;
OPE(ek, •): an order-preserving encryption function using key ek;
D(w) = {id(Di)|w ∈ Di,1 ≤ i ≤ n}: the collection of IDs of all the documents containing the
keyword w.

3.2. The System Model

In our proposed model, searchable encryption involves four different parties, as illustrated in
Figure 1: the data owner, the authorized user, the server S and the cloud servers S1, S2, . . . , SN.
The data owner encrypts data before uploading it into the cloud as well as authorizes users to retrieve
it. After authorization, the user can retrieve the corresponding cipher-text files according to keywords.
The server S is dedicated to store the index after the data owner encrypts it while providing partial
retrieval services to the user. The cloud servers S1, S2, . . . , SN store the cipher-text files uploaded by
the data owner and the cipher-text index by the server S after re-encryption while providing retrieval
services to the user.

Future Internet 2018, 10, x FOR PEER REVIEW 6 of 18

FIDt = (FID1, FID2, …, FIDt): the set of identifiers for a document;
Si: the fingerprint of keywords wi;
Score: the score of the correlation degree of keywords; ID : the set of addresses for a document that contains the keyword wi;
Tw: the trapdoor of the keyword w;
Δ = {αi}: a predefined set of symbols, where |Δ| = 2n and each symbol can be expressed by n bits;
GW: the index tree that contains all the fuzzy keywords;
h(hk, •): one-way hash function using key hk;
(sk, •): the symmetric encryption algorithm using key sk;
OPE(ek, •): an order-preserving encryption function using key ek;
D(w) = {id(Di)|w ∊	Di,1 ≤ i ≤ n}: the collection of IDs of all the documents containing the keyword

w.

3.2. The System Model

In our proposed model, searchable encryption involves four different parties, as illustrated in
Figure 1: the data owner, the authorized user, the server S and the cloud servers S1, S2, …, SN. The
data owner encrypts data before uploading it into the cloud as well as authorizes users to retrieve it.
After authorization, the user can retrieve the corresponding cipher-text files according to keywords.
The server S is dedicated to store the index after the data owner encrypts it while providing partial
retrieval services to the user. The cloud servers S1, S2, …, SN store the cipher-text files uploaded by the
data owner and the cipher-text index by the server S after re-encryption while providing retrieval
services to the user.

Figure 1. The system model.

Assume that the cloud servers are honest-but-curious, i.e., they will carry out search operations
correctly but, nonetheless, are considered to pose threats to data security and privacy. Also assume
that the number of authorized users is n, i.e., U = {u1, u2, ..., un}, and the number of files uploaded into
the cloud is k, i.e., F = {f1, f2, ..., fk}. To provide the functionality of protecting the security of the data,
a set of keywords W = {w1, w2, …, wp} are extracted from the set of files before they are uploaded. In
addition, fingerprint Si of keyword wi is used to construct an index I through the keyword fingerprint
generation algorithm based on the MinHash technique. The set of encrypted files and the index I are
eventually uploaded onto the cloud servers. The set of encrypted files are divided into N portions
according to certain rules and stored on the servers S1, S2, …, SN, respectively.

An authorized user would get the key of trapdoor provided by the data owner, generate the
fingerprint of the keyword for a query and then construct the keyword trapdoor Tw before presenting
it to the cloud server. To improve the accuracy of search, the cloud server needs to sort the search
results. To save bandwidth, an authorized user can upload an integer k together with Tw to the cloud

Figure 1. The system model.

Assume that the cloud servers are honest-but-curious, i.e., they will carry out search operations
correctly but, nonetheless, are considered to pose threats to data security and privacy. Also assume
that the number of authorized users is n, i.e., U = {u1, u2, ..., un}, and the number of files uploaded
into the cloud is k, i.e., F = {f1, f2, ..., fk}. To provide the functionality of protecting the security of

Future Internet 2018, 10, 38 7 of 18

the data, a set of keywords W = {w1, w2, . . . , wp} are extracted from the set of files before they are
uploaded. In addition, fingerprint Si of keyword wi is used to construct an index I through the keyword
fingerprint generation algorithm based on the MinHash technique. The set of encrypted files and the
index I are eventually uploaded onto the cloud servers. The set of encrypted files are divided into N
portions according to certain rules and stored on the servers S1, S2, . . . , SN, respectively.

An authorized user would get the key of trapdoor provided by the data owner, generate the
fingerprint of the keyword for a query and then construct the keyword trapdoor Tw before presenting
it to the cloud server. To improve the accuracy of search, the cloud server needs to sort the search
results. To save bandwidth, an authorized user can upload an integer k together with Tw to the cloud
server for it to return the most relevant top-k cipher-text files. Finally, the authorized user can use the
key to decrypt the obtained cipher-text documents.

3.3. The Proposed Scheme

The proposed scheme focuses on the construction of encrypted search based on the MinHash
algorithm that is comprised of the following steps:

(1) Setup (k): The data owner inputs security parameter k and outputs a p-order cyclic group G
based on g. Assume that there is a one-way hash function F(·): {0,1}*→{0,1}n, a homomorphic
hash function H(·) and a hash function Z(·) for compression. Let En(·) be a packet encryption
algorithm for file encryption, Index(·) be the key index for public key encryption and E’sk(·) be
the public key encryption algorithm for digital signature. The data owner randomly selects the
master key s ∈ Z∗p and an auxiliary key s’ ∈ Z∗p, calculates h = gs and h’ = gs − s’, randomly
selects a pseudo-random function f:{0,1}k × Z∗p→ Z∗p as well as a random parameter t ∈ {0,1}k.
The data owner could then get H(x):{0,1}*→ Z∗p and H’(x):{0,1}*→ Z∗p, select a symmetric key K
for packet encryption algorithm En(·) and publish params = (G, g, p, f, H, H’, h, En(·)) to complete
the generation of the public parameters and keys.

(2) Add-user (ui): The data owner generates ui = {a1, a2, ..., ax} according to the user’s access and
sends the user table to the cloud servers S1, S2, . . . , SN, where ai is the user’s attribute.

(3) The server determines whether the user has access to the file by comparing the attributes of the
user and the attributes required to access the file, then sends (t, K, s’) to ui.

(4) BuildIndexTree (h’, W): The data owner extracts the set of keywords W = {w1, w2, . . . , wn} from
the document set F = {f1, f2, ..., fm}, uses the keyword fingerprint generation algorithm based
on MinHash, obtains the fingerprint Si corresponding to each keyword wi, that creates unique
document identifiers for each document FIDj (1 ≤ j ≤ m), where FIDwi represents the set of
identifiers for all documents containing the keyword wi.

(5) Encrypt (K, s’, t, D, W): The data owner enters the packet key K, the auxiliary key s’, the random
parameter t, file D and its keyword list W= {w1, w2, . . . , wd}, randomly selects r ∈ Z∗p, calculates
gr, h” = (h’)r and hr, and sends h” to the cloud server S. It should then calculate δi = f[t,H(wi)] and
E(wi) according to Equation (5), make I = (gr, hr, E(w1), E(w2), . . . , E(wd)), calculate C = EnK(D)
and sends I and the encrypted index structure to the cloud server S. The set of ciphertext
documents C = (c1, c2, . . . , cm) are divided into N portions according to some rules and then sent
to the cloud servers S1, S2, . . . , SN.

E(wi) = gr(s′+δi), 1 ≤ i ≤ d (5)

(6) S-Encrypt(I): The server S executes the algorithm to re-encrypt the index I, enters index I and h”,
calculates E’(wi) according to Equation (6) and I’ = (gr, hr, E’(w1), E’(w2), . . . , E’(wd)), calculates
H’[E(w1)], H’[E(w2)], . . . , H’[E(wd)] to replace the corresponding keywords, and sends the newly
generated keyword index structure to the cloud server S1, S2, . . . , SN.

E′(wi) = gr(s′+δi)·h′′ = (h·gδi)
r
, 1 ≤ i ≤ d (6)

Future Internet 2018, 10, 38 8 of 18

(7) Trapdoor (s’, t, w1′ , w2′ , . . . , ww’): The authorized user enters s’, t and keywords w1′ , w2′ ,
. . . , ww’ to be retrieved, randomly selects t” ∈ Z∗p and calculates Y = (gr)t”. For each keyword
wi to be searched, the user calculates the fingerprint value of the keyword wi by using the
keyword fingerprint generation algorithm MinHash (s’, wi), which is the trapdoor Ti, 1 ≤ i ≤ w.
The trapdoor T = (T1, T2, ..., Tw, Y) is sent to the server S.

(8) Search (T, I, C): After the cloud server S receives the search request from the authorized user,
it enters h”, calculates the Jaccard distance of the fingerprint Si in the trapdoor T and index Iwi

and sends I” to servers S1, S2, . . . , SN. Then, server Sj (j = 1, 2, . . . , N) calculates m = A(ui)∩A(fx)
according to Jaccard similarity to query file access table of fx and ui in user table. If m ≥ Xi, fx will
be added to the result, otherwise ui has no access. Sj would continue searching for files with high
similarity and, when the process completes, send the accessed files to the cloud server S. All the
other n-1 servers repeat the same work in parallel. Server S will send the top-t (1 ≤ t ≤ k) files to
the authorized user or “could not find relevant documents” to the user.

(9) Decrypt (K, C’): The authorized user inputs the packet key K and the received ciphertext C’ and
decrypts the top-t ciphertext documents to recover the plaintext files.

3.4. Implementation of the Algorithm

3.4.1. Keyword Fingerprint Generation Based on MinHash

The traditional MinHash algorithm can be used to generate a fingerprint for each document,
making it suitable only for applicable document query scenarios. For information retrieval, the use of
keywords to query documents has become more common. Therefore, the MinHash algorithm needs to
be improved so that it can be used to generate more than one fingerprints for keywords. To extract
more than one feature for each keyword, the following scheme makes use of the n-gram method to
process keywords. In addition, since the traditional MinHash algorithm is mainly used in the plaintext
data, only ordinary hash functions are used. Since our proposed scheme is to be applied to encrypted
data, to improve the security of the scheme, this paper uses a keyed one-way hash function h (hk, ·)
instead. The specific steps of generating a keyword fingerprint based on MinHash are as follows:

(1) Input the keyword w that needs to be processed and initialize both τ-dimensional vectors V and
S to 0 in which the value of the δi is the same as the number of finger of hash value generated by
hash function h.

(2) Process the keyword w by n-gram to obtain multiple features of the keyword. In this scenario,
to get more accurate search results, keywords need to be divided as much as possible, i.e., n = 2.
For example, when w is encrypted, after 2-gram processing, gramset = {en, nc, ry, yp, pt} is
obtained, where each element in gramset is a feature of the keyword w.

(3) Use keyed one-way hash function h to calculate a hash value for each element in the gramset to
protect the privacy of keywords and indexes. Hash function h can be Hmac-SHA1 or Hmac-MD5.
Different hash functions will generate hash values of different sizes, which will affect the accuracy
of the final search and the large the size, the more accurate the search.

(4) Map the hash values of these elements into vector V one by one in which if the i-th bit of the hash
value is 1, the i-th bit of the vector V gets incremented by 1 and if the i-th bit of the hash value is
0, the i-th bit of the vector V gets decremented by 1.

(5) Finally, map vector V into vector S in which if the i-th bit of vector V is no less than 0, the value of
the i-th bit of vector S is set to 1 and if the i-th bit of vector V is less than 0, the value of i-th bit of
vector S is set to 0.

(6) Output S as the fingerprint of the keyword.

An example of using the above algorithm is illustrated in Figure 2:

Future Internet 2018, 10, 38 9 of 18

Future Internet 2018, 10, x FOR PEER REVIEW 8 of 18

other n-1 servers repeat the same work in parallel. Server S will send the top-t (1 ≤ t ≤ k) files to
the authorized user or “could not find relevant documents” to the user.

(9) Decrypt (K, C’): The authorized user inputs the packet key K and the received ciphertext C’ and
decrypts the top-t ciphertext documents to recover the plaintext files.

3.4. Implementation of the Algorithm

3.4.1. Keyword Fingerprint Generation Based on MinHash

The traditional MinHash algorithm can be used to generate a fingerprint for each document,
making it suitable only for applicable document query scenarios. For information retrieval, the use
of keywords to query documents has become more common. Therefore, the MinHash algorithm
needs to be improved so that it can be used to generate more than one fingerprints for keywords. To
extract more than one feature for each keyword, the following scheme makes use of the n-gram
method to process keywords. In addition, since the traditional MinHash algorithm is mainly used in
the plaintext data, only ordinary hash functions are used. Since our proposed scheme is to be applied
to encrypted data, to improve the security of the scheme, this paper uses a keyed one-way hash
function h (hk, ∙) instead. The specific steps of generating a keyword fingerprint based on MinHash
are as follows:

(1) Input the keyword w that needs to be processed and initialize both τ-dimensional vectors V
and S to 0 in which the value of the δi is the same as the number of finger of hash value
generated by hash function h.

(2) Process the keyword w by n-gram to obtain multiple features of the keyword. In this scenario,
to get more accurate search results, keywords need to be divided as much as possible, i.e., n =
2. For example, when w is encrypted, after 2-gram processing, gramset = {en, nc, ry, yp, pt} is
obtained, where each element in gramset is a feature of the keyword w.

(3) Use keyed one-way hash function h to calculate a hash value for each element in the gramset to
protect the privacy of keywords and indexes. Hash function h can be Hmac-SHA1 or Hmac-
MD5. Different hash functions will generate hash values of different sizes, which will affect the
accuracy of the final search and the large the size, the more accurate the search.

(4) Map the hash values of these elements into vector V one by one in which if the i-th bit of the
hash value is 1, the i-th bit of the vector V gets incremented by 1 and if the i-th bit of the hash
value is 0, the i-th bit of the vector V gets decremented by 1.

(5) Finally, map vector V into vector S in which if the i-th bit of vector V is no less than 0, the value
of the i-th bit of vector S is set to 1 and if the i-th bit of vector V is less than 0, the value of i-th
bit of vector S is set to 0.

(6) Output S as the fingerprint of the keyword.

An example of using the above algorithm is illustrated in Figure 2:

Figure 2. Key word fingerprint generation and comparison. Figure 2. Key word fingerprint generation and comparison.

3.4.2. The Search Algorithm

Figure 2 also illustrates the principle of fuzzy search based on MinHash keyword fingerprints.
Assume that the user needs to retrieve keyword w = encrypt. Due maybe to the carelessness of the user,
the keyword that is actually entered is w’ = encript, i.e., y is misspelled as i. Using the traditional hash
algorithm, any difference between two keywords will result in two completely different hash values.
Using the keyword fingerprint generation algorithm, however, since the keywords have undergone
n-gram processing, the value of the keyword fingerprint is determined by a plurality of elements
in the gramset. When the user misspells one letter, only two out of the six elements in the gramset
are changed, i.e., ry becomes ri and yp becomes ip. Although the hash values of the two elements
result in differences (dotted box in Figure 2), since the fingerprint is derived from mapping the hash
values of six elements, the other four unaltered elements play a dominant role in the value of the
fingerprint. Therefore, the Jaccard distance between the fingerprint of the misspelled keyword and
that of the correct keyword is smaller than the fingerprint of other irrelevant keywords. Using this
technique, the user can search for the correct keyword by comparing the Jaccard distance between
the fingerprints even in the case of some misspellings. As can be seen in Figure 2, since the Jaccard
distance between fingerprints S1 and S2 through calculation is 2, it can be determined that the keyword
“encrypt” corresponding to fingerprint S1 could be a keyword that the user can use to do the search.
During the search phase, the cloud server will also calculate the Jaccard distance Jwi

of the fingerprint
trap gate Tw and the index Si in the index Iwi = {Si, FIDwi} according to the same principle. Therefore,
according to Jaccard distance Jwi

, the set of top-k ciphertext documents C’ = (c1, c2, . . . , ck) are returned
to the user.

3.5. A New Retrieval Method

To further expand this scheme and make it suitable for large datasets, this paper proposes to
construct a fingerprint index tree GW to improve the efficiency of search, as shown in Figure 3. When an
index tree is built, the root node is generated first, which is a set that is empty. Then, the fingerprint
Si of the keyword wi ∈W is calculated. If Si is τ bits in length, Si can be divided into τ/λ segments
with each segment being expressed using αρ, a binary bit stream of length λ. Si can thus be expressed
as α1α2· · ·ατ/λ and each αρ represents a node. When αρ is a leaf node, {FIDij, OPE(ek, Scoreij)} is
inserted in the leaf node. Each path from the root node to the leaf node represents the fingerprint Si of
a keyword. The above operation is performed for each keyword until a complete fingerprint index
tree is constructed.

Future Internet 2018, 10, 38 10 of 18

Future Internet 2018, 10, x FOR PEER REVIEW 9 of 18

3.4.2. The Search Algorithm

Figure 2 also illustrates the principle of fuzzy search based on MinHash keyword fingerprints.
Assume that the user needs to retrieve keyword w = encrypt. Due maybe to the carelessness of the
user, the keyword that is actually entered is w’ = encript, i.e., y is misspelled as i. Using the traditional
hash algorithm, any difference between two keywords will result in two completely different hash
values. Using the keyword fingerprint generation algorithm, however, since the keywords have
undergone n-gram processing, the value of the keyword fingerprint is determined by a plurality of
elements in the gramset. When the user misspells one letter, only two out of the six elements in the
gramset are changed, i.e., ry becomes ri and yp becomes ip. Although the hash values of the two
elements result in differences (dotted box in Figure 2), since the fingerprint is derived from mapping
the hash values of six elements, the other four unaltered elements play a dominant role in the value
of the fingerprint. Therefore, the Jaccard distance between the fingerprint of the misspelled keyword
and that of the correct keyword is smaller than the fingerprint of other irrelevant keywords. Using
this technique, the user can search for the correct keyword by comparing the Jaccard distance
between the fingerprints even in the case of some misspellings. As can be seen in Figure 2, since the
Jaccard distance between fingerprints S1 and S2 through calculation is 2, it can be determined that the
keyword “encrypt” corresponding to fingerprint S1 could be a keyword that the user can use to do
the search. During the search phase, the cloud server will also calculate the Jaccard distance J of
the fingerprint trap gate Tw and the index Si in the index I = {S , FID } according to the same
principle. Therefore, according to Jaccard distance J , the set of top-k ciphertext documents C’ = (c1,
c2, …, ck) are returned to the user.

3.5. A New Retrieval Method

To further expand this scheme and make it suitable for large datasets, this paper proposes to
construct a fingerprint index tree GW to improve the efficiency of search, as shown in Figure 3. When
an index tree is built, the root node is generated first, which is a set that is empty. Then, the fingerprint
Si of the keyword wi ∈ W is calculated. If Si is τ bits in length, Si can be divided into τ/λ segments
with each segment being expressed using αρ, a binary bit stream of length λ. Si can thus be expressed
as α1α2�ατ/λ and each αρ represents a node. When αρ is a leaf node, {FIDij, OPE(ek, Scoreij)} is inserted
in the leaf node. Each path from the root node to the leaf node represents the fingerprint Si of a
keyword. The above operation is performed for each keyword until a complete fingerprint index tree
is constructed.

Figure 3. Illustration of the fingerprint index tree. Figure 3. Illustration of the fingerprint index tree.

There are now two issues to consider. The first issue is that the simple equivalence comparison
following a traditional index tree traversal method would stop as soon as the value of the compared
node is different from the expected one. This obviously cannot be used for comparing Jaccard distances,
neither can it be for comparing the similarity of two sets. The second issue is that if the fingerprint of a
keyword and the Jaccard distance need to be calculated, traversal of the index tree needs to get to the
leaf node. Therefore, if all the Jaccard distances need to be determined, traversal of the entire index
tree is required, which would hardly achieve the original goal for building an index tree to improve
efficiency. To achieve the goals of not necessarily traversing the whole index tree and comparing
Jaccard distances, this paper proposes a new traversal method based on the characteristics of Jaccard
distance as follows.

Phase 1:

Assume that the user wants to retrieve the most relevant k-documents. Before traversing the index
tree, the cloud server would first construct a set U of capacity k. In the initial search phase, without
any condition for decision-making, the first found leaf node can be retrieved through depth-first
search and the Jaccard distance Jwi

between the root-to-leaf node path string Si and the trapdoor TW

is calculated. The information associated with this leaf node [Jwi
,
{

FIDij , OPE(ek, Scoreij)
}
] is then

stored in U. Following the depth-first search, every leaf node will be traversed, and the associated
information of each leaf node is similarly stored in U in the order of Jwi

. When the set U is filled with k
documents, search of leaf nodes stops although the documents in U at this point are not necessarily
the final result of the search. The maximum value of Jwi

in the set U is recorded as Jmax, and execution
goes into phase 2.

Phase 2:

(1) When an intermediate node Si is reached during the traversal, the Jaccard distance Ĵ between the
path from the root node to Si and Tw is compared. If Ĵ > Jmax, it implies that continuing the search
from Si to all the nodes beneath it will only return documents that are no more relevant than the
documents in the current U. Therefore, no node after Si will be traversed. Traversal of the index
tree will continue only when Ĵ ≤ Jmax.

(2) If a leaf node is reached in the traversal, it must be the case that Ĵ ≤ Jmax, meaning that the Jaccard
distance calculated for the leaf node is less than or equal to the Jaccard distance Jmax of U. If Ĵ = Jmax,
the content of U is not changed. If Ĵ < Jmax, information [Jwi

,
{

FIDij , OPE(ek, Scoreij)
}
] associated

with the leaf node has a higher correlation than information [Jmax,
{

FIDij , OPE(ek, Scoreij)
}
]

Future Internet 2018, 10, 38 11 of 18

associated with Jmax stored in the U. Then, information [Jwi
,
{

FIDij , OPE(ek, Scoreij)
}
] will be

entered into U in an increasing order. This will result in a less relevant document to be remove
from U, maintaining k documents in it. For the new set of documents in U, Jmax is reset,
and traversal continues until all the leaf nodes are covered. It is very clear that following
this method, some parts of the entire index tree will not be traversed, saving some traversal
operations as well as time. The efficiency of search is therefore improved, which is very significant
for massive datasets. Algorithm 1 is the pseudo-code of the search method.

Algorithm 1. The New Method for Fingerprint Index Tree Retrieval

Input: a: fingerprint index tree GW

b: search for trapdoor TW

Output: a sorted top-k ciphertext document C′ = (c1, c2, . . . , ck)
Step 1: Initialize the set U of capacity k to be null
Step 2: WHILE (the number of documents in U is less than k)

Calculate the Jaccard distance Jwi
between the Si and the trapdoor Tw

Document is inserted in U in an increasing order of the values of Jwi

END WHILE
Step 3: Assign the maximum value of Jwi

in U to Jmax

Step 4: FUNCTION SearchTree(a)
Access node a
B = the first child node of node a
WHILE (b exists)
Calculate the Jaccard distance Jwi

between the Si and the trapdoor Tw

Let Ĵ = [Jwi
,
{

FIDij , OPE(ek, Scoreij)
}
]

IF b has not been accessed & Ĵ ≤ Jmax

IF b is a leaf node & Jwi
< Jmax

Node b is inserted in U in an increasing order of the values of Jwi

Assign the maximum value of the Jwi
in U to Jmax

ELSE SearchTree(b)
END IF

END IF
B = the next child node of node a

END WHILE
END FUNCTION

Step 5: FOR each FIDij ∈ U
Sort Jwi

as well as OPE(ek, Scoreij) from small to large
Get FID′ = (FID1, FID2, . . . , FIDk)

END FOR
Step 6: Find cipher document set C′= (c1, c2, . . . , ck) that correspond to FID′ = (FID1, FID2, . . . , FIDk)
Step 7: RETURN C′ = (c1, c2, . . . , ck)
Step 8: DECRYPTION C′ = (c1, c2, . . . , ck)

3.6. Authorization and Revocation User Privileges

Before performing an encrypted search, the user needs to be authorized by the data owner.
For user UL, the data owner randomly selects a key SKUL ∈ Z∗p and assigns it to the user as the
query key. The user generates a re-encryption key RKUL→DO and transmits the user ID UL and the
re-encryption key over a secret channel to the cloud server S. The authorized user UL generates a
legal query threshold based on SKUL and uses the re-encryption key RKUL→DO to re-encrypt the query
threshold to carry out the query correctly.

RKUL→DO =g
SKDO
SKUL (7)

Future Internet 2018, 10, 38 12 of 18

If the data owner wants to revoke the query permission of user UD, it needs to send the user’s
identity UD and revocation command to the cloud server S. S deletes the necessary attributes, complete
legal re-encryption thresholds and query operations.

4. Security and Performance Analysis

In this section, we mainly analyze the performance as well as the security of the proposed scheme.

4.1. Security Analysis

Theorem 1. If DDH is established, no attacker can launch keyword attacks to destroy the system.

Proof. If attacker A (a cloud storage server) wins the game IND-CKA with a non-negligible probability,
then challenger C can use attacker A to solve challenge DDHP with an ignorable probability. Challenger
C can challenge the game in the following steps:

• System establishment: Select DDHP parameters h1 = ga, h2 = gb, h3 = gc, pseudo-random functions
f: {0,1}k × Z∗p→Z∗p and random parameters t ∈ {0,1}k. Select hash function H(x):{0,1}*→ Z∗p and
calculate h = h1 = ga, and params = (G,g,p,f,h,H) is used as the public parameter.

• Query before challenge: Attacker A asks challenger C for ciphertext index of keywords list
Wi =

{
w′1, w′2, · · · , w′m

}
. Challenger C sends Wi to A after encryption. For the encryption,

challenger C randomly selects r ∈ Z∗p, calculates gr and hr, ∀ w′j ∈ Wi, 1 ≤ j ≤ m, calculates

δ′j = f[t, H(w′j)], E(w′j) = (h·gδ′j)
r
, outputs I = (gr,hr,E(w′1),E(w′2), . . . ,E(w′m)) and sends I to A.

• Challenge: Attacker A randomly selects two keywords w′0 and w′1 that have not been inquired
by challenger C and sends them to C. Challenger C randomly selects t′ ∈ {0,1}, calculates

δ′t′ = f[t, H(wt′)], randomly selects r′ ∈ Z∗p, calculates E(w′t′) = (h3·h
δ
′′
t′

2)
r′

, outputs the encrypted

index It′ = (hr′
2 , hr′

3 , E(w′t′)) of w′t′ and returns it to A.
• Query after challenge: Challenger C can adaptively choose the ciphertext index of query keywords

for attacker A, but cannot query the ciphertext index of keywords w′0 and w′1 and the number of
queries takes polynomial times of k.

• Output: Attacker A outputs conjecture bA ∈ {0,1} on B in ciphertext index Ib. If bA = b,
i.e., the A is said to have guessed the correct answer and won the game, C answers c = ab
in DDHP challenge; otherwise, if A failed, C answers c 6= ab. If c = ab, the ciphertext index

It′ = (hr′
2 , hr′

3 , (h3·h
δ′t′
2)

r′

) = (gbr′ , hbr′ , (h·gδ′t′)
br′
) of keywords w′t′ is a correct keyword ciphertext,

here h = h1 = ga, h3 = gc = hb. If c 6= ab, It′ must be the ciphertext of the correct keywords list,
so there will be c = ab. If c 6= ab, A does not have a chance to win the game.

In a word, if A wins, challenger C can solve the DDHP challenge with a non-negligible
probability. Therefore, if the DDH hypothesis in the group G1 is established, the scheme satisfies
IND-CKA security. �

In addition, the file uses a symmetric encryption algorithm (such as DES or AES) to protect
confidentiality. The keywords are encrypted through pseudo-random function fk and random
parameter t. Since the attacker does not know t, it cannot know any information of the plaintext
even if the keyword ciphertext is obtained, making the generated trapdoor safe. Finally, since the file
index and the file itself are stored separately in servers S and S1, S2, . . . , SN, as the server retrieves each
keyword separately, the server does not get any more information than the retrieval results (such as
which keywords are included in the ciphertext). Besides, in the algorithm Search(·), a secure multiparty
computing protocol can be designed so that even if servers S1, S2, . . . , SN send the cipher-text to server
S after encrypting the maximum value of each obtained dataset using the protocol, S can still compare
the maximum value through a secure multiparty computing protocol. However, it is still possible for

Future Internet 2018, 10, 38 13 of 18

server S to know the specific values from the servers. Therefore, in the multiple server model, the data
stored in the cloud is not less secure than the single server model.

4.2. Performance Analysis

We performed some experiment to test the performance of the proposed scheme on some actual
datasets that we obtained from http://www/cs/cmu.edu/~enron/. The experiment environment is
as follows: the operating system is 64-bit Windows 7, the CPU is an Inter(R) Core(TM) i5 (2.8 HGHz)
with 4 GB of memory. We used the Java class library of PDFBox to extract the content of the PDF
documents. The collection of keywords is formed after extracting the keywords of the document title
and filtering out some stop words. In the experiment, Hmac-SHA1 was used as the one-way hash
function with 160-bit outputs. The advantages of our proposed scheme are apparent after comparing
it to the wildcard and the Gram scheme.

Figure 4 shows the comparison result on the spatial overhead, showing that with the same set of
keywords, the space cost of the fingerprint is much smaller than the ciphertext fuzzy set constructed
by the traditional methods. The advantage on space overhead only becomes more obvious as the size
of the dataset increases.
Future Internet 2018, 10, x FOR PEER REVIEW 13 of 18

Figure 4. Spatial overhead of constructing the fuzzy set.

The time consumed for constructing the keyword fuzzy set in the MinHash fingerprint is close
to the Gram method with d = 2 with the time overhead remaining at a relatively low level as shown
in Figure 5.

Figure 5. Time consumption for the construction of the finger/cipher-text fuzzy set.

The index construction time in Figure 6 shows that when the editing distance increases, the size
of the fuzzy set increases sharply, so does the index construction time in the conventional method.
When the edit distance remains the same, the fuzzy set generated by the wildcard is relatively large,
so is the index construction time. Thus, the index construction time is greatly affected by the fuzzy
set in the traditional method. However, the proposed scheme uses keyword fingerprints to construct
a fingerprint index tree, which will not be affected by the size of the fuzzy collections. In the index
construction phase, the proposed scheme calculates the key fingerprints and relevance scores, which
incurs very little time overhead while reducing the storage space and optimizing the sorting results.

Figure 7 shows multi-server search efficiency, which compares the single-server model with the
multi-server model where the number of servers is 1, 10, 50 and 100, respectively. As can be seen in
the figure, when the number of ciphertext files remains the same, the more the number of servers
participating in the search, the higher the search efficiency. Especially, as the number of files increases,
the improvement on search efficiency becomes more significant. The retrieval time does not always
decrease with the increase in the number of servers, however, since the server S needs to sort out the
retrieval results transmitted from the servers S1, S2, ..., SN before deriving the final retrieval results.
The experiment also indicates that when the number of servers is not particularly large, search for
ciphertext files in the multi-server model will result in significant improvement on efficiency as the

Figure 4. Spatial overhead of constructing the fuzzy set.

The time consumed for constructing the keyword fuzzy set in the MinHash fingerprint is close to the
Gram method with d = 2 with the time overhead remaining at a relatively low level as shown in Figure 5.

Future Internet 2018, 10, x FOR PEER REVIEW 13 of 18

Figure 4. Spatial overhead of constructing the fuzzy set.

The time consumed for constructing the keyword fuzzy set in the MinHash fingerprint is close
to the Gram method with d = 2 with the time overhead remaining at a relatively low level as shown
in Figure 5.

Figure 5. Time consumption for the construction of the finger/cipher-text fuzzy set.

The index construction time in Figure 6 shows that when the editing distance increases, the size
of the fuzzy set increases sharply, so does the index construction time in the conventional method.
When the edit distance remains the same, the fuzzy set generated by the wildcard is relatively large,
so is the index construction time. Thus, the index construction time is greatly affected by the fuzzy
set in the traditional method. However, the proposed scheme uses keyword fingerprints to construct
a fingerprint index tree, which will not be affected by the size of the fuzzy collections. In the index
construction phase, the proposed scheme calculates the key fingerprints and relevance scores, which
incurs very little time overhead while reducing the storage space and optimizing the sorting results.

Figure 7 shows multi-server search efficiency, which compares the single-server model with the
multi-server model where the number of servers is 1, 10, 50 and 100, respectively. As can be seen in
the figure, when the number of ciphertext files remains the same, the more the number of servers
participating in the search, the higher the search efficiency. Especially, as the number of files increases,
the improvement on search efficiency becomes more significant. The retrieval time does not always
decrease with the increase in the number of servers, however, since the server S needs to sort out the
retrieval results transmitted from the servers S1, S2, ..., SN before deriving the final retrieval results.
The experiment also indicates that when the number of servers is not particularly large, search for
ciphertext files in the multi-server model will result in significant improvement on efficiency as the

Figure 5. Time consumption for the construction of the finger/cipher-text fuzzy set.

http://www/cs/cmu.edu/~enron/

Future Internet 2018, 10, 38 14 of 18

The index construction time in Figure 6 shows that when the editing distance increases, the size
of the fuzzy set increases sharply, so does the index construction time in the conventional method.
When the edit distance remains the same, the fuzzy set generated by the wildcard is relatively
large, so is the index construction time. Thus, the index construction time is greatly affected by the
fuzzy set in the traditional method. However, the proposed scheme uses keyword fingerprints to
construct a fingerprint index tree, which will not be affected by the size of the fuzzy collections.
In the index construction phase, the proposed scheme calculates the key fingerprints and relevance
scores, which incurs very little time overhead while reducing the storage space and optimizing the
sorting results.

Figure 7 shows multi-server search efficiency, which compares the single-server model with the
multi-server model where the number of servers is 1, 10, 50 and 100, respectively. As can be seen in
the figure, when the number of ciphertext files remains the same, the more the number of servers
participating in the search, the higher the search efficiency. Especially, as the number of files increases,
the improvement on search efficiency becomes more significant. The retrieval time does not always
decrease with the increase in the number of servers, however, since the server S needs to sort out the
retrieval results transmitted from the servers S1, S2, ..., SN before deriving the final retrieval results.
The experiment also indicates that when the number of servers is not particularly large, search for
ciphertext files in the multi-server model will result in significant improvement on efficiency as the
number of servers participating in the search increases. This is especially the case with a large number
of documents.

Future Internet 2018, 10, x FOR PEER REVIEW 14 of 18

number of servers participating in the search increases. This is especially the case with a large number
of documents.

Figure 6. Time consumption for index construction.

Figure 7. Efficiency of retrieval with different number of servers.

Experiment was also performed to analyze different file segmentation storage methods, i.e.,
random segmentation and average segmentation, under single server model and multiple server
model. In the experiment, each file has 40 keywords and the keyword trapdoor that the user utilizes
for retrieval contains 10 keywords. Figure 8a–c show the results with 10, 50 and 100 servers,
respectively. Moreover, the number of files that are retrieved in parallel (not exceeding the trapdoor
of the number of servers) may be stored randomly on the servers (MSRD) or equally divided among
the servers (MSUD). Figure 8 shows the average value of 10 experiments.

4.3. Performance Evaluation

Performance evaluation of search results in information retrieval involves several evaluation
criteria including precision and recall [24] which are defined below. Precision = The	number	of	related	files	retrieved	by	the	systemTotal	number	of	files	returned	by	the	system (8)

Recall = The	number	of	related	files	retrieved	by	the	systemTotal	number	of	relevant	documents (9)

Figure 6. Time consumption for index construction.

Future Internet 2018, 10, x FOR PEER REVIEW 14 of 18

number of servers participating in the search increases. This is especially the case with a large number
of documents.

Figure 6. Time consumption for index construction.

Figure 7. Efficiency of retrieval with different number of servers.

Experiment was also performed to analyze different file segmentation storage methods, i.e.,
random segmentation and average segmentation, under single server model and multiple server
model. In the experiment, each file has 40 keywords and the keyword trapdoor that the user utilizes
for retrieval contains 10 keywords. Figure 8a–c show the results with 10, 50 and 100 servers,
respectively. Moreover, the number of files that are retrieved in parallel (not exceeding the trapdoor
of the number of servers) may be stored randomly on the servers (MSRD) or equally divided among
the servers (MSUD). Figure 8 shows the average value of 10 experiments.

4.3. Performance Evaluation

Performance evaluation of search results in information retrieval involves several evaluation
criteria including precision and recall [24] which are defined below. Precision = The	number	of	related	files	retrieved	by	the	systemTotal	number	of	files	returned	by	the	system (8)

Recall = The	number	of	related	files	retrieved	by	the	systemTotal	number	of	relevant	documents (9)

Figure 7. Efficiency of retrieval with different number of servers.

Future Internet 2018, 10, 38 15 of 18

Experiment was also performed to analyze different file segmentation storage methods,
i.e., random segmentation and average segmentation, under single server model and multiple server
model. In the experiment, each file has 40 keywords and the keyword trapdoor that the user utilizes for
retrieval contains 10 keywords. Figure 8a–c show the results with 10, 50 and 100 servers, respectively.
Moreover, the number of files that are retrieved in parallel (not exceeding the trapdoor of the number
of servers) may be stored randomly on the servers (MSRD) or equally divided among the servers
(MSUD). Figure 8 shows the average value of 10 experiments.

4.3. Performance Evaluation

Performance evaluation of search results in information retrieval involves several evaluation
criteria including precision and recall [24] which are defined below.

Precision =
The number of related files retrieved by the system

Total number of files returned by the system
(8)

Recall =
The number of related files retrieved by the system

Total number of relevant documents
(9)

Future Internet 2018, 10, x FOR PEER REVIEW 15 of 18

(a) (b) (c)

Figure 8. Retrieval efficiency of single server/multiple servers under different segmentation storage
mode. (a) 10 servers; (b) 50 servers; (c) 100 servers.

Figure 9 shows the average accuracy of multiple search results. As discussed before, different
hash functions generate hash values with different numbers of bits, thus affecting the accuracy of the
search results. The more the number of bits that are correct, the higher the rate of correction. From
Figure 9, it can be seen that when the number of returned documents is less than 60, Hmac-SHA1
should be used and the rate of correction of the results is close to 100%. As the number of returned
documents increases further, some of the lower-ranked documents will be returned some of which
may be irrelevant documents, causing the accuracy of search results to follow a downward trend.
Another solution is to use Hmac-MD5 as the hash function. However, since the number of bits in
Hmac-MD5 (128 bits) is less than that in Hmac-SHA1 (160 bits), Hmac-MD5 makes the generated
fingerprints incapable of better reflecting keyword characteristics. Therefore, the accuracy of the
search results when using Hmac-MD5 is lower than that using Hmac-SHA1. In both cases, however,
as the number of irrelevant documents returned increases, the accuracy rate will follow a downward
trend. This experiment demonstrates that the number of bits generated by the hash function used in
the proposed scheme will have an impact on the correction rate of the search results.

Figure 9. Evaluation of precision of search results.

Figure 10 shows the average rate of recall for multiple search results from which we can see that
in the proposed scheme that uses Hmac-SHA1 as the hash function, the recall rate rises as the number
of returned documents increases. Because it is the ratio of related documents that are returned to all
relevant documents, the recall rate is lower when the number of returned documents is small. Since
the ranking algorithm in the proposed scheme can optimize the sorted results, when the number of
returned documents reaches 90, the recall rate approaches 100%. The use of Hmac-MD5 results in a
lower recall rate as expected for a similar reason. That is, since the number of bits (128 bits) that it
generates as the message digest is less than that generated by Hmac-SH1 (160 bits), the resulting

Figure 8. Retrieval efficiency of single server/multiple servers under different segmentation storage
mode. (a) 10 servers; (b) 50 servers; (c) 100 servers.

Figure 9 shows the average accuracy of multiple search results. As discussed before, different
hash functions generate hash values with different numbers of bits, thus affecting the accuracy of
the search results. The more the number of bits that are correct, the higher the rate of correction.
From Figure 9, it can be seen that when the number of returned documents is less than 60, Hmac-SHA1
should be used and the rate of correction of the results is close to 100%. As the number of returned
documents increases further, some of the lower-ranked documents will be returned some of which
may be irrelevant documents, causing the accuracy of search results to follow a downward trend.
Another solution is to use Hmac-MD5 as the hash function. However, since the number of bits in
Hmac-MD5 (128 bits) is less than that in Hmac-SHA1 (160 bits), Hmac-MD5 makes the generated
fingerprints incapable of better reflecting keyword characteristics. Therefore, the accuracy of the search
results when using Hmac-MD5 is lower than that using Hmac-SHA1. In both cases, however, as the
number of irrelevant documents returned increases, the accuracy rate will follow a downward trend.
This experiment demonstrates that the number of bits generated by the hash function used in the
proposed scheme will have an impact on the correction rate of the search results.

Future Internet 2018, 10, 38 16 of 18

Future Internet 2018, 10, x FOR PEER REVIEW 15 of 18

(a) (b) (c)

Figure 8. Retrieval efficiency of single server/multiple servers under different segmentation storage
mode. (a) 10 servers; (b) 50 servers; (c) 100 servers.

Figure 9 shows the average accuracy of multiple search results. As discussed before, different
hash functions generate hash values with different numbers of bits, thus affecting the accuracy of the
search results. The more the number of bits that are correct, the higher the rate of correction. From
Figure 9, it can be seen that when the number of returned documents is less than 60, Hmac-SHA1
should be used and the rate of correction of the results is close to 100%. As the number of returned
documents increases further, some of the lower-ranked documents will be returned some of which
may be irrelevant documents, causing the accuracy of search results to follow a downward trend.
Another solution is to use Hmac-MD5 as the hash function. However, since the number of bits in
Hmac-MD5 (128 bits) is less than that in Hmac-SHA1 (160 bits), Hmac-MD5 makes the generated
fingerprints incapable of better reflecting keyword characteristics. Therefore, the accuracy of the
search results when using Hmac-MD5 is lower than that using Hmac-SHA1. In both cases, however,
as the number of irrelevant documents returned increases, the accuracy rate will follow a downward
trend. This experiment demonstrates that the number of bits generated by the hash function used in
the proposed scheme will have an impact on the correction rate of the search results.

Figure 9. Evaluation of precision of search results.

Figure 10 shows the average rate of recall for multiple search results from which we can see that
in the proposed scheme that uses Hmac-SHA1 as the hash function, the recall rate rises as the number
of returned documents increases. Because it is the ratio of related documents that are returned to all
relevant documents, the recall rate is lower when the number of returned documents is small. Since
the ranking algorithm in the proposed scheme can optimize the sorted results, when the number of
returned documents reaches 90, the recall rate approaches 100%. The use of Hmac-MD5 results in a
lower recall rate as expected for a similar reason. That is, since the number of bits (128 bits) that it
generates as the message digest is less than that generated by Hmac-SH1 (160 bits), the resulting

Figure 9. Evaluation of precision of search results.

Figure 10 shows the average rate of recall for multiple search results from which we can see
that in the proposed scheme that uses Hmac-SHA1 as the hash function, the recall rate rises as the
number of returned documents increases. Because it is the ratio of related documents that are returned
to all relevant documents, the recall rate is lower when the number of returned documents is small.
Since the ranking algorithm in the proposed scheme can optimize the sorted results, when the number
of returned documents reaches 90, the recall rate approaches 100%. The use of Hmac-MD5 results in
a lower recall rate as expected for a similar reason. That is, since the number of bits (128 bits) that
it generates as the message digest is less than that generated by Hmac-SH1 (160 bits), the resulting
fingerprints generated cannot better distinguish between the characteristics of keywords. As the
number of returned documents increases, the recall rate will gradually go up after more related
documents are returned. The experiment proves that the number of bits generated by the hash function
used to generate message digests definitely has an impact on the recall rate of search results.

Future Internet 2018, 10, x FOR PEER REVIEW 16 of 18

fingerprints generated cannot better distinguish between the characteristics of keywords. As the
number of returned documents increases, the recall rate will gradually go up after more related
documents are returned. The experiment proves that the number of bits generated by the hash
function used to generate message digests definitely has an impact on the recall rate of search results.

Figure 10. Evaluation of recall rate of search results.

5. Conclusions

With the rapid development and maturity of cloud computing, more and more users will choose
to transfer data to cloud servers for storage in order to save storage as well as maintenance costs.
Thus, security of stored data and privacy of user search has become a great challenge. Searchable
encryption technology is a viable solution that would protect user data in the cloud and allow the
user to access encrypted data on the cloud servers. Fuzzy keyword searchable encryption represents
further advancement of the searchable encryption technology, for it can tolerate minor spelling errors
and inconsistencies in search requests.

This paper proposed an efficient fuzzy keyword search scheme for multi-server and multi-user
environments. Major advantages of the proposed scheme include reduced overhead of keyword
index space storage through generating the keyword fingerprint, improved efficiency and accuracy
of retrieval and provable security of keyword trapdoor. Analysis and experimental evaluation using
the open Enron dataset demonstrated that the scheme proposed in this paper can effectively boost
the usability of systems and the efficiency of document retrieval. In the future, we plan to expand the
attack model to allow attackers to assume a variety of roles, such as registered user, registered server,
network eavesdropper, etc. as the basis to further improve the security and the usability of the
proposed scheme.

Author Contributions: Jingsha He, Jianan Wu and Nafei Zhu conceived and developed the proposed scheme;
Jianan Wu performed the experiments and analyzed the results along with Nafei Zhu; Nafei Zhu coordinated
the preparation and revision of the manuscript; Muhammad Salman Pathan helped in reviewing and editing the
manuscript. Each author has made his/her full effort in completing the work reported in this paper.

Acknowledgments: The work in this paper has been supported by National Natural Science Foundation of
China (No. 61602456) and National High Technology Research and Development Program of China (863
Program) (No. 2015AA017204).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of
the IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.

Figure 10. Evaluation of recall rate of search results.

5. Conclusions

With the rapid development and maturity of cloud computing, more and more users will choose
to transfer data to cloud servers for storage in order to save storage as well as maintenance costs.
Thus, security of stored data and privacy of user search has become a great challenge. Searchable
encryption technology is a viable solution that would protect user data in the cloud and allow the
user to access encrypted data on the cloud servers. Fuzzy keyword searchable encryption represents
further advancement of the searchable encryption technology, for it can tolerate minor spelling errors
and inconsistencies in search requests.

Future Internet 2018, 10, 38 17 of 18

This paper proposed an efficient fuzzy keyword search scheme for multi-server and multi-user
environments. Major advantages of the proposed scheme include reduced overhead of keyword
index space storage through generating the keyword fingerprint, improved efficiency and accuracy
of retrieval and provable security of keyword trapdoor. Analysis and experimental evaluation using
the open Enron dataset demonstrated that the scheme proposed in this paper can effectively boost
the usability of systems and the efficiency of document retrieval. In the future, we plan to expand
the attack model to allow attackers to assume a variety of roles, such as registered user, registered
server, network eavesdropper, etc. as the basis to further improve the security and the usability of the
proposed scheme.

Author Contributions: Jingsha He, Jianan Wu and Nafei Zhu conceived and developed the proposed scheme;
Jianan Wu performed the experiments and analyzed the results along with Nafei Zhu; Nafei Zhu coordinated
the preparation and revision of the manuscript; Muhammad Salman Pathan helped in reviewing and editing the
manuscript. Each author has made his/her full effort in completing the work reported in this paper.

Acknowledgments: The work in this paper has been supported by National Natural Science Foundation of China
(No. 61602456) and National High Technology Research and Development Program of China (863 Program)
(No. 2015AA017204).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the
IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.

2. Chang, Y.C.; Mitzenmacher, M. Privacy preserving keyword search on remote encrypted data. In Proceedings
of the International Conference on Applied Cryptography and Network Security, New York, NY, USA,
7–10 June 2005; pp. 442–445.

3. Wang, C.; Cao, N.; Ren, K.; Lou, W. Enabling secure and efficient ranked keyword search over outsourced
cloud data. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 1467–1479. [CrossRef]

4. Cao, N.; Wang, C.; Li, M.; Ren, K.; Lou, K. Privacy-preserving multi-keyword ranked search over encrypted
cloud data. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 222–233. [CrossRef]

5. Li, J.; Wang, Q.; Wang, C.; Cao, N.; Ren, K.; Lou, K. Fuzzy keyword search over encrypted data in cloud
computing. In Proceedings of the IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 441–445.

6. Suresh, K.B. Towards an effective fuzzy keyword search and ranking framework for file information
management system. Int. J. Comput. Sci. Technol. 2012, 3, 556–559.

7. Liu, C.; Zhu, L.; Li, L.; Tan, Y. Fuzzy keyword search on encrypted cloud storage data with small index.
In Proceedings of the 2011 IEEE International Conference on Cloud Computing and Intelligence Systems,
Beijing, China, 15–17 September 2011; pp. 269–273.

8. Wang, B.; Yu, S.; Lou, W.; Hou, Y.T. Privacy-preserving multi-keyword fuzzy search over encrypted data
in the cloud. In Proceedings of the IEEE INFOCOM 27, Toronto, ON, Canada, 27 April–2 May 2014;
pp. 2112–2120.

9. Zirtol, K.A.; Noroozi, M.; Eslami, Z. Multi-user searchable encryption scheme with general access structure.
In Proceedings of the 2015 2nd International Conference on Knowledge-Based Engineering and Innovation,
Tehran, Iran, 5–6 November 2015; pp. 399–404.

10. Li, J.; Chen, X.; Liu, Z.; Jia, C. Privacy-preserving data utilization in hybrid clouds. Future Gener. Comput. Syst.
2014, 30, 98–106. [CrossRef]

11. Goh, E.J. Secure indexes. IACRCryptology ePrint Archive, Submission, 2003.
12. Chang, C.; Zhang, L. An efficient service discovery algorithm for counting Bloom filter-based service

registry. In Proceedings of the 2009 IEEE International Conference on Web Services, Los Angeles, CA, USA,
6–10 July 2009; pp. 157–164.

13. Curtmola, R.; Garay, J.; Kamara, S.; Ostrovsky, R. Searchable symmetric encryption: Improved definitions
and efficient constructions. J. Comput. Secur. 2011, 19, 895–934. [CrossRef]

14. Broder, A. On the resemblance and containment of documents. In Proceedings of the International Conference
on Compression and Complexity of Sequences, Positano, Italy, 11–13 June 1997; pp. 21–29.

http://dx.doi.org/10.1109/TPDS.2011.282
http://dx.doi.org/10.1109/TPDS.2013.45
http://dx.doi.org/10.1016/j.future.2013.06.011
http://dx.doi.org/10.3233/JCS-2011-0426

Future Internet 2018, 10, 38 18 of 18

15. Agrawal, R.; Kiernan, J.; Srikant, R.; Xu, Y. Order preserving encryption for numeric data. In Proceedings of
the 23rd ACM SIGMOD International Conference on Management of Data, Paris, France, 13–18 June 2004;
pp. 563–574.

16. Boneh, D.; Waters, B. Conjunctive, subset, and range queries on encrypted data. In Proceedings of the Theory
of Cryptography Conference, Amsterdam, The Netherlands, 21–24 February 2007; pp. 535–554.

17. Chai, Q.; Gong, G. Verifiable symmetric searchable encryption for semi-honest-but-curious cloud servers.
In Proceedings of the 2012 IEEE International Conference on Communications, Ottawa, ON, Canada,
10–15 June 2012; pp. 917–922.

18. Yang, Y.; Lu, H.; Weng, J. Multi-user private keyword search for cloud computing. In Proceedings of
the IEEE 3rd International Conference on Cloud Computing Technology and Science, Athens, Greece,
29 November–1 December 2011; pp. 264–271.

19. Bijral, S.; Mukhopadhyay, D. Efficient fuzzy search engine with B-tree search mechanism. In Proceedings of the
2014 International Conference on Information Technology (ICIT), Bhubaneswar, India, 22–24 December 2014;
pp. 1–5.

20. Wang, C.; Cao, N.; Li, J. Secure ranked keyword search over encrypted cloud data. In Proceedings of the
IEEE International Conference on Distributed Computing Systems (ICDCS), Genova, Italy, 21–25 June 2010;
pp. 253–262.

21. Pan, J.; Manocha, D. Bi-level locality sensitive hashing for k-nearest neighbor computation. In Proceedings
of the 2012 IEEE 28th International Conference on Data Engineering, Washington, DC, USA, 1–5 April 2012;
pp. 378–389.

22. Lu, I.; Nikova, S.; Hartel, P.; Jonker, W. Public-key encryption with delegated search. In Proceedings of the
9th International Conference on Applied Cryptography and Network Security, Nerja, Spain, 7–10 June 2011;
Lopez, J., Tsudik, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 532–549.

23. Fu, Z.; Hung, F.; Sun, X.; Vasilakos, A.; Yang, C.N. Enabling semantic search based on conceptual graphs
over encrypted outsourced data. IEEE Trans. Serv. Comput. 2016. [CrossRef]

24. Shekokar, N.; Sampat, K.; Chandawalla, C.; Shah, J. Implementation of fuzzy keyword search over encrypted
data in cloud computing. Procedia Comput. Sci. 2015, 45, 499–505. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSC.2016.2622697
http://dx.doi.org/10.1016/j.procs.2015.03.089
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Proposed Fuzzy Keyword Search Scheme Based on MinHash
	Preliminaries
	Jaccard Similarity
	Order Preserving Encryption
	Definition of Parameters

	The System Model
	The Proposed Scheme
	Implementation of the Algorithm
	Keyword Fingerprint Generation Based on MinHash
	The Search Algorithm

	A New Retrieval Method
	Authorization and Revocation User Privileges

	Security and Performance Analysis
	Security Analysis
	Performance Analysis
	Performance Evaluation

	Conclusions
	References

