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Abstract: This research proposes an intelligent classification framework for quality of service (QoS)
performance improvement in information-centric networking (ICN). The proposal works towards
keyword classification techniques to obtain the most valuable information via suitable content
prefixes in ICN. In this study, we have achieved the intelligent function using Artificial Intelligence
(AI) implementation. Particularly, to find the most suitable and promising intelligent approach
for maintaining QoS matrices, we have evaluated various AI algorithms, including evolutionary
algorithms (EA), swarm intelligence (SI), and machine learning (ML) by using the cost function to
assess their classification performances. With the goal of enabling a complete ICN prefix classification
solution, we also propose a hybrid implementation to optimize classification performances by
integration of relevant AI algorithms. This hybrid mechanism searches for a final minimum structure
to prevent the local optima from happening. By simulation, the evaluation results show that the
proposal outperforms EA and ML in terms of network resource utilization and response delay for
QoS performance optimization.

Keywords: information-centric networking (ICN); Intelligent classifications; artificial intelligence
(AI); quality of service (QoS)

1. Introduction

Information-centric networking (ICN) is a future internet architecture that implements a naming
scheme for content forwarding instead of referring the content to its location as in traditional
host-to-host IP-based networks [1]. ICN transforms content data into first-class entities and loosens the
required binding between content requesters and content providers. This communication paradigm
shift is desirable to meet the expected exponential growth in the number of content exchanges on
the Internet. With the growth of smart devices and next-generation networks, information becomes
more accessible on a global scale. Particularly, the projection of global mobile data traffic will increase
sevenfold, reaching 49.0 exabytes per month by 2021 [2]. As the amount of information is increasing
day by day, the need to efficiently find and retrieve the most relevant content is becoming more
challenging [3].
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The major difference between IP and ICN is that the latter applies content name prefix format as
the identifier for the forwarding process. Name prefix is a hierarchical segment that is concatenated by
“/” as of the well-known uniform resource identifier (URI) full name representation. The general format
of the content prefix in ICN can be depicted as ‘/publisherID/routerID /content_name/content_type’.
The content name, itself, is composed of keywords that can be registered and bonded as the name
identifier of the content. Nevertheless, as of the current IP-based Internet, users still cannot express
the intended content request with exact key terms. Thus, to obtain the desired data, users need to
try several keywords using the search engine then choose the content that is most related to them [4].
As current network devices require fast and efficient services, it is important to dynamically learn
from user’s inputs, like a string of keywords as content attributes then estimate and return the most
important name prefix to ensure quality of service (QoS).

This motivates the need for an intelligent classification mechanism to obtain the most appropriate
content prefix component for content discovery improvement then accomplish QoS optimization.
We focus on a generic framework which performs content prefix classification by utilizing artificial
intelligence (AI) approach to evaluate the relevance between the inputted keywords and the desired
content. This is a potential approach given that up to now, AI approach in ICN is still at early stage,
though prior studies in this area suggest opportunities for intelligent processing of content prefix
in ICN.

Different from other notable related work in this field, our study focuses on finding the most
suitable intelligent approach that supports efficient classification in the application and network
levels. In this paper, we evaluate and observe the performance of various AI algorithms, then discuss
their classification performances with our selected QoS matrices. Specifically, the selected algorithms
are well-known AI algorithms including evolutionary algorithm (EA), swarm intelligence (SI), and
machine learning (ML) methods. Their performances are then evaluated under four different criteria,
which are number of function evaluation, cost function, standard deviation, and computation time.
From the extensive investigation using MATLAB, we select the most suitable intelligent classification
methods for the proposed framework. Then, we show how the framework can optimize ICN efficiency
by solving the localization problem in relevant comparable related AI-based work for classification.

The contribution of the proposal is as follows: (1) we propose a new generic intelligent
classification framework in ICN by aggregating content requests from a large number of users to
optimize QoS and (2) the simulation results show that the proposal improves the network efficiency
in terms of reductions in network resource utilization and response delay by handling aggregated
content packets for content dissemination. This acts as a potential approach towards the realization of
ICN for the future internet architecture.

2. Related Work

This section presents the overview of fundamental concepts and features of ICN, Artificial
intelligence (AI), and its implementation in ICN.

2.1. Information-Centric Networking

ICN is a promising candidate for the future internet architecture (FIA). ICN forwarding engine
comprises of three primary data structures: Content Store (CS), the cache space of content nodes;
Pending Interest Table (PIT), which stores the pending incoming request and its ingress face;
and Forwarding Interest Base (FIB), the table that stores the forwarding egress of the potential
content provider.

Regarding ICN concept, Content-Centric Networking (CCN) is a well-known research project
in ICN initiated since 2007 [1]. The main idea of CCN is that a content request broadcasted by a user
(namely Interest packets) contains the desired content name. When an Interest packet arrives, the
CCN forwarding engine checks the information base to find the requested content’s possible providers
which are the nodes with original content or its valid replica. Then the Interest packet is forwarded
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through any outgoing interface that moves it closer to the user location [4]. In this research, we utilize
Named-Data Networking (NDN) as it is an enhanced version of the CCN architecture, which has
started in 2010 with detailed protocol and forwarding algorithms to form the fully functional prototype
in ICN.

2.2. Artificial Intelligence

The most fundamental parts of ‘intelligence’ in AI engine are learning and adapting processes.
By enabling the adaptive learning, the development and applications of Evolutionary Algorithm (EA)
have made it become one of the fastest growing research fields in AI. EA includes genetic algorithm,
biogeography-based optimization, and differential evolution. Recently, swarm intelligence (SI)
algorithms, including ant colony optimization, artificial bee colony, and particle swarm optimization
have also been proposed as optimization methods. Machine learning, which includes supervised,
unsupervised and reinforcement learning, enables computers to modify and adapt their actions (such
as making a prediction) so that the learning process can be more accurate.

For EA, genetic algorithm (GA) is based on genetic structure analogy and chromosomes’ behavior
within a population. GA’s advantage is the flexibility in modeling both time-dependent and coupling
constraints. However, since GA is a stochastic optimization algorithm, the optimality of its solution
cannot be guaranteed. As a global optimization technique, GA can gain good initial convergence
characteristics. However, it may slow down considerably once the region of optimal solutions has
been identified [5].

The mathematical model bio-geography based optimization (BBO) describes how a species
migrates, arises, and becomes extinct [6]. In BBO, the individual is termed as species and has the
suitability index variables to evaluate its quality as a solution. As habitat suitability index improves,
the species count increases, emigration increases, and immigration decreases. BBO has common
characteristic features with GA. Operators in GA are crossover and mutation, whereas, in BBO,
they are migration and mutation.

Differential evolution (DE) is a simple population-based search algorithm for global optimization
with a minimum number of control parameters. DE is a powerful search engine in single objective
optimization, but its usage in multi-objective optimization still raises some issues, because the use of
differential evolution in such problems requires additional alternative encodings (e.g., combinatorial
optimization problems) [7].

Regarding the swarm intelligent algorithms, ant-colony optimization (ACO) is based on the
exploration principles of the ants’ foraging process from their nest to the food source by efficiently
using their pheromones’ trail. Ants perform random walks for food, and when they reach the
destination, the ants will return to their nest. While returning, a pheromone trail is produced leading
back to the food source, and the following ants can follow that trail. The collaboration of suitable
pheromones with stronger trail will further intensify and produce environmental changes towards the
shortest path to food source [8].

The artificial bee colony (ABC) algorithm emulates the intelligent foraging behavior of the
honeybee swarm [9]. A food source represents a possible solution to the problem optimization which
corresponds to the quality of the solution. ABC algorithm has gains higher performance in both of the
global and local searches for each of the iterations compared to other algorithms; hence, the probability
of finding the optimal parameters is significantly increased.

Particle swarm optimization (PSO) was motivated by social behavior of birds (as particles) when
attempting to get to an unknown destination [10]. The particles swarm through the search space
and update their positions. Advantages of PSO include computational feasibility and effectiveness,
smooth implementation, and consistency in performance. However, the PSO may lack the global
search ability at the end of a run due to the utilization of a linearly decreasing inertia weight.

In supervised learning, the system is fed and learned from a provided set of examples with the
correct responses. The supervised learning, such as multi-layer perceptron (MLP), aims to minimize the
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error criterion, like the squares deviation error, based on the difference between targets and the outputs.
Different from this, the unsupervised learning algorithm intends to discover the similarities between
the inputs, in which inputs with common attributes are categorized into groups [11]. The reinforcement
learning (RL) is placed between supervised and unsupervised learning. The RL algorithms are
informed when the answer is wrong but do not get instructed on how to correct it [11].

2.3. Implementation of Artificial Intelligent in ICN

Shanbhag et al. used ACO as an optimization forwarding strategy in CCN for selective router
service to promote load balancing in service-centric networking [12]. However, this approach did not
consider CCN local traffic and redundant Interest packets from the ants in the network. Researchers
in [13] extends ACO-multipath behaviors and addresses the probabilistic ant-routing mechanism to
enable multipath transmissions for CCN nodes. Recent work in [14] shows optimization in ACO by
using bidirectional ants to diffuse and exploit multiple content replicas. The study aims to obtain an
optimal cache and efficient utilization of available cache resources within a specific area.

Study on PSO implementation in CCN applies PSO for the Forwarding Information Base
(PSO-FIB) [15] to enhance the QoS of the forwarding experiences. PSO-FIB uses particles to maintain
the forwarding probability of each entry in the FIB. Researchers in [10] proposed a hybrid scheme of
PSO and K-means clustering algorithm over CCN to gain a fuzzy anomaly detection system for future
kinds of security challenges in CCN.

The machine learning is applied in CCN in [16] to discover temporary copies of content items
not addressed in routing tables, then forward requests to the best face by calculating Q values for
exploration and exploitation in every hop. A study in [17] proposes Q-routing to address packet
routing problem in dynamically changing networks. In particular, the authors propose RL based
method to solve the problem of content placement and routing by employing the Q-routing with
cost-to-go computation for the optimization of caching routing decisions.

The proposal in [18] evaluates the forwarding strategy in CCN based on Multi-Armed Bandits
Strategy (MABS), a ε-greedy technique of RL. MABS probabilistically explores the network for
each Interest packet request and exploits the acquired knowledge using the best-classified interface.
Evaluation results show that MABS can reduce the number of hops to find content.

Work in [19] proposes a content discovery system, which is a content announcement based on deep
exponential network and cache replacement algorithms. By applying a restricted Boltzmann machine,
the proposed model shows improvements regarding reduced average latency, cache utilization, and
network capacity.

3. Intelligent Content Prefix Classification Techniques

In ICN, the format of the content prefix is human readable and can be categorized into different
groups according to pre-determined rules [19]. This research proposes a generic framework which
enables the classification of user’s input keywords to guarantee content discovery and retrieval.
Our presented framework is initiated when users express their content requests with the assumption
that each request comprises of a set of inputted keywords. These keywords are firstly fed into the
pre-processing stage to remove unnecessary components, such as duplicate words, blank spaces, and
other undesired characters. The filtered inputs are then transferred to the intelligent classification
engine which processes and extracts the critical features to obtain the most valuable keywords.
The output of the intelligent classification process is the known content prefix attributes that act
as the unique content identity, which, in turn, provides the link to bind the prefix and the content that
the user asks for. Finally, this output is handled in the post-processing stage before being dispatched
to the network as the ICN content name prefix for the interest packet. The procedure overview is
depicted in Figure 1.

The next section will evaluate the performances of the selected AI algorithms to identify an
intelligent classification method. For this, the relevant Evolutionary algorithms, swarm intelligence,
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and machine learning algorithms will be selected and analyzed to realize the suitable method with
high performance in the context of the ICN content prefix.

Figure 1. Proposed intelligent classification framework.

3.1. Performance Evaluation of Various AI Algorithms

In this section, we select and compare the performance of relevant AI algorithms in ICN.
These algorithms are evaluated using four criteria, which are: the number of function evaluations,
the average of the cost function obtained in each trial, the standard deviation of the function values,
and the computation time.

The input for this performance evaluation is obtained from a series of keywords that present as
independent user input with a data size of 498 × 8 characters. The input data set firstly enters the
pre-processing stage. After, these inputs are fed into the selected algorithm for their performance
evaluation. We then elaborate each algorithm’s performance by collecting results from thirty different
runs. The computation of the performance analysis is conducted using MATLAB R2016b software
(MathWorks Inc., Natick, MA, USA). For this, we designed a migration and mutation strategy, as well
as the crossover operator of selected algorithms in the same way to reduce the impact from different
operators. Hence, the selected well-known algorithms can be compared in similar conditions. Table 1
shows the key parameter used for the performance evaluations of different algorithms.

Table 1. Parameter settings.

Parameters

Max iteration 200
NPop 100
Alpha 0.99
Initial Temp. 10
Crossover Percentage 1
Mutation Percentage 1
Crossover Inflation Rate 0.2
Mutation Rate 0.1

3.1.1. Number of Function Evaluations (Nfe)

The Nfe is used to measure the algorithms’ performances and define the optimal model.
Nfe represents the number of trials required for the objective function to reach its optimum global
value. The efficiency is determined by collecting the Nfe for each selected algorithm in which a
lower value of Nfe means higher efficiency. Hence, the most efficient algorithm is the one that
consumes the fewest Nfe to solve the problem. For all the selected algorithms, the numbers of function
evaluations were calculated by applying the Teaching-learning-based optimization (TLBO), which is a
meta-heuristic optimization algorithm based on the natural phenomenon of teaching and learning [20].
TLBO optimization algorithm requires only common controlling parameters like population size and a
number of generations for its operation. This means TLBO does not require the determination of any
algorithm-specific controlling parameters, such as the mutation ratio and crossover ratio, as in GA.
For the TLBO algorithm, the number of function evaluation (Nfe) is calculated by Equation (1):



Future Internet 2018, 10, 33 6 of 15

Nfe = 2 × Gn × Pn + Pn (1)

where Gn is the number of generations in which the best solution was obtained, and Pn is the number
of populations [5]. Figure 2 presents the average Nfe required to reach optimum global value for each
algorithm. The results taken from 30 different trials (each with 200 iterations) suggest that GA has the
lowest required Nfe among evolutionary algorithms, and PSO has the lowest Nfe among the swarm
intelligence group. Overall, reinforcement learning shows the lowest Nfe, i.e., it owns the highest
efficiency over the other selected algorithms.

Figure 2. Average number of function evaluation.

3.1.2. Cost Function (CF)

CF is a measurement of the cost utilization which manages the resource needed to satisfy the
objective function. CF values of the selected algorithms are then examined to observe each algorithm’s
cost efficiency. CF can be calculated using the analytic hierarchy process (AHP), as identified by
previous work [5], based on the ability to vary the weighting factors and the optimized cost is selected
among different parameter preferences. AHP can also adopt different units of various parameters for
QoS into normalized cost value from the cost function.

Consider a set of candidate Algorithm AN = {A1, A2, ... An} and a set of quality of service factors
qm = {q1, . . . , qm}, where n is the number of candidate algorithms and m is the total number of QoS
factors. Supposed that each QoS factor qj has weight value Wj, and this weight shows the effect of the
factor on the CF algorithms as following:

AN =
M

∑
j=1

qj × Wj (2)

The relative scores among the QoS score set can be calculated using Equation (3), where Rqiqj is
the relative score between parameters qi and qj, and Sqi and Sqj are their respective scores.



Rqiqj =

(
1 −

Sqi

Sqj

)
× 10 ; j > i

Rqjqi =
1

Rqiqj

; j < i

Rqiqj = 1 ; i = j

(3)

X =
{

Xij
}

is a M × M matrix which Xij represents the priority scores of each factor, is initialized
as follows:
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X =



1 Rq1q2 Rq1q3 Rq1q4 Rq1q5

1
Rq1q2

1 Rq2q3 Rq2q4 Rq2q5

1
Rq1q3

1
Rq2q3

1 Rq3q4 Rq3q5

1
Rq1q4

1
Rq2q4

1
Rq3q4

1 Rq4q5

1
Rq1q5

1
Rq2q5

1
Rq3q5

1
Rq4q5

1


(4)

Then the normalized relative weight of Xij in Equation (5) is obtained when each element of the
matrix X is divided by the summations of its column in Equation (4):

Xij =
Xij

∑M
i=1 Xij

(5)

The normalized matrix X, wnorm, is shown in Equation (6):

wnorm =


w11 w12 w13 w14 w15

w21 w22 w23 w24 w25

w31 w32 w33 w34 w35

w41 w42 w43 w44 w45

w51 w52 w53 w54 w55

 (6)

Next, the average values of each row are calculated to give the priorities for each factor as shown
in Equation (7):

wi =
wi1 + wi2 + wi3 + wi4 + wi5

5
(7)

From this, we build the normalized vector Wj which is also the priority vector as it shows the
relative weights among its elements. Note that the sum of all the elements in priority vector is 1:

Wj =


w1

w2

w3

w4

w5

 (8)

Since Wj it is normalized from this, the set of QoS parameters where the sum of all the elements
in priority vector is 1, denoted by the following vector:

qj =
[

S D E R V
]

(9)

where five parameters including SINR (S), delay (D), energy (E), RSSI (R), and velocity (V) are used as
the QoS cost function parameter.

The cost function is a measurement of the cost utilization to manage the resource needed to
allocate for serving the user request with specified QoS requirements. In the context of future wireless
networks, [21] predicted that the mobile users will mainly generate content traffic, hence, we consider
QoS mobility for user mobility as a QoS factor. The SINR factor is selected to adapt the QoS to the
network quality condition and to ensure that the PoA gets good signal quality. Additionally, the delay
and energy factor is to model the tradeoff between average delay cost and the average power (energy)
cost. Thus, the key for optimal scheduling is on the network balancing between delay and power
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cost. Next, the RSSI factor can rank the available wireless network based on the network priority
assignment from the list of all available network within user’s coverage at a particular period of time,
whereas velocity shows the speed and direction of the user.

For CF evaluation, we use MATLAB, which provides sets of functions for measuring the absolute
cost to calculate overall cost function obtained in each trial by mapping each QoS parameter to the
corresponding element of vector Wn in sequential order. Table 2 shows the best, worst, and average
cost of the selected algorithms obtained after 30 iterations. The results indicate the overall cost of
the evaluated algorithms, with the lowest cost, indicates the most efficient QoS allocation based on
network condition, achieved by the genetic algorithm (GA). The evaluations for machine learning are
not conducted in this trial because the characteristic differences in the cost function and computation
make it unsuitable for comparison with other algorithms.

Table 2. Value of best, worst, and average cost function over 30 runs.

Evolutionary Algorithm (EA) Swarm Intelligent (SI)

GA DE BBO PSO ACO ABC

Best 117.65 117.26 117.78 118.37 362.26 117.76
Worst 158.40 182.32 273.50 180.47 550.19 167.87

Average 118.81 121.38 121.09 120.41 370.67 121.41

3.1.3. Standard Deviation (SD)

The SD performance suggests the algorithms’ components stability. The result in Figure 3 shows
that BBO has the lowest average SD among evolutionary algorithms, and PSO has the lowest average
SD among the swarm intelligence group. Overall, reinforcement learning gives smaller SD values
than others, indicating a more stable solution quality as a more massive SD quality shows a less stable
solution quality.

Figure 3. Average standard deviation of different evaluated algorithms.

3.1.4. Computation Time (CT)

The computation time is the total time needed to complete a trial of the algorithm. CT then reflects
the CPU computation time, and the smallest number indicates the least amount of time required to
finish one operating cycle for each trial. This value is particularly relevant in processing a real-time
content request as the response time should be quick to minimize latency.

Figure 4 presents the CT results obtained from each algorithm. The results show that the BBO and
ABC algorithms perform better than the rest of Evolutionary algorithm and swarm intelligent groups,
respectively. However, as a whole, RL gives smallest CT values compared to other techniques. Overall,
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the performances of the selected AI algorithms are summarized in Table 3. The results suggest the
high efficiency of reinforcement learning performance over other algorithms in terms of Nfe, SD, and
CT. Additionally, results from Table 1 show that GA achieves the lowest cost value.

Figure 4. Average standard deviation of different evaluated algorithms.

Table 3. Performance results of the selected AI algorithms.

EA SI ML

GA DE BBO PSO ACO ABC MLP RL

Nfe 11.84 21.94 19.58 12.29 14.09 34.20 8.18 4.70
SD 5.05 9.70 2.11 7.87 24.06 8.14 0.08 0.02
CT 3.88 3.01 2.72 3.19 5.75 1.24 1.32 1.01

3.2. Proposed Intelligent Hybrid Technique

The previous section has evaluated the performance of the selected AI algorithms and strongly
suggest the superiority of reinforcement learning (RL) under machine learning (ML), and the genetic
algorithm (GA) under the evolutionary algorithm (EA) group, for solving classification problem,
especially in the case of ICN content prefix.

The application of EA with ML in AI has been one of the growing research fields with rapid
development. Studies in this field which attempt to apply the integration of EA and ML techniques
have been proven to be beneficial in both convergence speed and solution quality. One of the
well-known adaptations of this approach is the learning classifier system (LCS) [22] which has become
a powerful tool in a wide range of applications.

Simulated annealing (SA), originating from the process of cooling metal, includes searching for a
final minimum energy structure. After going through several stages, the final structure is achieved
where the structure gets the minimum value. Different from SA, the GA, as discussed in the previous
Section 2.2, has several concerns related to the premature convergence in its optimization, due to a
high reliance on the crossover operation. This may diminish the overall performance by producing a
more homogeneous population and searching for the best solution in the mutation stage. Another
concern of GA relates to the way to reach the optimal solution after finding a near-optimal solution.
To attain the global optimum and resolve the occurrence of local optima, we propose a hybrid GA with
the SA technique to realize an intelligent content prefix classification in ICN. We show the pseudo-code
in Table 4.

The reasons behind the choice of the GA and SA hybrid are because they are proved to be efficient
and robust in search processes, making them suitable for solving large combinatorial optimization
problems. Unlike the other algorithms, GA has a strong global search ability, while SA has strong local
search ability and no premature problems. Therefore, the hybridization of GA and SA can overcome
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the limits of each of the two methods, bringing into play their respective advantages, and improve the
solving efficiency. The combination of SA rules serves as a validation algorithm for the outcome of the
GA and to detect unacceptable calculation results.

Figure 5 summarizes our proposal of intelligent adaptive classification technique which integrates
previously-evaluated AI algorithms and the LCS adaptation. There are two main components of
the classification techniques which are learning component and discovery component. The learning
component features RL, observes the environment, then selects and performs actions [23]. If the
action is favorable, it obtains rewards in return. Otherwise, it receives penalties in the form of
negative rewards. The discovery component features genetic algorithm–simulated annealing (GA-SA),
processes the population evolution by introducing a fitness function, which is proportional to the
precise prediction of the reward.

We then assess the performance of the discovery component using GA and compare with our
hybrid GA-SA approach. The performance result of the proposed hybrid technique is depicted in
Figure 6. Based on this result, we conclude that SA rules shape the integration into the new population
phase of GA to increase discovery component effectiveness by merging populations. Hence, we
choose to implement GA-SA hybridization as the discovery component in the proposed intelligent
classification technique for keyword classification.

Figure 5. Proposal for intelligent classification using RL with a hybrid GA-SA.

Figure 6. Comparison between GA and hybrid GA-SA for discovery components.
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Table 4. GA-SA Discovery Components Pseudo-code.

1: Function GA-SA Discovery Component ()
2: Initialize GA Population of Chromosome
3: Initialize SA Temperature
4: For each iteration
5: Set mutation and crossover
6: Evaluate the cost function
7: Calculate priority vector by AHP
8: End For
9: If termination criteria are not achieved, then
10: Select a pair of Chromosome for Mating
11: For it = 1: MaxIteration
12: // Perform Crossover
13: For SubIteration = 1: MaxSubIteration
14: Perform Crossover
15: Evaluate Offspring
16: End For
17: // Perform Mutation
18: For SubIteration = 1: MaxSubIteration
19: Perform Mutation
20: Evaluate Mutants
21: End For
22: End For
23: End If
24: Merge Offspring’s in the Population
25: Sort New Population
26: Compare New Population using SA Rule
27: Update New Population
28: Temperature Reduction
29: Update Best
30: Solution Found Store Best Cost

3.3. Performance Evaluation and Discussion

After the content prefix classification has successfully performed and shaped into valuable content
attributes as content name, the name prefix is ready to be dispatched into ICN. Notably, upon receiving
a request packet, ICN intermediate router first checks its content store and then pending interest table,
as stated in typical ICN forwarding [1].

To evaluate the benefits of the classification methods, we simulate our proposal using ndnSIM [24],
a widely-used emulator of name data networking for ICN platform under the ns-3 framework.
The network topology used in this simulation is five-layer tree topology as depicted in Figure 7.
We assume that the root node at first layer acts as the data center located and it is connected to three
core content router nodes in the second layer. At the third layer, these core nodes connect to five
edge nodes, which further connect to five aggregated nodes in the fourth layer. Users in the same
area connect to their respective aggregated node and send requests (interest packets) for interested
content in ICN, given that all router nodes are implemented with the full function as an ICN node
(NDN protocol).

Using this topology, we simulate two scenarios of interest-data communication. For the first
simulation, we implement content request using an unclassified prefix, whereas, for the second
simulation, we implement the already classified prefix using our intelligent framework. In both
scenarios, each node has three NDN fundamental data structures (CS, FIB, and PIT) with the same size
of CS for cache storage. For simplicity, we also assume that all content objects have the same size. For
each scenario, the simulations were executed using two different interest arrival rates. In the first part,
user nodes generate a stable, uniform distribution rate of 10 Interest packets per second, whereas, in the
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second simulation, we use Zipf-Mandelbrot for modeling content popularity distribution with 10 interest
packets per second as the request frequency. The simulation time used for both cases is 100 s.

Figure 7. Network topology.

Simulation under a uniform distribution of the Interest packet arrival rate shows that the classified
content prefix achieves lower packet drop as well as lower network resource utilization, as shown in
the Figures 8 and 9, respectively. The similar tendency is also observed in Figures 10 and 11 when
Zipf-Mandelbrot modeled the interest frequency distribution rate. The results show that the proposal
achieves lower packet drop rate as well as lower network resource utilization for interest packets by
using the classified content prefix format, especially when the number of user increase. This tendency
suggests that the proposal is highly scalable and fit into the goal of future interest design as the
proposed intelligent prefix classification system can achieve higher benefit for network performance
when the network gets bigger with lots of users’ content.

Overall, the evaluation results show that the classification method can improve QoS performance
in terms of reducing network load and packet drop efficiently. This is because the classified keywords
take part in assisting the discovery of content with relatively low overhead for handling the content
name prefix. This improvement suggests that the proposed intelligent framework can identify and
filter the essential input bits among a large number of irrelevant input keywords from users for
specific content.

Figure 8. Performance comparison of network resource utilization between classified and unclassified
content prefixes under uniform distributions.
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Figure 9. Performance comparison of packet loss between classified and unclassified content prefixes
under uniform distributions.

Figure 10. Performance comparison of network resource utilization between classified and unclassified
content prefixes.

Figure 11. Performance comparison of packet loss utilization between classified and unclassified
content prefixes.

4. Conclusions

ICN undoubtedly will play a vital role in communication paradigm shift in the near future, where
the number of content items is expected to grow exponentially. In this study, a novel AI-based hybrid
classification model is proposed to realize an intelligent classification technique. For this purpose, we
integrate the simulated annealing (SA) to enhance the genetic algorithm (GA) as a GA-SA. The GA-SA
acts as the hybrid discovery model component of ICN content prefix classification technique to reduce
possible occurrences of local optima and premature convergence. Additionally, we implement the
GA-SA with the RL-based scheme for learning component to improve the classification performance.
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The critical point of this study is motivated by studies on the examination of performance
evaluations between the relevant, AI-based algorithms in the context of ICN. This ensures the feasibility
of the proposed hybrid technique in ICN content prefix classification. The evaluation results show that
the proposed method using hybrid GA-SA achieves a lower score of the number of function evaluations
and demonstrates higher performance than GA alone, i.e., reaching the optimization state faster with
higher efficiency. This shows that our proposed hybrid classification model realizes an intelligent
solution so that it can shape the user’s inputted keywords as a content prefix and improves the overall
system performance, especially for boosting the QoS performance. Additionally, the network load and
packet drop matrices indicate that the proposed classified prefix achieves lower values compared to
that of the raw/default content prefix as in conventional ICN.
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