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Abstract: Software Defined Networking (SDN) has proved itself to be a backbone in the new network
design and is quickly becoming an industry standard. The idea of separation of control plane and
data plane is the key concept behind SDN. SDN not only allows us to program and monitor our
networks but it also helps in mitigating some key network problems. Distributed denial of service
(DDoS) attack is among them. In this paper we propose a collaborative DDoS attack mitigation scheme
using SDN. We design a secure controller-to-controller (C-to-C) protocol that allows SDN-controllers
lying in different autonomous systems (AS) to securely communicate and transfer attack information
with each other. This enables efficient notification along the path of an ongoing attack and effective
filtering of traffic near the source of attack, thus saving valuable time and network resources. We also
introduced three different deployment approaches i.e., linear, central and mesh in our testbed.
Based on the experimental results we demonstrate that our SDN based collaborative scheme is fast and
reliable in efficiently mitigating DDoS attacks in real time with very small computational footprints.
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1. Introduction

The legacy of distributed denial of service (DDoS) attacks continue to grow in sophistication and
volume with attacks breaking the barrier of hundreds of Gbps [1]. DDoS is one of the biggest problem
for the reliable operation of the Internet today [2]. One of the major concerns is that performing
DDoS attack is extremely simple with websites known as “Booters or Stressers” that offer “DDoS as
a Service”. These booters provide cheap services and the costs to perform a series of attacks is typically
just a few dollars [3].

Recently, Internet of Thing (IoT) devices (such as printers, cameras, home routers and baby
monitors) were used to generate a DDoS attack involving malicious domain name system (DNS)
lookup requests from tens of millions of IP addresses [4]. This attack is considered the largest of its
kind in history with an unprecedented rate of 1.2 Tbps. The main target of the attack was the servers
of Dyn Inc., a company that controls much of the Internet’s DNS infrastructure [5]. Study of recent
attacks reveal that with little effort, next generation attack tools would be able to enact DDoS attacks
that are thousand times stronger than the ones we see today [6]. A popular defense practice against
DDoS is to deploy detection and response mechanisms at the destination hosts due to higher accuracy
and cheaper cost. On the downside, destination based mechanisms alone cannot mitigate attack on
the paths to the victim and waste resources. This calls for an efficient mitigation strategy to ease out
network resources along the transit path of an attack from source to victim.

SDN bring us a new approach to deal with DDoS attacks [7–9]. The separation of control
and data plane in SDN allows us to write the control logic and instruct the forwarding plane to
behave accordingly. This programmability gives us more control of the network traffic which was
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not possible before the advent of SDN. In [10], Giotis et al. proposed a DDoS mitigation scheme
across multiple SDN domains or networks (Domain(s) and Network(s) are used interchangeably
throughout this paper). The mitigation process starts from the victim network and propagates along
the way towards the source. They extended the border gateway protocol (BGP) to embed the incident
report as URIs within BGP signals. This reliance on BGP has some ramifications. First of all, BGP
is very complex and hard to master, and any modifications to existing protocol will challenge the
deployment. Secondly, the exchange of incident report between adjacent domains is not instantaneous
and will only take place after every BGP update interval. Therefore, the report latency will increase
with the number of hops between the source and victim of attacks. Further, they do not validate the
authenticity of incident reports exchanged among the adjacent SDN domains. This could make the
whole infrastructure vulnerable to fake incident reports from malicious domains.

In this paper, we propose a lightweight, efficient and easy to deploy collaborative DDoS
mitigation scheme leveraging SDN. We have designed a secure C-to-C communication protocol for
SDN-controllers lying in different autonomous systems (AS). This allows SDN controllers to effectively
communicate with other controllers in the neighbouring domains and inform them about an ongoing
attack. Through this approach, the SDN controllers are able to simultaneously perform the following
two tasks.

1. Block the malicious flows within the network.
2. Inform the neighboring domains/networks about an ongoing attack.

This way we are not only able to successfully mitigate the DDoS attack within the victims’s
network but the transmission of attack information along the path of an attack (transit networks)
enable us to filter the DDoS attack close to the attack sources. This results in the preservation of
valuable network resources along the attack transit path.

Push-back schemes to mitigate DDoS attack along the attack path has been discussed in the
research community [11,12]. These schemes add functionality in each router to detect and filter
attack traffic and also to notify the upstream routers to drop such traffic [13]. As a result, they
require more resources at various levels and the push-back mechanism must be deployed in all the
participating network components (routers and switches). The complexity and overhead because of the
coordination and communication among distributed components adds serious management challenges.
SDN based deployments on the other hand ease the management challenges, where a single controller
can manage the coordination among all the network components at the AS level. The proposed
C-to-C communication protocol is flexible and it can be easily appended with the best known DDoS
detection engines. Further, the protocol itself can use different approaches for deployment. It can be
deployed in linear order, peer-to-peer or via centralized scheme to collaboratively disseminate DDoS
filtering information.

In order to assess our proposed collaborative DDoS mitigation scheme, we deploy prototype
testbeds in our laboratory. We also introduce three different deployment approaches i.e., linear, central
and mesh in our testbed. Scalability and efficiency pose the main challenges because of the number of
ASes in the routing systems globally. Our evaluation results are quite promising and demonstrate the
effectiveness, flexibility and scalability of the proposed approach.

An early version of this work appeared as a workshop paper [14]. In this paper, we have
added significant new results with different hop levels. We also demonstrated performance of
global dissemination of attack definition with the central deployment approach along with CPU
and memory utilization.

The rest of the paper is organized as follows. Section 2 describes the state of the art. Section 3
gives the in depth architectural details of our work. In Section 4, we discuss the testbed deployment
and evaluations. Finally we conclude the paper in Section 5.
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2. Related Work

In this section we highlight relevant research work done in the domain of DDoS defense with
SDN (other than [10], discussed in Section 1). This work can roughly be divided into DDoS defense
mechanisms against the core SDN infrastructure and the approaches that leverage SDN against
DDoS attacks [15].

2.1. SDN Mechanisms against DDoS Attacks

In [16], the authors have utilized Self Organizing Maps (SOM), an unsupervised artificial neural
network trained with features of the traffic flow, to classify the network traffic flows as either normal
or abnormal. They extended NOX controller and monitor registered switches during predetermined
time intervals to retrieved information from the flow of interest. This sample information is then
passed to the SOM module that classifies the traffic as normal or attack.

Reference [17] proposed a network reconfiguration scheme using SDN against an attack mounted
by botnets. They maintain a pool of public IP addresses and in case of a possible DDoS attack,
the server redirects the protected service to a new set of IPs by leveraging the central and dynamic
network management offered by the SDN paradigm. A similar redirection approach is employed
in [18]. However, instead of redirecting services to new IP addresses, they identify the attack traffic
and re-route it away from the victim to alternate routes or sinkholes.

In [19], the authors introduced a use case of SDN-based DDoS attack mitigation system to provide
an autonomous and prompt configuration for suspicious network traffic. This work in its current form
is very basic without any proof of concept and evaluations.

Bohatei [20] proposes a flexible DDoS defense system that leverages NFV capabilities to elastically
vary the required scale (attack volume) and type (e.g., SYN proxy vs. DNS reflector defense) of
DDoS defense. Bohatei steers the suspicious traffic through the defense strategy graphs which are
based on the packet counts and predefined suspicious behaviors.

In [21], the authors used a combination of SDN and machine learning techniques to detect
and block amplification reflection attacks (DrDoS). The OpenFlow switch copies the traffic to
the detection agent, which applies the support vector machine (SVM) method to classify the packets
as malicious or non-malicious. On detection of malicious behavior, the detection agent notifies
the controller to block the malicious packets.

In [22], the authors used sFlow with security-centric SDN to effectively detect and mitigate DNS
amplification attack. If the incoming traffic contains a matching request Query ID in the flow records, it
is classified as a normal DNS response, otherwise, it is marked suspicious, since no query was initiated
in the first place. Marked flows are then forwarded to the SDN controller for mitigation purpose.

Floodlight based guard system (FL-GUARD) [23] proposed a three step approach against a
DDoS attack. First, they apply dynamic IP address binding to solve the problem of IP spoofing, next
they use SVM algorithm to classify attack traffic, and finally they take advantage of the centralized
controller to block attacks at the source port.

2.2. DDoS Defense against SDN

Belyaev et al. [24] proposed a two-level load balancing solution in SDN networks to increase
survival time of a system during DDoS attack. Their main work is load balancing and in doing so they
do not mitigate DDoS attack but they were able to increase the survival time by dividing the load.

Dao et al. [25] proposed a hard timeout mechanism to phase out fake flow table entries created
by an attacker to clog switch-controller communication channel and overflow the TCAM memory of
a switch. The timeout is explicitly applied to arbitrary infrequent flows for error or DDoS packets
whose sole purpose is to overwhelm the capacity an OF-switch.

StateSec [26] employs stateful SDN in the context of DDoS defense and delegate local processing
to switches. Switches directly handle traffic monitoring of pertinent features (e.g., IP source
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and destination, port source and destination) by using stateful programming, thus reducing the
computational burden on the controller. The precise results are then fed to an entropy-based
algorithm for attack detection at the controller. This work in its current form is very basic without any
extensive evaluations.

2.3. Collaborative DDoS Mitigation

FireCol [27] present a collaborative system at the ISP level to detect flooding based DDoS attacks
as close as possible to the attack source(s). Multiple IPSs form an overlay networks of protection
rings around subscribed customers and collaborate by computing and exchanging belief scores on
potential attacks. The attack is measured based on the overall traffic bandwidth directed to the
customer compared to the maximum bandwidth it supports.

CoFence [28] proposes a collaborative DDoS defense mechanism among NFV-based peer
domain networks. CoFence allows domain networks to share resources with other peers based
on a reciprocal-based utility function. This enables domain networks under DDoS attack to efficiently
redirect excessive traffic to other collaborating domains for filtering.

CIPA [29] is an artificial neural network based collaborative intrusion detection system, deployed
as a virtual network over the substrate of networks. CIPA disperses the computation power to the
programmable switches of the substrate. The neural network disperses across the switches to function
like an integrated IDS/IPS and give the system a global view to detect distributed attacks.

3. System Design and Architecture

Collaborative DDoS mitigation requires multiple SDN domains networked together as depicted
in Figure 1. Each domain is a complete AS with egress and ingress routers. Any single autonomous
system may be comprised of multiple SDN controllers which communicate with each other
via our proposed C-to-C protocol. At the border of any AS sits SDN controllers that are capable
of communicating with the neighboring AS’s controllers to transfer attack definitions (Attack
definition basically consists of the malicious IP addresses that are exchanged in the payload of
C-to-C protocol). These ASs can roughly be divided into a Source Domain, an Intermediate Network
Domains and a Destination Domain.

Figure 1. High-level Architecture of Collaborative DDoS framework.

The source network is what the attack traffic is initiating from. The intermediate network(s) is
comprised of multiple SDN domains connected with each other. The destination network(s) is the one
that the victim is residing in. Attack traffic initializes from the source domain(s). It passes through
intermediate networks to reach the destination network.
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In this paper, we have leveraged SDN to effectively mitigate the DDoS attack closest to the source.
Our primary assumption in this work is that a detection engine will inform our SDN controller about
possible attack information based on which we will mitigate the DDoS attack. This detection engine
may consist of very effective and sophisticated detection mechanisms, like the one proposed in [30],
which can be both internal as well as external to the AS. In the following subsections we discuss
the internal component architecture of the controller. Furthermore, we have elaborated the payload
structure of the C-to-C protocol and summarized the overall collaborative DDoS mitigation work flow.

3.1. Controller-to-Controller (C-to-C) Protocol

Figure 2 depicts a typical packet sent from the detection engine to the SDN controller. A typical
C-to-C packet sent by the detection engine to the SDN controller is comprised of three sections
i.e., data, certificate and signature (see Figure 2). The data section contains a list of IP addresses and
the corresponding action that must be taken. The certificate section contains a certificate along with
the public key. The signature section contains a message digest signed with the private key of the
attached certificate.

Figure 2. Payload structure of C-to-C protocol.

3.1.1. Data Section

This section contains all the information that needs to be communicated, which in our case are
typically a list of IP addresses along with their statuses. Figure 3 shows a raw representation of the
data contained in JSON format. The JSON object is self-descriptive. We have a list of IP addresses
that are needed to be blocked, or if an IP was previously blocked mistakenly, then the status helps in
unblocking it.

Figure 3. Payload of C-to-C protocol with attack definitions.

3.1.2. Certificate Section

The certificate section is comprised of a certificate attached by the communicating system to
authenticate its legitimacy.

The idea of certificate chaining is not new and it is heavily used in day to day communications,
e.g., in authenticating the DNS records, in client to server communication and server to
server communication. There are two types of certification authorities (CAs): root CAs and
intermediate CAs. In order for a certificate to be trusted, that certificate must have been issued
by a CA that is included in the trusted store. In our system, a trusted store is a directory containing
root or intermediate certificates and other private keys of the user. There is no particular directory
specified in Linux for trusted store. We have created our own in the POX controller folder.

If a certificate presented by a neighboring controller is not issued by a trusted CA then the
certificate of the issuing CA is checked to see if the certificate of the issuing CA was issued by a trusted
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CA and so on until either a trusted CA is found (at which point signature is verified and flows
are installed) or no trusted CA can be found (at which point the whole payload is dismissed).

3.1.3. Signature Section

This section contains a message digest signed by the private key of the certificate attached.
This helps in verifying the authenticity as well as the integrity of the attack definition and its sender.

3.2. Controller Modules

We have written different programs that run on POX [31] as stand-alone modules. These modules
allow the controller to perform different functionalities such as installing flows, listening for
attack definitions from neighbouring controllers, validating the signature of attack definitions and
propagating the attack definitions to other controllers. The modules are further discussed in the
following sections (also see Figure 4).

Figure 4. Component Architecture of controller.

3.2.1. Policy Listener Module

This module runs a simple lightweight server program on the controller that listens on
a predefined port for attack definitions received from neighboring controllers. On receiving
an attack definition, the module verifies the payload via Payload Validation Module using the
embedded certificate. Upon the successful verification, all the attack definitions are written on a CSV
file and the L3 Learning Module is made aware of the updated policies. The L3 Learning module then
refreshes the policies by installing new flows from the updated CSV file. This module also calls the
Policy Pusher Module to forward the flows to the neighboring controller.

3.2.2. Payload Validation Module

This module validates the certificate and verifies the signature of the payload before the payload
is further processed and flows are installed into the individual nodes (i.e., switches or routers).
The certificate is validated via chain of trust. A root certificate of the CA is present in the trusted store.
The certificate is validated against the trusted CA. Upon the successful validation of the certificate,
the signature of the payload is validated for checking the integrity of the message. The IP addresses
contained in the payload are forwarded to the connected nodes upon successful signature verification.

3.2.3. Policy Pusher Module

This module pushes the policies (containing the new attack definitions) to the
neighboring controllers. The Policy Listener module informs the Policy Pusher module to
update the policies locally upon the successful verification and forwards the attack definitions.
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3.2.4. L3 Learning Module

This module derives most of its functionality from POX’s out of the box forwarding module
named L3_learning. It is a simple layer 3 learning module that provides connectivity between the nodes
via the nodes they are connected with. L3_learning module handles the ’packet in’ event. The module
maintains a list of bindings ports of switch with the MAC address of the connected machines.
Upon arrival of a new packet, it first looks into its list for an already existing binding. If a binding is
found, the packet is forwarded to that port along with the flow which is installed on the switch for
any number of subsequent packets. If no binding is found, the module instantiates an ARP request.
Upon receiving ARP reply, the port and MAC address binding is saved into the list and the packet is
forwarded to the destination port along with the flow. Along with the connectivity, it installs policies
received to block the attack traffic. Whenever new flows are installed, the policy listener module
informs the L3_learning module. The L3_learning module then flushes all the flows installed on the
nodes and installs negative flows blocking malicious traffic.

3.2.5. Stats Collector Module

This module collects information like number of packets/second passing through a particular
domain, active flows installed in a network and traffic passing in Mbps, etc. This module is specifically
used to collect evaluations and results when the proposed mechanism is deployed on several test beds.

3.3. Work-Flow of Inter AS Collaborative DDoS Mitigation

The complete work flow of the Collaborative DDoS mitigation is summarized as follows.

1. The detection engine communicates with the SDN controller via C-to-C protocol and forwards
a list of malicious IP addresses in the form of an attack definition.

2. The SDN controller first validates the communicating server by going through the following steps:

(a) A certificate is retrieved from the payload.
(b) The Payload validation module validates the certificate via a root certificate of the issuing

certification authority present in the trusted store.
(c) Once the certificate is authenticated via root chaining, the signature of the message

is validated.
(d) Upon the successful validation of the signature, the payload is processed further or it is

discarded.

3. The IP addresses present in the payload are then written to a policy file and L3-Learning module
is informed about the updates in the policies.

4. The L3-Learning module then reads the updated policies from the policy file.
5. The L3-Learning module then installs the new policies on each connected node.
6. As a result of the new policies, malicious flows are blocked. Any previously blocked flows can be

allowed depending upon the improved detection.
7. The SDN controller then forwards the policies to the neighboring controllers via Policy

Pusher Module.
8. The neighboring SDN controllers performs the same steps starting from step 2 to 7.

3.4. Protecting Controllers against DDoS

C-to-C protocol facilitates selective communication between authorized controllers with valid
signatures on the payload. This enables effective filtering of unnecessary traffic from unknown source(s)
and limits the effect of DDoS attack directed towards the controller at the first place. Still attackers
can try to launch a DDoS attack against a controller in an ISP (or AS), however, a DDoS attack against
a controller is synonymous with an attack against any host/server within an ISP. Our proposed scheme
will be effectively applicable in this scenario as well.
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4. Testbed and Evaluations

We divide our testbed into three different networks i.e., Source, Intermediate and
Destination network(s). We use Mininet [32] to emulate the networks with POX [31] as the controller
platform. In our testbed, OF-switch are also used to simulate the behavior of an edge router in an SDN
network to filter the traffic as per policy. All the Mininet instances emulating different networks are
connected via GRE tunneling. The role of each network in our testbed is discussed below.

The Source network is the one that generates both legitimate and attack traffic. We used three nodes
in the source network out of which two generate attack traffic while one node is the legitimate one.

The Intermediate or inter-connecting networks are multiple Mininet networks connected
via GRE tunneling. They are autonomous networks running their own topologies and also act
as the transit networks to route the traffic between source and destination. They can be treated as
different autonomous systems within the same ISP or different autonomous systems in different ISPs.
Since they are Mininet emulated networks, they contain SDN controllers running on POX framework.
The SDN allows us to communicate with these networks during the process of mitigation and to
install the blocking flows to restrict the attack traffic passing forward, hence the load of mitigation is
not solely on destination network, instead it is distributed on the whole network and it will gradually
find its way towards the source of the attack.

The Destination network is also a Mininet network comprising a victim node that is the destination
for both legitimate and attack traffic generating from the source network(s). Initially the destination
host fulfills all the requests coming from the source network(s) without any distinction between
legitimate and malicious traffic. However, once the destination network is made aware of the malicious
traffic, it starts blocking the malicious traffic and subsequently informs the neighboring networks.

For the most part of our evaluations (mentioned otherwise), each node in our testbed consists of
2.60 GHz Intel core i5 CPU, 8 GB RAM, 500 GB HDD and 1 Gbps Ethernet card. We use Scapy [33] to
generate ICMP packets with varying payloads for both attack and legitimate traffic targeted towards
the destination.

Since detection is not within the scope of our work, we have simulated a node as a detection
engine that feeds malicious flows to the destination network in order to mitigate the attack. It can reside
in any of the above networks or it can be in a different network. Furthermore, there is no restriction
that this node should also be running within an SDN network. It can be in a legacy network. All that
is required from this node is that it speaks the same C-to-C protocol as defined in the above section to
properly authenticate itself and provide the attack definitions.

4.1. Deployment Approaches

We used three different approaches to deploy our testbed. As a test bed, we have taken three
approaches shown in Figures 1, 5 and 6. The basic difference between the approaches is how the
policies (attack definitions) are distributed. These approaches are briefly discussed as follows.

4.1.1. Linear Approach

This is the regular implementation discussed in the above section with architectural details
(Figure 1). This approach comprised of all the participating networks i.e., Source, Intermediate and
Destination networks connected with each other in linear fashion. A third party detection engine
(similar to HADEC [30]) feeds the attack definitions into the destination network, which then forwards
them to the neighbouring network and this process continues until the definitions reach the source.

4.1.2. Centralized Approach

In this approach (see Figure 5), there is one Central Control Platform that handles attack definitions
from all the connected networks. Upon successful verification, the platform then forwards the
attack information to the connected SDN controllers. The SDN controllers upon receiving the attack
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definitions install the flows defined in the policy after verification check. This approach is helpful in
preventing hop-by-hop dissemination of attack definition, specially in scenarios where a huge amount
of traffic is being handled by SDN controllers. Moreover, in this approach the flows installed can be
targeted depending upon the destination address. As a result, not every SDN network has to install
all the flows. The central approach only forwards the relevant flows to the intended SDN controller
hence saving the TCAM memory of OpenFlow switches.

Figure 5. Centralized Policy Distribution.

Figure 6. Mesh Connectivity for Direct Policy Distribution.
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4.1.3. Mesh Approach

In this approach, any single network deploys a mesh connectivity with existing networks
(see Figure 6). This enables any single network to forward the received attack definitions directly
to all the connected networks, instead of pushing the attack definitions linearly one by one to its
neighboring network. This way the mitigation process is very fast.

4.2. Bootstrapping

In order to effectively bootstrap the proposed scheme, we have to consider the accessibility to
neighboring controllers and pre-hand knowledge of the CA. In the case of peer-to-peer deployment,
a controller in an AS will follow the peering agreements. Just as any edge routers are configured
with the accessibility information of neighboring AS’s edge router, the controller’s in peer ASs will be
configured with the accessibility information (IP, port). In the centralized approach, the AS can publish
a list of authorized controllers in the Central Control Platform. This approach is very simple, yet very
effective and it is successfully being used by Sender Policy Framework (SPF) [34] (an IP based email
authentication mechanism with over 7 million registered domains). The knowledge of CAs is part
of controller’s configuration; this approach is successfully used in DNSSEC and all the browsers that
have pre-installed certificates of more than 600 root CAs and 1200 intermediate CAs.

4.3. Effect of Deployment Approaches on Attack Mitigation

We performed different experiments to analyze the behavior of attack mitigation under different
deployment approaches (linear, central and mesh). We would like to emphasize that the core focus of
the proposed collaborative scheme is mitigation of DDoS along the attack path and this scheme can be
flexibly appended with any effective detection algorithms. We obtained some promising results that
give us insight about the potential problems that our proposed architecture is capable of solving.

4.3.1. Linear

For the Linear approach, we set up two testbeds with four networks (one source, one destination
and two intermediate networks) and eight networks (one source, one destination and six intermediate
networks) connected in a linear fashion. The choice of two intermediate networks helps in representing
short routes, whereas, six intermediate networks give us relevant ISP settings that would work in
practice. This is because the average length of AS paths over time, as seen by the RIPE NCC Routing
Information Service (RIS) route collectors, for IPv4 networks is fairly stable at 4.3 AS-hops [35].

In the experiments, the source network generates approx. 21,960 packets per second out of which
only 4392 packets are legitimate and the remaining 17,568 packets are malicious. For the sake of
simplicity, we have assumed that none of the intermediate network is generating its own traffic. Hence,
the only traffic passing through the intermediate networks is coming from the source network.

For the first experiment, we used LAN settings with no delays between different SDN domains.
Furthermore, we used attack definition with 1 K IP addresses to keep the processing delay minimum.
The results generated via this setup are shown in Figure 7. The graphs are between the data flowing
from source to destination and the time it takes to mitigate the attack.

Figure 7a show the results for testbed with four networks. At time −1 the attack is being carried
out, so the amount of traffic in all four networks is at the maximum volume. At time zero, our
destination network receives the attack definitions via detector node. The SDN controller at the
destination node verifies the authenticity of the attack definitions from the detector node and upon
success installs the flows. Due to this, we observed a traffic drop at the destination network and the
number of accepted packets are reduced to only the legitimate ones i.e., 4392. At this moment, the
amount of packets flowing through other networks remains the same. After installing the flows in
its own network, the SDN controller at the destination network forwards the attack definitions to the
neighboring network i.e., network 1. Network 1 validates the source of the message and installs the
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flows. Due to which at time 12.66 ms there is a decrease in the traffic at network 1. Network 1 follows
the same pattern and forwards the attack definitions to its neighbor i.e., network 2. Network 2 follows
the same steps too and at time 40.4 ms the traffic flow drops to normal only allowing the legitimate
traffic to pass through. This continues until network 2 forwards the attack definition to the source
network. At time 71.6 ms, the source network installs the flows and the traffic drops to the legitimate
traffic only. In the end, the attack has been mitigated not only from the destination network, but all the
way to the source with the help of collaborative propagation of the attack definitions. Here, we also
observed that the validation and processing of small size attack definitions has a trivial impact on the
latency.

For the test bed with eight networks, we have one source network, one destination network
and six intermediate networks. The whole operating procedure remains the same as thoroughly
described above. The results shown in Figure 7b resemble the pattern of Figure 7a. The effect of
mitigation is instantly transferred from destination to the source. One thing worth noting is the amount
to time it takes to mitigate the attack completely all the way from the destination to the source. In the
previous setup it took about 71 ms to completely mitigate the attack from destination to source with
two intermediate networks. In this setup with six intermediate networks, it took approx. 132 ms.

(a)

(b)

Figure 7. Mitigation Effect in LAN Setting: Shows the data flowing from source to destination and the
time it takes to mitigate the attack. (a) Two Intermediate Networks; (b) Six Intermediate Networks.
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In our second experiment we focus on the real world deployment aspect of an ISP settings.
We added AS-to-AS communication latency and processing delays for large size attack definitions.
For AS-to-AS communication latency, we ran traceroute for arbitrary domains and took worst case
estimates of 150 ms avg. delays (On average, we observed 3 to 5 router hops in any AS or ISP) using
a 500 kb/s Internet connection (to simulate low available bandwidth during an ongoing DDoS). It took
on avg. 137 ms to process a payload containing 100,000 IP addresses (see Section 4.4). The results
generated via this setup are shown in Figure 8. In this experiment, the whole operating procedure
remains the same as thoroughly described above. The results for four and eight network setup
resembles the previous pattern except for the values (see Figure 8a,b). The effect of mitigation
transferred from destination to the source with two intermediate networks is approx. 660 ms and with
six intermediate networks it increases to approx. 2141 ms or 2.14 s.

The larger number of Intermediate networks have proportional increase in the mitigation time.
Nevertheless, our proposed framework and C-to-C protocol is lightweight with instantaneous effect.
It only requires somewhere between 290 to 330 ms to process and forward attack definitions from
one network to another in realistic ISP settings.

(a)

(b)

Figure 8. Mitigation Effect in ISP Setting: Shows the effect of mitigation transferred from
destination to the source in real ISP settings with AS-AS Latency and Processing Delays.
(a) Two Intermediate Networks; (b) Six Intermediate Networks.
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4.3.2. Mesh and Centralized Approach

In the fully meshed and centralized approach, the controllers are directly connected with
each other. This way the attack definitions or flows are pushed from the destination to Intermediate
and source networks. We performed a similar experiment as discussed above, but with a mesh of
controllers connected with each other or a centralized way of carrying out communication, the effect
is very immediate as compared to the linear approach. Figure 9 shows the immediate drop in attack
traffic since the controllers are connected directly and the flows are pushed right from the destination
or central platform to the individual networks.

Figure 9. Linear vs. Mesh or Central: Shows a time based comparison of Policy Propagation delay
between linear and mesh approach. Due to direct connection in mesh or central approach the mitigation
effect is immediate.

4.4. Performance of Central Control Platform

The main idea of central control platform is to create a trusted authority that verifies the attack
definitions received so that intermediate controllers do not have to go through the laborious task of
individually verifying and forwarding the attack definitions. The result of this approach is quite
similar to the one achieved in the Mesh approach. In this section we evaluate the efficiency and
scalability of the central control platform. This includes the effect of payload size, dissemination delays
and throughput of the flows and system benchmarks (CPU and memory usage). For the performance
evaluations, we used a low end machine with Intel core i3-4010U 1.7 GHZ × 4 CPU with 4.0 GB of
RAM as the central controller.

4.4.1. Effect of Payload Size

The performance of our system also depends upon the payload size of an attack definition which
mainly consists of malicious IP addresses. We took various payloads and computed the time to verify
and process the IP addresses to generate relevant flow table entries. Figure 10 display the effect of
the increasing size of payloads . It took on average of 1.8 ms to process (verification of signature and
insertion of flow table entry) a payload containing 1000 IP addresses. The processing time increases to
13 ms for payload with 10,000 IP addresses and around 137 ms to process 100,000 IP addresses.

Here we choose 100,000 IP addresses to stress test the computation overhead due to large payload
processing on low-end commodity hardware. Unlike routers, the TCAM space in switches are
expensive, so it would be more realistic to apply reasonable cap or exchange malicious subnets
information instead of IP addresses, in case switches are used as the network component.
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4.4.2. Dissemination Delay and Throughput

In order to evaluate the dissemination delays of attack definitions, we generated 100 different
payloads with attack definitions and forwarded each payload to 100 connected controllers in three
different modes. i.e., Burst mode, with 100 ms delay (the delay added between two different attack
definitions), and with 500 ms delay. Figure 11 shows the results. In burst mode i.e., with 0 delay between
attack definitions, it took approx. 28 s to dissipate all the flow policy to 100 connected controllers.
With a delay of 100 ms, it took approx. 34 s and with a delay of 500 ms it took approximately 50 s.

Figure 10. Effect of payload size on processing delays.

Figure 11. Central Platform: Load testing at varying delays.

According to the CIDR report [36], the number of ASes in the routing system today are approx.
58,000. Figure 12 shows the growth of ASes count over the years. We measure how the number of ASes
effects the time required to process the attack definitions at the central control and the throughput
in terms of AS count. For this, we varied the AS count between 5000 to 60,000 (emulating realistic
global AS count) and the central control platform forwarded the attack definition with a payload of
100,000 malicious IP addresses, in burst mode, to all the connected ASes. Figure 13 shows the average
processing delays for different AS counts. On average it took 21.74 s to process and forward the attack
definition to 5000 ASes. An increase in AS count adds a linear increase in the delays and with 60,000
ASes the overall delay was around 252.71 s. These numbers represent delays as per current global AS
numbers on average commodity hardware. The performance can significantly improve with high-end
computational devices.

Figure 14 shows the throughput in terms of number of ASes handled per second. The average
throughput remained fairly constant throughout the experiment and we were able to forward the
attack definitions to 230–237 ASes per second. This is equivalent to disseminating 23 million malicious
IP addresses per sec.
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Figure 12. Global AS count in November 2017 [36].

Figure 13. Payload Dissemination Delays with varying AS Count.

Figure 14. Average throughput

4.4.3. CPU and Memory Utilization

We also evaluated the CPU and memory utilization while measuring the effect of different AS counts.
The average CPU utilization results (see Figure 15) show that the dissemination of attack definition with
central control platform is not CPU intensive and it remained between 26% to 35%. Similarly, memory
utilization remained constant between 24% to 25% in all the scenarios (see Figure 16).
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Figure 15. Avg. CPU usage (%).

Figure 16. Avg. memory usage (%).

The evaluation results presented in this section show that the proposed approach is fairly
lightweight in mitigating DDoS attacks near the source. The amount of time it takes to completely
mitigate the attack all the way from the destination to the source is instantaneous. Our stress tests and
micro benchmarks show that the overheads imposed by the additional processing (verification and
forwarding of attack definition) are tolerably small on average commodity hardware. The performance
can significantly improve with high-end industry scale computational devices.

5. Conclusions

This paper takes an important step by presenting a lightweight, efficient and easy to deploy
collaborative DDoS mitigation scheme leveraging SDN. Using the proposed scheme, a SDN controller
in any AS can directly communicate with the controllers in the adjacent network via secure
C-to-C protocol and inform them about an ongoing attack. This helps in efficient propagation of
attack definitions all the way from the victim to the attack sources. We also introduced three different
deployment approaches i.e., linear, central and mesh in our testbed and tested the overall efficiency.

Experiments with our prototype implementation show that the effect of mitigation is
instantaneously transferred from destination to source. It took around 2.14 s to mitigate the attack
in an eight hop linear deployment. Furthermore, it only requires somewhere between 290 to 330
ms to process and forward attack definitions between adjacent networks. The processing of attack
definition payload (verification of signature and insertion of flow table entry) is also lightweight
even on low end machines with a processing time of around 13 ms for a payload with 10,000 IP
addresses. The performance benchmark of central deployment approach show reasonable CPU (35%)
and memory (25%) utilization on average commodity hardware. The results also show that it only
took 21 s to disseminate attack definition to 5000 AS. Of course, with high-end expensive servers the
dissemination time can be significantly reduced.
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