
future internet

Article

Query Recommendation Using Hybrid
Query Relevance

Jialu Xu †,∗ and Feiyue Ye †,∗

The School of computer engineering and Science, Shanghai University, Shanghai 200444, China
* Correspondence: jialuxu@shu.edu.cn (J.X.); yefy@shu.edu.cn (F.Y.)
† These authors contributed equally to this work.

Received: 22 October 2018; Accepted: 17 November 2018; Published: 19 November 2018 ����������
�������

Abstract: With the explosion of web information, search engines have become main tools in
information retrieval. However, most queries submitted in web search are ambiguous and multifaceted.
Understanding the queries and mining query intention is critical for search engines. In this paper,
we present a novel query recommendation algorithm by combining query information and URL
information which can get wide and accurate query relevance. The calculation of query relevance is
based on query information by query co-concurrence and query embedding vector. Adding the ranking
to query-URL pairs can calculate the strength between query and URL more precisely. Empirical
experiments are performed based on AOL log. The results demonstrate the effectiveness of our
proposed query recommendation algorithm, which achieves superior performance compared to
other algorithms.

Keywords: query recommendation; query relevance; query embedding

1. Introduction

As the number of web pages keeps expanding, it is progressively difficult to get useful information
which can satisfy user’s needs based on original search queries [1]. Thus, users rebuild a new query
that is similar to the original search query and is closer to the user’s search intentions. We can see
some examples in Table 1. For example, when users input a new query “apple” to a website, they do
not get their useful information. Thus, the search engine will provide a series of new queries, e.g.,
“apple website” and, “iPhone”. In such a way, users can choose a new query to search relevant
information and quickly get what they want. Input queries are usually too short and ambiguous to
express the true idea. So, understanding the query and mining intention are the key steps.

Table 1. Example of query recommendation.

Query Recommended Queries

apple apple website, apple hk, iphone xr, apple watch4
book table, pencil box, study, desk
basketball basketball player, basketball court, soccer

A query log [2] is an important resource to mine user search behavior. The user submits a query to
a search engine that leads to a series of information in the query log. The sequences of queries issued
by a user within a short time have same intention. A session is defined as sequences of queries that are
submitted to satisfy the same intention. Therefore, query co-occurrence in the same session has query
relevance and can be used to produce a recommendation. Only using query co-occurrence is prone to
data sparsity and loss of much useful information in a query log.

Future Internet 2018, 10, 112; doi:10.3390/fi10110112 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi10110112
http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com/1999-5903/10/11/112?type=check_update&version=2

Future Internet 2018, 10, 112 2 of 13

Clicked URLs in a query log have been used in query recommendation [3]. Clicking behaviors
show query intention, to some extent. For instance, when the user submits the initial query “apple” to
the search engine, its search aims to find the “iPhone official website”. If the URL of “Apple’s official
offer” clicked by the user is considered in the query recommendation, the next recommended query
will have the information of iPhone, which is closer to the user’s real search intention. Accordingly,
the clicked URLs can reveal the user’s search intention. Query semantics is also an important factor
to understand queries. Both query information and URL information are based on counting the
number, and lacking query semantics. To better understand query intention, we propose a query
recommendation method. The model is shown in Figure 1.

Figure 1. Architecture showing query recommendation.

In our model, we mine query co-occurrence from query log and use query semantics to calculate
query relevance. At the same time, we calculate the query relevance by query-URL pairs, adding the
ranking of URLs. We can obtain hybrid query relevance, combining the relevance of query information
and URL information.

The three major contributions of this paper are summarized as follows:

(1) Solely mining query information from a query log can obtain little useful information and cause
data sparsity. Therefore, we use the corpus to train a query embedding vector, getting query
semantics to expand the query information and improving the accuracy of the relevance
between queries.

(2) We combine the number of clicked URLs and the ranking of URLs in the web pages to calculate
query relevance. The two different queries are more similar when they have the numbers of the
same clicked URLs. At the same time, the ranking of the URL in the web page is higher; the URL
is more related to the query.

(3) We calculate the hybrid query relevance by query information and URL information. Queries in
a session have same query intention. The clicked URLs can more accurately understand query
intention. Comprehensive consideration of the query information and query-URL pairs is an
effective way to understand the user’s intention.

2. Related Work

Much research has explored the area of query recommendation based on query logs [4–6].
Chen et al. [4] proposed a query suggestion method by constructing struggling flow graph to identify
the struggle phrases and mine effective representation based on query log. Zahera et al. [6] proposed a

Future Internet 2018, 10, 112 3 of 13

method based on clustering processes in which groups of semantically similar queries are detected.
A query log has lots of queries which can be used to understand query search intention. Mining
query information in a query log has been discussed. Boldi et al. [7] presented query flow graph
model (QFG). In a QFG, each node represents a query and each edge between two nodes shows that
they are consecutive in a session. Assignment of score values to each query permits use of random
walk. It extracts the relationship between queries. However, it has some limitations. On the one
hand, only query information is employed in the QFG, but not the URL information and semantic
information. The clicked URL in the log and query semantic information can better understand the
query semantics and more accurately locate the user’s query intention. On the other hand, a query is
usually short, with an average of only two or three words. Moreover, some queries are ambiguous.
Understanding the semantics of a query and the search intention is limited by the use of only query
information in the QFG. Sordoni et al. [8] proposed novel hierarchical recurrent encoder-decoder
architecture to account for sequences of previous queries. The queries in a session is training data,
thus making the next query prediction contextual. Among these methods presented, some capture
word-level representation [9,10], some described queries using different feature space [11], some
learned the ranking to improve the accuracy of candidate queries [6].

Clicked URLs are important features to understand query intention. QUBIC [12] was proposed
based on a query-URL bipartite graph. It extracts an affinity graph from the initial query-URL bipartite
graph only using queries. The weights of edges in an affinity graph are calculated by a query-URL
vector, capturing the similarity from query to query. A clustering algorithm [5] was proposed that can
automatically mine query major subtopics from the query log, where each subtopic is represented
by a cluster containing several URLs and keywords. Nevertheless, these pieces of research are about
query-URL pairs for the query recommendation, and are not related to the URL ranking. Ma et al. [13]
applied a union matrix which combines query-URL bipartite graph and user-query bipartite graph
to learn low-dimensional latent feature vectors of queries and proposed a solution for calculating
query similarity using those feature vectors. The query-product clickthrough bipartite graph [14]
was proposed by search engine logs and specific domain features such as categories and products
popularities. In those approaches above, mining URL information and features can gain query
relevance. However, queries submitted to search engines also show the relation between queries.
Ye et al. [15] proposed an efficient query suggestion method by calculating the bidirectional transition
probability-based query-URL graph and making a strength metric of the query-URL edges. The query
log is regarded as the main data in those approaches. However, log files are usually sparse, and
there are no edges between many queries and URLs. Therefore, this is not enough for mining query
relevance, which only uses a query log.

Existing work aimed to model query information or query-URL pairs to calculate the query
relevance, while our method combines query co-occurrence and query semantics to calculate the
relevance-based query information and combine the ranking of URL and query-URL pairs to calculate
the relevance-based URL information. At the same time, the query information and URL information
are considered to calculate the final query relevance.

3. Our Approach

In this section, we illustrate how to calculate the query relevance and recommend the related
queries based on query information and URL information. Query relevance based on query
information has two parts, namely query co-occurrence in a session and query semantics. The query
relevance based on URL information is calculated by query-URL pairs adding ranking. The query
recommendation algorithm is based on hybrid query relevance which combines query relevance-based
query information and query relevance based on URL information.

Future Internet 2018, 10, 112 4 of 13

3.1. Preliminaries

The users submit a query to the engine and click the returned pages. If users feel satisfied with
the information, the search process ends; otherwise, the users submit a new query which has the same
search intention as the initial query. Search engine records search behaviors to form a query log. A query
log contains a UseID, issued queries, clicked URLs, the ranking of URLs and a timestamp. We can extract
useful knowledge to improve the efficiency of query recommendation from this information. A format
of a record in a query log, typically, is < userid, query, clicked URL, ranking, timestamp >.

A session means that user has a search intention. We consider a query session as a sequence
of queries S = {q1, q2, . . . , qn} where n is the number of queries in S. One common way to gain the
session from query log is to use a time threshold. We take 30 min as the time threshold for session
segmentation according to previous work [16]. White et al. [16] showed the probability of switching,
for sessions of varying length, as measured by the number of queries in the session. It can be proved
that 30 min is the best threshold for the session partition of the search log.

3.2. Query Relevance Based on Query Information

The query log in the search engine can be divided into different sessions. The queries in a session
have the same query intention. We count the number of queries qi and query qj in the same session
and qj submitted immediately after the query qj. We define the query pairs as a tuple, [qi, qj, f (qi, qj)].
So the query log contains many query pairs. The query relevance can be determined by the following
equations [7]:

Relsession(qi, qj) =

{ f (qi ,qj)

f (qi)
i f (Relsession(qi, qj)) > θ

0 otherwise
(1)

where Relsession(qi, qj) denotes the relevance between query qi and query qj based on query
co-occurrence in sessions. f (qi) denotes the numbers which qi appears in the query pairs. f (qi, qj)

denotes the numbers that query pairs of (qi, qj) appeared in the query pairs. Due to data sparsity,
there are many missing values in calculating Relsession(qi, qj). At the same time, we cannot accurately
calculate the query relevance if we do not correctly distinguish whether the queries have the same
search intention. Therefore, we use query semantics to expand query information by query embedding
vectors, better understanding queries. Word2vec is a good way to train word vectors. The learning
process of a vector by word2vec can be expressed as linear translations. For example, we can find the
results of simply computing vector (“King”) − vector (“Man”) + vector(“Woman”) is very close to the
vector of “Queen” [17,18]. Therefore, taking the element-wise sum or mean of the word embedding
over all words in the sentence also produces a vector with the potential to encode meaning [19,20].
The queries in the search log are usually short, averaging only two or three words. Therefore, we can
get the query embedding vectors based on pre-trained word embedding vector by linear combination.
Moreover, the word vector of each word in the query is easily obtained through corpus training. It is a
time-saving method.

The calculation of query semantics can be divided into three steps (illustrated in Figure 2):

Future Internet 2018, 10, 112 5 of 13

Figure 2. The process of calculating query semantics.

First, each query can be seen as a set of words, represented as q = {qw1, qw2, . . . , qwn}, where q is
query. The qw1 is the keyword in the query.

Second, we calculate the query embedding vectors by pre-trained word embedding vector [19] by
the following equations:

Vq = ∑n
i=1 word2vec(qwi) (2)

where word2vec(qwi) denotes the word i in the query and n denotes the number of words in the query.
Third, we calculate the relevance of query semantics between each query embedding vector via

the following formulas:

Relsem(qi, qj) = sim(Vqi, Vqj) =
∑m

i=1 (xi × xj)√
∑m

i=1 (xi)2 ×
√

∑m
i=1 (xj)2

(3)

where vqi,vqj denote the query embedding vector. xi, xj denote the value of the query embedding
vector vqi,vqj. m denotes the dimension of vector.

The query relevance based on query information can be obtained as follows:

Relquery(qi, qj) = αRelsession(qi, qj) + (1− α)Relsem(qi, qj) (4)

where Relquery(qi, qj) denotes query relevance based on query information, Relsem(qi, qj) denotes the
relevance which calculated by query semantics, Relsession(qi, qj) denotes the relevance where queries in
same session, and α denotes weight.

3.3. Query Relevance Based on URL Information

Query information is an important factor for understanding query intention. The clicked URLs
can also help us better understand query intention. The more the same URLs queries are clicked,
the more relevance the queries gets. A higher ranking means that the URL is more important.
We count the number of query clicks for each URL and get the average ranking, defined as a tuple,
[Q, URL, C(Q, URL), Averanking]. Q is a set of queries: Q = {q1, q2, . . . , qt}. Where t is the number of
queries. URL is a set of URLs: URL = {u1, u2, . . . , uh}. Where h is the number of URL. Averanking is
the average ranking of each URL. For query qi in a set of Q, we can see the structure of query, clicked
URLs and ranking in Figure 3.

Future Internet 2018, 10, 112 6 of 13

Figure 3. The structure of query, clicked URLs and ranking.

From Figure 3, we can see that query qi clicks different URLs, and each URL has a different
ranking. Therefore, we calculate the average rankings of each URL by Equation (5).

Averanking(ui) =
∑
|Ni |
i=1 Rui

|Ni|
(5)

where Averanking(ui) denotes the average ranking of URLi. |ui| denotes the total number of rankings
in URLi. Rui denotes one of the rankings when query qi clicks the URLi. |Ni| denotes the number of
ranking in |ui|.

We combine the number of clicks and the ranking. However, in a query log, the higher ranking
means that the URL is in front of the web page and the value of ranking is small. The strength between
the query and URL can be calculated as follows:

Str(q, ui) =
C(q, ui)

∑
|k|
i=1 C(q, ui)

∗ Averanking(ui)

=
C(q, ui)

∑
|k|
i=1 C(q, ui)

∗ ∑
|Ni |
i=1 Rui

|Ni|

(6)

where C(q, ui) denotes the number that query q clicks URL ui. |k| denotes the number of URL that
query q clicks.

Given the query and URL, we can get a t× h matrix S(sij) which shows the strength of query and
URL. sij denotes the strength of query and URL. t denotes the number of queries and h is the number
of URL.

S(sij) =


s11 s12 . . . s1h
s21 s22 . . . s2h
.
st1 st2 . . . sth

 (7)

Future Internet 2018, 10, 112 7 of 13

The relevance of queries based on URL information can be measured using the cosine measure [21]
as follows:

RelURL(qi, qj) =
S(si) · S(sj)

|S(si)||S(sj)|

=
∑h

k=1 (sik × sjk)√
∑h

k=1 (sik)2 ×
√

∑h
k=1 (sjk)2

(8)

where S(si) denotes the ith row of the matrix S(sij), sik denotes an elements in matrix S(sij), S(sj)

denotes the jth row of the matrix S(sij), sjk denotes an elements in matrix S(sij).

3.4. Hybrid Query Relevance

Not only can query information be used to understand search intentions, but also URL information.
However, there still exists drawbacks that make obtaining comprehensive query relevance in depth
inefficient. We define a hybrid query relevance which takes advantage of each method as follows:

Rel(qi, qj) = βRelquery(qi, qj) + (1− β)RelURL(qi, qj) (9)

where Rel(qi, qj) denotes the hybrid query relevance, Relquery(qi, qj) denotes the query relevance based
on query information, RelURL(qi, qj) denotes the query relevance by URL information, and β denotes
weight. The contrast experiments will be made to find out the optimum weight for parameter β in the
experimental part.

When users input a query into a search engine, we use restart random walk [22] to recommend
the query which is close to the input query. Random walk with restart is defined as equation [10].

~ri = cW̃~ri + (1− c)~ei (10)

where c is restart probability and W̃ is the matrix of hybrid query relevance. ~ei stands for initial vector,
The ith element is 1, the rest is 0. ~ri is scoring vector.

In the process of recommendation, the initial query, as a starting point, randomly selects an
adjacent query with the initial query, and moves to the adjacent query. Then the current adjacent query,
as the initial, queries and repeats the above process of random walk. Finally, we find the top queries to
recommend to users that are similar to the initial query.

4. Results

In the section, we first introduce the data set and evaluation methods. Then we find the appropriate
values of parameters α, β by gradually adjusting their weights. Last, we validate the performance of our
proposed algorithm through several experiments which compare our algorithm with other algorithms.
All the recommendation algorithms are implemented in Python 2.7 version on Windows 10 running on a
PC with system configuration Intel Core i5 processor (2.40 GHz) with 8-GB RAM.

4.1. Experimental Data and Evaluation Methods

The data set used in this paper comes from search logs from AOL search engine from March to May
in 2006 (http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs).
This collection consists of approximately 20 million web queries collected from approximately 6.5 million
users over three months. We list a few examples from AOL log in Table 2.

http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs

Future Internet 2018, 10, 112 8 of 13

Table 2. Examples of AOL log.

UseID Query Content Timestamp URL Ranking Clicked URL

217 lottery 1 March 2006 11:58:51 1 http://www.calottery.com
1268 ozark horse blankets 1 March 2006 17:39:28 8 http://www.blanketsnmore.com
2334 jesse mccartney 1 March 2006 18:53:50 4 http://www.hyfntrak.com
2421 cstoons 9 May 2006 17:32:44 2 http://www.xtracrispy.com

We use a 10-fold cross validation algorithm. The data set is randomly divided into ten parts.
Each copy contains approximately 3,500,000 records and 800,000 sessions. We take 9 copies as a training
set, and 1 copy as a test set each time. We repeat the experiments 10 times to get the mean value of
the results.

The preprocessing of the training set involves three steps: first, we use the threshold of 30 min to
divide the sessions to estimate whether the two queries have the same search target. Subsequently,
www and other navigation vocabulary in the query are removed, which can reduce noise. Finally,
we remove the edges between the queries less than five times and the edges between the queries and
URL less than five times.

During the test, the total queries submitted after query q in the test set are determined and are
considered part of a session with q to form a relevant query set. If the recommended query is in the
relevant query set, it is considered successful. In this study, the first N queries are selected to evaluate
the precision, recall, and F1-value. The precision, recall, and F1-value are expressed as follows:

precision =
the number of correct queries

the number of total queries
(11)

Recall =
the number of correct queries

the number of total correct queries
(12)

F1 =
2 * precision * recall

precision + recall
(13)

4.2. Selection of Parameters α, β

4.2.1. Selection of Parameter α

We do multi-group experiments for the value for parameter α. In the experiments, the parameter
α is satisfied at more than 0 and less than or equal to 1, when α = 1 means that we do not add the query
semantics. We change their value with interval of 0.1 in the experiment and observe the influence of
the precision, the recall and the F1 measure. To get accurate results, we recommend queries from Top 5
to Top 50 with interval of 5 and calculate average value to get the final precision, the recall, and the F1
measure. The results are shown in Figure 4.

From Figure 4, we can see that combining the query semantics can improve query recommendation
results. When the parameter α is too small, that means the weight of query semantics is too big,
and we cannot get good results. This is because some queries are ambiguous. At the same time,
some queries are correlated, but they do not have semantic relevance. We can mine their relevance
by query log. However, only using query pairs (α = 1) also cannot get good recommendation results.
Because of the sparsity of data and the incorrect session partition, the relevance between many queries
is missing. Therefore, we combine query pairs and query semantics. In Figure 4c, we can see that we
can get better results compared with only using query pairs when the parameter α is larger than 0.3.

http://www.calottery.com
http://www.blanketsnmore.com
http://www.hyfntrak.com
http://www.xtracrispy.com

Future Internet 2018, 10, 112 9 of 13

(a) Precision. (b) Recall. (c) F1.

Figure 4. Selection of Parameter α. (a) Description of Precision in the first panel. (b) Description of
recall in the second panel. (c) Description of F1 in the third panel.

We can observe that precision, recall, and F1 declined beyond 0.9. To get the optimal values of
the α, we change the range of parameter to 0.02 and conduct multiple experiments. The results are
shown in Figure 5.

(a) Precision. (b) Recall. (c) F1.

Figure 5. Selection of Parameter α. (a) Description of precision in the first panel. (b) Description of
recall in the second panel. (c) Description of F1 in the third panel.

Figure 5 suggests that precision, recall, and F1 decrease with the increase of parameter. α = 0.9 is
the best result. Thus, we set the parameter α to 0.9 in the later experiments.

4.2.2. Selection of Parameter β

Parameter β is the weight to balance the query information. A large number of experiments
have been done by changing their value with interval of 0.1. β is 1, which means we only use query
information. We also use the precision, the recall, and the F1 measure to evaluate results. The queries
are recommended from Top 5 to Top 50 with intervals of 5. We calculate the average precision, the recall,
and the F1 measure. Figure 6 shows the results.

Figure 6a shows that the precision is not greatly improved when we add the URL information.
Due to the data noise, the precision is lower than when only using query information sometimes.
However, we can see the recall is greatly improved in Figure 6b. URL information can be used as
complementary features to better understand user search intention. We can find the relevance of
queries more widely by clicked URLs. That is why the recall is greatly improved. Based on an overall
consideration of precision and recall, we can see that the recommendation efficiency is improved in
Figure 6c.

Future Internet 2018, 10, 112 10 of 13

(a) Precision. (b) Recall. (c) F1.

Figure 6. Selection of Parameter β. (a) Description of Precision in the first panel. (b) Description of
recall in the second panel. (c) Description of F1 in the third panel.

To get the optimal values of the β, we also change the range of parameter to 0.02 and conduct
multiple experiments. The results are shown in Figure 7.

(a) Precision. (b) Recall. (c) F1.

Figure 7. Selection of Parameter β. (a) Description of precision in the first panel. (b) Description of
recall in the second panel. (c) Description of F1 in the third panel.

In Figure 7, we can observe that precision, recall, and F1 declined rapidly beyond 0.9. This is
because the query submitted by the user is the best way to reflect the query intention, and the clicked
URL can be the supplementary condition to better understand the query intention in the process of
query recommendation. Therefore, the weight of query information is relatively large. β = 0.9 is the
best result. Therefore, we set parameter β to 0.9 in the later experiments.

4.3. Evaluation of Efficiency

To examine the effectiveness of our approach, we compare the performance of the
following algorithms:

(1) QFG [7]: This is a query flow graph model extracting queries to count the number of
query co-occurrences.

(2) QUBIC [12]: This is a bipartite graph model using query information and URL information in
logs to build a query-URL bipartite graph.

(3) RWUQ [15]: This is a method calculating the bidirectional transition probability-based query-URL
graph and making a strength metric of the query-URL edges.

(4) CQM [6]:This is a method based on clustering processes in which groups of semantically similar
queries are detected.

(5) QRSR: Our method considers query information and URL information. The relevance based on
URL combines the query-URL pairs with URL ranking which can more accurately calculate the
relation between query and URL.

The precision of the different algorithms is shown in Figure 8.

Future Internet 2018, 10, 112 11 of 13

Figure 8. Compare precision with other algorithms.

From Figure 8, we can see that our method has higher precision than other query recommendation
algorithms. We cannot get wide and accurate relation of queries solely using query information or
URL information. It is limited to understanding query intention. Query information and user behavior
information can complement each other. Using query embedding vectors to represent query semantics
can better understand query; using the ranking of a URL can improve the accuracy of the strength
between query and URL. We combine query information and URL information to mine more relevance
between queries which can more accurately understand queries and query intention.

Figure 9 shows the recall and F1-value on the different algorithms, respectively.

(a)Precision. (b)Recall.

Figure 9. Compare recall and F1 with other algorithms. (a) Description of recall in the first panel.
(b) Description of F1 in the second panel.

In Figure 9a, the recall of our approach is compared with those of the other four methods. We can
observe that as the number of recommendations increases, the recall rate of our method as well as other
methods increases. However, our method has a higher recall than the other two methods. The results
of F1-value are shown in Figure 9b. Its trend is the same as that observed in Figure 9a.

Future Internet 2018, 10, 112 12 of 13

5. Conclusions

In this paper, we presented a query recommendation algorithm to understand search intention
by using both query information and URL information. The query semantics was used to calculate
query relevance-based query information. Using the ranking of URL can better measure the strength
between query and clicked URL. Experiments based on an AOL log suggest that our method has
higher precision in query recommendation. In future work, we will mine other information in the
search log to improve recommendation results, which can be closer to the query intention.

Author Contributions: J.X. proposed the query embedding and the vector similarity measures; F.Y. gave the URL
strength approach and the analysis; all the authors wrote the manuscript and revised the final version.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kop, R. The Unexpected Connection: Serendipity and Human Mediation in Networked Learning. J. Educ.
Technol. Soc. 2010, 2, 2–11.

2. Choudhary, D.; Subhash, C. Adaptive Query Recommendation Techniques for Log Files Mining to Analysis
User’s Session Pattern. Int. J. Comput. Appl. 2016, 133, 22–27. [CrossRef]

3. Thirumalai, C.S.; Sree, K.S.; Gannu, H. Analysis of Cost Estimation Function for Facebook Web Click
Data. In Proceedings of the IEEE International Conference on Electronics, Communication and Aerospace
Technology Iceca, Coimbatore, India, 20–22 April 2017.

4. Chen, Z.; Yamamoto, T.; Tanaka, K. Query Suggestion for Struggling Search by Struggling Flow Graph.
In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Omaha, NE, USA,
13–16 October 2017; pp. 224–231.

5. Hu, Y.; Qian, Y.; Li, H.; Jiang, D.; Pei, J.; Zheng, Q. Mining query subtopics from search log data.
In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Portland, OR, USA, 12–16 August 2012; pp. 305–314 .

6. Zahera, H.M.; El-Hady, G.F.; El-Wahed, W.F.A. Query Recommendation for Improving Search Engine Results.
Lect. Notes Eng. Comput. Sci. 2010, 2186, 45–52.

7. Boldi, P.; Bonchi, F.; Castillo, C.; Donato, D.; Gionis, A.; Vigna, S. The query-flow graph: Model and
applications. In Proceedings of the CIKM’08, Napa Valley, CA, USA, 26–30 October 2008; pp. 609–618.

8. Sordoni, A.; Bengio, Y.; Vahabi, H.; Lioma, C.; Simonsen, J.G.; Nie, J.Y. A Hierarchical Recurrent Encoder-
Decoder for Generative Context-Aware Query Suggestion. In Proceedings of the CIKM’15, Melbourne,
Australia, 19–23 October 2015; pp. 553–562.

9. Bonchi, F.; Perego, R.; Silvestri, F.; Vahabi, H.; Venturini, R. Efficient query recommendations in the long tail
via center-piece subgraphs. In Proceedings of the International ACM SIGIR Conference on Research and
Development in Information Retrieval, Portland, OR, USA, 12–16 August 2012; pp. 224–231.

10. Qiao, D.; Zhang, J.; Wei, Q.; Chen, G. Finding Competitive Keywords from Query Logs to Enhance Search
Engine Advertising. Inf. Manag. 2016, 54, 531–543. [CrossRef]

11. Li, X.; Guo, C.; Chu, W. Deep learning powered in-session contextual ranking using clickthrough data.
In Workshop on Personalization: Methods and Applications, at Neural Information Processing Systems; Computer
Sciences and Statistics: Madison, WI, USA, 2014.

12. Li, L.; Yang, Z.; Liu, L.; Kitsuregawa, M. Query-url bipartite based approach to personalized query
recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Chicago, IL, USA,
13–17 July 2008; pp. 1189–1194.

13. Ma, H.; Yang, H.; King, I.; Lyu, M.R. Learning latent semantic relations from clickthrough data for query
suggestion. In Proceedings of the 17th ACM Conference on Information and Knowledge Management,
Napa Valley, CA, USA, 26–30 October 2008; pp. 709–718.

14. Noce, L.; Gallo, I.; Zamberletti, A. Query and Product Suggestion for Price Comparison Search Engines
based on Query-product Click-through Bipartite Graphs. In Proceedings of the International Conference on
Web Information Systems and Technologies, Rome, Italy, 23–25 April 2016; pp. 17–24.

http://dx.doi.org/10.5120/ijca2016908085
http://dx.doi.org/10.1016/j.im.2016.11.003

Future Internet 2018, 10, 112 13 of 13

15. Ye, F.; Sun, J. Combining Query Ambiguity and Query-URL Strength for Log-Based Query Suggestion.
In Proceedings of the International Conference on Swarm Intelligence, Brussels, Belgium, 7–9 September 2016.

16. White, R.W.; Dumais, S.T. Characterizing and predicting search engine switching behavior. In Proceedings of
the 18th ACM conference on Information and knowledge management, Hong Kong, China, 2–6 November 2009;
pp. 87–96.

17. White, L; Togneri, R.; Liu, W.; Bennamoun, M. How Well Sentence Embeddings Capture Meaning. In Proceedings
of the 20th Australasian Document Computing Symposium, Parramatta, Australia, 8–9 December 2015; pp. 1–8.

18. Rong, X. Word2vec Parameter Learning Explained. Comput. Sci. 2015, arXiv:1411.2738.
19. Li, Y.; Lyons, K. Word representation using a deep neural network. In Proceedings of the International

Conference on Computer Science and Software Engineerin, Toronto, ON, Canada, 31 October–2 November 2016;
pp. 268–279.

20. Ling, W.; Dyer, C.; Black, A.W.; Trancoso, I. Two/Too Simple Adaptations of Word2Vec for Syntax Problems.
In Proceedings of the Conference on North American Chapter of the Association for Computational
Linguistics—Human Language Technologies, Denver, CO, USA, 31 May–5 June 2015.

21. Barbosa, J.J.G.; Solís, J.F.; Terán-Villanueva, J.D.; Valdés, G.C.; Florencia-Juárez, R.; Mata, M.B. Mojica:
Implementation of an Information Retrieval System Using the Soft Cosine Measure; Springer International
Publishing: Berlin, Germany, 2017.

22. Tong, H.; Faloutsos, C.; Pan, J.Y. Fast Random Walk with Restart and Its Applications. In Proceedings of the
International Conference on Data Mining, Hong Kong, China, 18–22 December 2016; pp. 613–622.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Our Approach
	 Preliminaries
	Query Relevance Based on Query Information
	Query Relevance Based on URL Information
	Hybrid Query Relevance

	Results
	Experimental Data and Evaluation Methods
	Selection of Parameters ,
	Selection of Parameter
	Selection of Parameter

	Evaluation of Efficiency

	Conclusions
	References

