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Abstract: Facial nerve paralysis (FNP) is the most common form of facial nerve damage, which leads
to significant physical pain and abnormal function in patients. Traditional FNP detection methods
are based on visual diagnosis, which relies solely on the physician’s assessment. The use of objective
measurements can reduce the frequency of errors which are caused by subjective methods. Hence,
a fast, accurate, and objective computer method for FNP classification is proposed that uses a single
Convolutional neural network (CNN), trained end-to-end directly from images, with only pixels and
disease labels as inputs. We trained the CNN using a dataset of 1049 clinical images and divided the
dataset into 7 categories based on classification standards with the help of neurologists. We tested its
performance against the neurologists’ ground truth, and our results matched the neurologists’ level
with 97.5% accuracy.

Keywords: facial image analysis; facial nerve paralysis; deep convolutional neural networks;
image classification

1. Introduction

Facial nerve paralysis (FNP) is one of the most common facial neurological dysfunctions, in which
the facial muscles appear to droop or weaken. Such cases are often accompanied by the patient
having difficulty chewing, speaking, swallowing, and expressing emotions. Furthermore, the face is
a crucial component of beauty, expression, and sexual attraction. As the treatment of FNP requires
an assessment to plan for interventions aimed at the recovery of normal facial motion, the accurate
assessment of the extent of FNP is a vital concern. However, existing methods for FNP diagnosis are
inaccurate and nonquantitative. In this paper, we focus on computer-aided FNP grading and analysis
systems to ensure the accuracy of the diagnosis.

Facial nerve paralysis grading systems have long been an important clinical assessment tool;
examples include the House–Brackmann system (HB) [1], the Toronto facial grading system [2,3],
the Sunnybrook grading system [4], and the Facial Nerve Grading System 2.0 (FNGS2.0) [5].
However, these methods are highly dependent on the clinician’s subjective observations and
judgment, which makes them problematic with regard to integration, feasibility, accuracy, reliability,
and reproducibility of results.

Computer-aided analysis systems have been widely employed for FNP diagnosis. Many such
systems have been created to measure facial movement dysfunction and its level of severity,
and rely on the use of objective measurements to reduce errors brought about through the use of
subjective methods.

Anguraj et al. [6] utilized Canny edge detection to locate a mouth edge and eyebrow, and Sobel
edge detection to find the edges of the lateral canthus and the infraorbital region. Nevertheless, these
edge detection techniques are very vulnerable to noise. Neely [7–9] and Mcgrenary [10] used a dynamic

Future Internet 2018, 10, 111; doi:10.3390/fi10110111 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/1999-5903/10/11/111?type=check_update&version=1
http://dx.doi.org/10.3390/fi10110111
http://www.mdpi.com/journal/futureinternet


Future Internet 2018, 10, 111 2 of 13

video image analysis system which analyzed patients’ clinical images to assess FNP. They used very
simple neural networks on FNP, which validated the technology’s potential. Although their results
were consistent with the HB scoring system, they had a very small dataset and their system’s image
processing was computationally intensive. He et al. [11] used optical-flow tracking and texture
analysis to solve the problem using image processing to capture the asymmetry of facial movements
by analyzing the patients’ video data, but this is computationally intensive. Wachtman et al. [12]
measured asymmetry using static images, but their method is sensitive to extrinsic facial asymmetry
caused by orientation, illumination, and shadows.

For our method, a new FNP classification standard was established based on FNGS2.0 and
asymmetry. FNGS2.0 is a widely used assessment system which has been found to be highly consistent
with clinical observations and judgment, achieving 84.8% agreement with neurologist assessments [13].

Using deep learning to detect facial landmarks in our previous method has shown promising
results. Deep convolutional neural networks (DCNNs) [14] show potential for general and highly
variable tasks on image classification [15–19]. Deep learning algorithms have recently been shown to
exceed human performance in visual tasks like playing Atari games [20] and recognizing objects [16].
In this paper, we outline the development of a CNN that matches neurologist performance for human
facial nerve paralysis using only image-based classification.

GoogleNet Inception v3 CNN architecture [18] was pretrained on approximately 1.28 million
images (1000 object categories) for the 2014 ImageNet Large Scale Visual Recognition Challenge [16].
Sun et al. [21] proposed an effective means for learning high-level overcomplete features with deep
neural networks called DeepID CNN, which classified faces according to their identities.

At the same time, DCNNs have had many outstanding achievements as diagnostic aids.
Rajpurkar et al. [22] developed a 34-layer CNN which exceeds the performance of board-certified
cardiologists in detecting a wide range of heart arrhythmias from electrocardiograms recorded
using a single-lead wearable monitor. Hoochang et al. [23] used a CNN combined with transfer
learning on computer-aided detection. They studied two specific computer-aided detection (CADe)
problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease
(ILD) classification. They achieved state-of-the-art performance on mediastinal LN detection and
reported the first fivefold cross-validation classification results on predicting axial CT slices with
ILD categories. Esteva et al. [15] used a pretrained GoogleNet Inception v3 CNN on skin cancer
classification, which matched the performance of dermatologists in three key diagnostic tasks:
melanoma classification, melanoma classification using dermoscopy, and carcinoma classification.
Sajid et al. [24] used a CNN model to classify facial images affected by FNP into the five distinct
degrees established by House and Brackmann. Sajid used a Generative Adversarial Network (GAN)
to prevent overfitting in training. His research demonstrates the potential of deep learning on FNP
classification, even though his final classification accuracy results were not very good (89.10–96.90%,
depending on the class). Meanwhile, they used a traditional grading standard to directly label the
data which may cause erroneous labeling. They also used four complicated image preprocessing steps,
which cannot be automated and which require a lot of time and effort during the clinical diagnosis
phase for data labeling.

In the process of realizing a reliable computer-aided analysis system, we also proposed a method
for FNP quantitative assessment [25]. We used a DCNN to obtain facial features, then we used
asymmetry algorithm to calculate FNP degree. In this work, we validated the effectiveness of DCNN.
However, there is currently no work related to the hierarchical classification of FNP using DCNN.

The difficulty of FNP classification lies first and foremost in image classification, followed by
face recognition. To design a responsive and accurate CNN for FNP classification, we combined a
GoogleNet Inception v3 CNN and a DeepID CNN to design a new CNN called Inception-DeepID-FNP
(IDFNP) CNN. As it is difficult to obtain a large enough training dataset, direct training of our
model would cause overfitting results, so we need to use transfer learning methods [26] to eliminate
overfitting, as given the amount of expected data available, this was considered to be the optimal
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choice. We trained the IDFNP CNN by training on ImageNet with no final classification layer and then
retrained it using our dataset. This method is optimal given the amount of data available.

Compared with other classification methods, we set up our own dataset classification standards.
We used deep learning to directly classify FNP, which allows each FNP image to be processed more
quickly, has more accurate classification, and has lower image quality requirements. In order to improve
the liability and accuracy of our labeling results, we used a triple-check method to complete the labeling
of the image dataset. At the same time, we combined image classification with face recognition.

Using the proposed system, clinicians can quickly obtain the degree of facial paralysis under
different movements and make a prediagnosis of facial nerve condition, which can then be used as a
reference for final diagnosis. At the same time, we also developed a mobile phone application that
enables patients to perform self-evaluations, which can help them avoid unnecessary visits to hospitals.

The remainder of this paper is structured as follows.
The proposed methodology is presented in Section 2. The experiments and results are given in

Section 3. The results and related discussion are presented in Section 4. The conclusions about this
study are given in Section 5.

2. Materials and Methods

2.1. Data Sources

We used two types of data sources, a fixed camera in a hospital and a mobile application.

2.1.1. Hospital Camera

In order to establish a novel method for quantitative FNP assessment, we prepared a fixed
scene in the Department of Rehabilitation at the Shanghai Tenth People’s Hospital in order to obtain
FNP images with the neurologists’ help. We captured front-view facial images of the patients using
reasonable illumination to reduce any adverse illumination effects. The procedure for obtaining the
images was standardized; photography was executed while the participant was seated in a chair,
and a reference background was placed behind. The camera was mounted on a sturdy tripod at a
distance of 1.5 m from the participant, and the latter was instructed to look directly at the camera
with their chin raised. Then, digital images were acquired as each participant performed each of the
different movements.

2.1.2. Mobile Application

For the purposes of the present study, we developed a mobile application for both iPhone
and Android devices, with the end-goal being that patients would be able to obtain an automated
preassessment of the extent of their FNP using their mobile phone camera. Participants were asked to
download the application, which used the phone’s camera and suitable prompts to obtain the relevant
images of the participant.

2.2. Dataset

Our dataset came from a combination of an FNP dataset and a normal dataset. The FNP dataset
came from clinical images from the Department of Rehabilitation at the Shanghai Tenth People’s
Hospital. The FNP dataset was composed of 377 male images and 483 female images, of which
136 were of patients less than 40 years old, 302 were middle-aged (between 40 and 65 years old),
and 422 were elderly (greater than 65 years old). The normal dataset was composed of recovered
patients, volunteers to our research group, and healthy neurologists from the hospital’s Department of
Rehabilitation. The normal dataset was composed of 86 male normal images and 103 female images, of
which 38 were less than 40 years old, 82 were between 40 and 65 years old, and 69 were elderly (Table 1).
Our dataset covers patients of all ages and genders, while patient data are relatively evenly distributed.
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Table 1. Dataset Distribution.

Dataset Young Middle-Aged Elderly Male Female Total

FNP images 136 302 422 377 483 860
Normal images 38 82 69 86 103 189

Total 174 384 491 463 586 1049

Figures 1 and 2, respectively, show example facial images of the control and the patient groups
taken as each group was performing seven facial movement types: at rest, eyes closed, eyebrows raised,
cheeks puffed, grinning, nose wrinkled, and whistling. Table 2 contains a description of each movement.
These images were used for our model’s training.

Table 2. Taxonomy movements table.

Notation Movement Affected Facial Muscle

MV0 At rest All facial muscles
MV1 Eyes closed Orbicularis oculi muscle
MV2 Eyebrows raised Orbicularis oculi muscle, frontalis muscle
MV3 Cheeks puffed Orbicularis oculi muscle, buccinator muscle, zygomatic muscle
MV4 Grinning Orbicularis oris muscle
MV5 Nose wrinkled Nasalis muscle
MV6 Whistling Orbicularis oris muscle
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2.3. Taxonomy

2.3.1. Classification Standard

Since FNP causes barriers to the movement of facial muscles, we can evaluate the degree of
FNP by calculating the asymmetry of facial features for different facial movements. This method was
chosen because simultaneous bilateral FNP is highly improbable. Our method is based on facial image
analysis. Considering our dataset consists of FNP images and not video, in order to reduce subjective
factors and the difficulty of diagnosis, the new classification standard divides the dataset into seven
categories. These are: normal, left mild dysfunction, left moderate dysfunction, left severe dysfunction,
right mild dysfunction, right moderate dysfunction, and right severe dysfunction (Table 3).



Future Internet 2018, 10, 111 5 of 13

Table 3. Taxonomy characteristics.

Taxonomy Symbol Characteristics

normal N Normal function in all facial nerve areas.

left mild dysfunction L1
Slight muscular weakness observed on examination of the side
of the face. Facial image appears symmetrical and with tones in
MV0, eye area exhibits mild asymmetry in MV1, eyebrow area
exhibits mild asymmetry in MV2, cheek area exhibits mild
asymmetry in MV3, mouth area exhibits mild asymmetry in
MV4 and MV6, nose and cheek areas exhibit asymmetry in MV5.

right mild dysfunction R1

left moderate dysfunction L2

In the side of the face, there is a clear difference between the two
hemifaces but this is not total asymmetry. Nonserious
disordered movement may be observed. Facial image exhibits
mild asymmetry in MV0, eye area exhibits moderate asymmetry
in MV1, eyebrow area exhibits moderate asymmetry in MV2,
cheek area exhibits moderate asymmetry in MV3, mouth area
exhibits moderate asymmetry in MV4 and MV6, nose and cheek
areas exhibit moderate asymmetry in MV5.

right moderate dysfunction R2

left severe dysfunction L3
In the side of the face, there is clear weakness and total
asymmetry, with hardly any observable mobility. Facial image
exhibits severe asymmetry in MV0, eye area exhibits severe
asymmetry in MV1, eyebrow area exhibits severe asymmetry in
MV2, cheek area exhibits severe asymmetry in MV3, mouth area
exhibits severe asymmetry in MV4 and MV6, nose and cheek
areas exhibit severe asymmetry in MV5.

right severe dysfunction R3

2.3.2. Frequencies in Dataset Taxonomy

Our taxonomy represents seven different classes of FNP and their frequency for the study sample
is given in Table 4. This aspect of the taxonomy is useful for generating training classes that are well
suited for machine learning classifiers. We obtained 664 images from the hospital camera and 385
images from the application.

Table 4. Frequencies in dataset taxonomy.

Taxonomy N L1 L2 L3

Frequency 189 133 161 146

Taxonomy R1 R2 R3
Frequency 129 151 140

2.3.3. Labeling

In order to objectively divide image database into those seven categories, we used a triple-check
method to complete the labeling of the image dataset.

To start with, neurologists labeled images into seven different categories twice, and only coinciding
labels were retained for subsequent steps. This was the first check in the process.

Then, we measured the degree of bilateral face FNP difference using asymmetry [25]. In order to
measure the asymmetry of patients during different facial movements, we assessed eye asymmetry
(EAs), eyebrow asymmetry (EBAs), nose asymmetry (NAs), mouth asymmetry (MAs), mouth angle
(MAn), nose angle (NAn), and eyebrow angle (EbAn). We quantified this assessment using two
variables, regional asymmetry (RgAs) and angular asymmetry (AnAs), which were calculated using
the following equation:
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RgAs = EAs + EBAs + NAs + MAs (1)

AnAs = MAn + NAn + EbAn (2)

Based on the results of the first check, we obtained the range of RgAs and AnAs for every
movement type in the same manner for the seven categories.

Since the results of this work are not accurate enough, the work on the classification of the face
can only be used as a reference, so we still need to optimize the results to ensure the accuracy of
the labeling. We compared the results of the asymmetrical algorithm with the first-check results as
reference and kept the coinciding results to obtain the second-check result. Neurologists will take
the results of the asymmetrical algorithm as reference to analyze the different part above. Finally,
neurologists will obtain the final classification results for the third check.

Using this approach, the results of the first check reached 97% agreement, and for the second
check, we achieved 93% agreement.

2.3.4. Data Preparation

Since our data came from two different sources, data transformation was the first step of our
method. The biggest difference between the two data sources were the environmental factors. The FNP
images taken on the mobile phone application suffered from problems with face angle and image size.
We therefore preprocessed the images to obtain a standardized format of the face image. In order to
eliminate the influence of environmental factors, we cropped every image. To make them compatible
with the IDFNP CNN architecture, we resized each image to 299 × 299 × 3 pixels, which were used as
the input to IDFNP. However, because the image size was fixed at 299 × 299, and image cropping may
have resulted in loss of facial nerve information, cropping was adjusted according to the specific facial
movement being captured. In order to retain as much facial nerve muscle information as possible,
cropping retained all parts of the muscle for a specific movement. Pictures were cropped automatically
and the results were visually inspected and, if necessary, corrected manually to ensure that no useful
information was discarded.

Blurry images and distant images were removed from the test and validation sets, but were
still used for training. While this is useful training data, extensive care was taken to ensure that
these sets were not split between the training and validation sets. No overlap (that is, same lesion,
multiple viewpoints) existed between the test sets and the training/validation data.

Based on the above principles, the 1049 images selected after filtering were randomly and evenly
divided using a 7:2:1 ratio for the training, verification, and test sets, respectively. The training set
batch size was 60, the cross-validated batch size was 100, and for k-fold cross-validation we used
k = 10.

2.4. Model Architecture

The difficulty of FNP classification lies first and foremost in image classification, followed by
face recognition. Inception v3 CNN [18] shows great performance on image classification and won
first prize during the 2015 ImageNet Large Scale Visual Recognition Challenge [16]. At the same time,
DeepID CNN [21] is the top model in the field of face recognition. In order to design a model for FNP
classification, we combined the best image classification CNN model and the best face recognition
CNN model for the learning task. In order to combine GoogleNet Inception v3 CNN and DeepID
CNN, and thereby create IDFNP CNN, we must identify their essential components and utilize them.

The complete model is based on the Inception-v3 architecture. Apart from the essential
components of Inception-v3 and DeepID, IDFNP used a concat layer to concatenate the parameters of
the two parts. After the above, the FNP grade classification task is performed by the softmax layer.

The network’s high-level architecture is shown in Figure 3.
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Because FNP classification counts as image classification, putting the DeepID CNN part into
GoogleNet Inception v3 CNN was our strategy of choice. Since the DeepID CNN has much fewer
characteristics than GoogleNet Inception v3 CNN, we fine-tuned the parameters across multiple layers
in order to enhance the human face component.

2.5. Training Algorithm

As it is difficult to obtain a large enough training dataset, direct training of our model would cause
overfitting results, so we needed to use migration study methods to eliminate overfitting. Given the
amount of expected data available, transfer learning was considered to be the optimal choice.

The ImageNet Challenge Database is a 1000 object class (1.28 million images) image database.
Pretraining the model on ImageNet Challenge Database will increase the model’s sensitivity to image
classification. FNP image classification is based on the details and characteristics of facial muscles,
while ImageNet classification is based on the details and characteristics of the classification for which
it is trained. The data distribution of the FNP database and ImageNet Challenge Database are similar
and, in this case, we transferred the model from a source domain (pretrained model) to a target domain
(final model).

The IDFNP CNN is based on Inception-v3 CNN, which has very good performance in the
ImageNet Challenge Database. Therefore, we pretrained the IDFNP CNN on the ImageNet Challenge
Database and achieved a 93.33% classification accuracy, ranking top-five compared with other CNNs.
We then removed the final classification layer from the network, retrained it with our own dataset,
and leveraged the natural-image features already learned by the ImageNet pretrained network.
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The classification task is performed by the softmax layer, and we used back propagation to update
the network weights for training. All layers of the network were fine-tuned using the same global
learning rate of 0.001 and a decay factor of 16 every 30 epochs. We used RMSProp [27], which can
speed up first-order gradient descent methods, with a decay of 0.9, momentum of 0.9, and epsilon of
0.1. We used Google’s TensorFlow deep learning framework to train, validate, and test our network.

3. Results

3.1. Confusion Matrix

Precision: The precision metric represents the correctly predicted labels out of the total true
predictions. The precision achieved for every label is shown in Table 5.

Precision =
TP

TP + FP
(3)

where TP and FP represent true positive and false positive.

Table 5. Precision of IDFNP for Every Taxonomy.

Taxonomy N L1 L2 L3 R1 R2 R3

Precision 0.974 0.956 0.980 0.960 0.969 0.959 0.951

Sensitivity: The sensitivity metric is used to quantify the cases that are predicted correctly (i.e.,
the number of predicted labels over all positive observations). IDFNP’s sensitivity of every label is
shown in Table 6.

Sensitivity =
TP

TP + FN
(4)

where TP and FN represent true positive and false negatives, respectively.

Table 6. Sensitivity for Every Taxonomy.

Taxonomy N L1 L2 L3 R1 R2 R3

Sensitivity 0.974 0.977 0.937 0.993 0.961 0.933 0.978

Accuracy: This metric which represents correct predictions out of total predictions:

Accuracy =
TP + FN

TP + FN + FP + TN
= 97.5% (5)

where TP, TN, FP, and FN represent true positive, true negative, false positive and false
negatives, respectively.

Figure 4 shows the confusion matrix of our method over the seven classes of predicted labels.
Element of each confusion matrix represents the empirical probability of predicting class given that
the ground truth

By analyzing the confusion matrix, one can observe that the proposed method can predict the
FNP types well. The highest classification accuracy was 0.993, achieved for L3, while the lowest
classification accuracy was 0.933 for R2. It can be seen that the accuracy is very high for the most
serious disease conditions (R3 and L3), but the accuracy is not very high for intermediate disease
conditions (R2 and L2). The overall accuracy was 97.5%.was class.
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3.2. Comparison with Previous Methods and Neurologist Classification

In this study, we divided all the movements (MV0, MV1, etc.) into different levels (N, L1, L2, et al.).
In the process of specific training, we did not separate the different movements and did not test them
accordingly. We believe that the FNP grading should not be performed by the movements. When FNP
images are input into our system, the movement type does not need to be identified, as this is another
deep learning topic; the output of our system is the FNP grading of the image. In our case, the accuracy
for all movements was 97.5%.

To conclusively validate the algorithm, we used our previous method [25] for FNP quantitative
assessment to compare validity with IDFNP. Meanwhile, neurologists classified the unlabeled FNP
images. In this task, the IDFNP achieved 97.5% classification accuracy based on all movement,
while our previous method for FNP quantitative assessment achieved 79.2–98.7% accuracy. Apart from
MV0 RgAs, this method achieves a maximum of 94.4% in the other 13 ways of measuring FNP (Table 7).

Table 7. Comparison with previous method and neurological agreement.

Movements Previous Method
Accuracy on RgAs

Previous Method
Accuracy on AnAs

IDFNP CNN
Accuracy

Neurological
Agreement

MV0 98.7% 80.6%

97.5%

98.0%
MV1 94.4% 81.9% 97.3%
MV2 93.1% 80.6% 97.5%
MV3 94.4% 79.2% 97.4%
MV4 93.1% 81.9% 97.1%
MV5 94.4% 84.7% 97.7%
MV6 94.4% 96.1% 98.0%

We asked neurologists to diagnose each FNP image again when we went through the whole set;
the double diagnosis agreement for the side affected by FNP reached 100%, while the double diagnosis
agreement for the FNP degree ranged between 97.1% and 98.0%. Neurological agreement represents
consistent neurological classification for FNP. As the images in the validation set were labeled by
neurologists, but not necessarily confirmed by them, this metric is inconclusive, and instead actually
shows that the CNN is learning relevant information.
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3.3. Comparison with Other Computer-Aided Analysis Systems

Sajid et al. [24] used a CNN model to classify face images with FNP into the five distinct degrees
established by House and Brackmann. Sajid used GAN to prevent overfitting in training (Column
3, VGG-16 Net with GAN). Neely [28] used a computerized objective measurement of facial motion
to obtain diagnosis of facial paralysis; using a standardized classification method, he achieved an
accuracy of 95% (Columns 4). HC et al. [23] used optical-flow tracking and texture analysis methods to
solve the problem. They used advanced image processing technology to capture the asymmetry of
facial movements by analyzing the patients’ video data and then used several different classification
methods to diagnose FNP. The result is shown in Table 2 (Columns 5–6, RBF with 0/1 disagreement).
Wang et al. [29,30] presented a novel method for grading facial paralysis integrating both static facial
asymmetry and dynamic transformation factors. Wang used an SVM with the RBF kernel function
to quantify the static facial asymmetry on images using five of the six facial movements (MV1–6),
but they did not measure accuracy of MV0. The results are shown in column 7 of Table 8.

Table 8. Comparison with the other computer-aided analysis systems.

Movements IDFNP CNN
Accuracy

VGG-16 Net
with GAN

Neely’s
Method

RBF with 0
Disagreement

RBF with 1
Disagreement

SVM with
the RBF

MV0

97.5% 92.60% 95%

44.36% 92.26%
MV1 41.27% 93.11% 97.56%
MV2 68.71% 93.23% 92.55%
MV3 49.80% 94.18% 91.36%
MV4 49.80% 94.18% 95.40%
MV5 61.78% 86.31% 93.36%
MV6 49.80% 94.18% 95.40%

3.4. Comparison with Other Deep Convolution Neural Networks Models

Because our dataset’s scale is not large enough to train models directly, for every model compared,
we removed the final classification layer from the network, retrained it with our dataset, and leveraged
the natural image features learned by the ImageNet pretrained network, a technique known as transfer
learning. We chose Inception-v3, Inception-v4, Inception-ResNet-v1, Inception-ResNet-v2, DeepID,
and ResNet, which in recent years have shown the best results in image classification. The results are
shown in Table 9.

Table 9. Comparison of IDFNP with other classification CNNs.

Network Accuracy for FNP Dataset Network Accuracy for FNP Dataset

Inception-ResNet-v1 95.2% Inception-ResNet-v2 95.7%
Inception-v3 93.3% DeepID 92.5%
Inception-v4 95.3% ResNet 95.0%

IDFNP 97.5%

For accuracy, IDFNP CNN outperforms all the other CNNs for the FNP dataset. All the other
CNNs were designed for the ImageNet Challenge Database, which has 1000 object classes and are
optimized for image classification, which is quite relevant for the present application. Our original
plan for diagnosing FNP was to use transfer learning with Inception-ResNet-v2 directly. However,
the result did not match the accuracy of neurologists. Considering that FNP classification is a face
classification, combining DeepID CNN with Inception-v3 CNN improves accuracy.

4. Discussion

As we see from Table 7, neurological agreement exceeds our method in MV2, MV5, and MV6.
However, neurologists take too long examining FNP images, as each such examination takes at least
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10 s. Our method takes a few milliseconds per FNP image and is thus more efficient, while its accuracy
is comparable to that of neurologists. Our previous method takes much longer per FNP image by
calculating facial asymmetry with traditional computational methods, while only its accuracy in MV0
on RgAs is higher. Furthermore, our previous method requires more standard images like face angle,
image clarity, and lighting conditions.

As we see from Table 8, the accuracy of FNP classification when using Sajid’s method was 92.6%.
The accuracy of FNP in Neely’s method [28] is 95%, which is lower than our method. HC [28] used
RBF with 0/1 disagreement to measure accuracy of FNP movements. Even with 1 disagreement,
which allows for more experimental errors, the result is significantly worse than ours. Wang [29,30]
used SVM with RBF to measure accuracy. The result showed our method is better than their method
in MV2–6. In MV1, their accuracy is not much higher than ours. Although they didn’t calculate the
accuracy of MV0, we can still see from the rest of the results that our method yields superior results.

As we see from Table 9, these models have strong generalization ability for different datasets,
but because their design was optimized for their main, that is, image classification, the final training
results of these models are not as good as our model. We also see that Inception-v3, upon which our
own design was based, achieved only 93.3% accuracy. Therefore, there is still considerable potential for
the optimization of this excellent image classification model for specific applications, especially with
residual network derivatives like Inception-ResNet-v2.

Meanwhile, on the basis of our findings, clinicians can quickly obtain the degree of facial paralysis
according to different facial movements. Clinicians can make a prediagnosis of facial nerve paralysis
based on patients’ facial movements, which will be used as a reference for their final diagnosis.
For example, the result of one patient in MV1 (Eye closed), MV2 (Eyebrows raised), and MV4 (Grinning)
was L3, and the result of the patient in other movements was N or L1, which corresponds to a
prediagnosis that severe paralysis is present in the in left orbicularis oculi muscle.

5. Conclusions

In this paper, we presented a neural network model called IDFNP for FNP image classification,
which uses a deep neural network and can achieve accuracy which is comparable to that of neurologists.
Key to the performance of the model is an FNP annotated dataset and a deep convolutional
network which can classify facial nerve paralysis and facial nerve paresis effectively and accurately.
IDFNP combines Inception-v3, which achieves a great result in image classification, and DeepID,
which is highly efficient in facial recognition.

The contributions of our method can be summarized as follows: Firstly, a symmetry-based
annotation scheme for FNP images with seven different classes is presented. Secondly, using deep
neural network on FNP images and cropping the face from the FNP images can eliminate
facial deformation for FNP patients and minimize the influence of environmental factors. Thirdly,
transfer learning avoids overfitting effectively for a limited range of FNP images. Combining an image
classification CNN, such as Inception-v3, and a face recognition CNN like DeepID improves accuracy
for the FNP dataset and achieves the same diagnostic accuracy as a neurologist. Fourthly, our method
is validated against the performance of other well-known methods, which serves as proof that IDFNP
is suitable for FNP classification and can effectively assist neurologists in clinical diagnosis.

In terms of clinical diagnosis, future work will be needed to apply IDFNP performance to other
facial diseases or diseases which can be identified visually. On the one hand, more detailed diagnosis
of facial paralysis would further aid neurologists in their work. In the future, we plan to undertake
a more in-depth study of the position and the degree of disease. On the other hand, we can extend
our findings to other conditions. For example, one of the symptoms of a stroke is facial asymmetry,
which is very similar to the symptoms of FNP. If IDFNP can diagnose strokes and distinguish various
degrees of facial stroke images and facial nerve paralysis images, then preventive treatment for strokes
based on facial images can be realized. Given that modern smartphones and PCs are power tools of
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deep learning, with the help of the IDFNP results, citizens will have an enhanced ability to obtain an
automated assessment for these diseases that may prompt them to visit a specialized physician.

The evaluation results produced by our methods are mostly consistent with the subjective
assessment of doctors. Our methods can help clinicians to decide on a specific therapy for each
patient, and for the most affected region of the face as reference.

Given that more and more FNP patients are being treated, high-accuracy diagnosis from FNP
images can save expert clinicians and neurologists considerable time and decrease the frequency of
misdiagnosis. Furthermore, we hope that this technology will enable greater widespread use of FNP
images through photography as a diagnostic tool in places where access to a neurologist is limited.
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