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Abstract: We present an occlusion-aware unsupervised neural network for jointly learning three
low-level vision tasks from monocular videos: depth, optical flow, and camera motion. The system
consists of three different predicting sub-networks simultaneously coupled by combined loss terms
and is capable of computing each task independently on test samples. Geometric constraints
extracted from scene geometry which have traditionally been used in bundle adjustment or
pose-graph optimization are formed as various self-supervisory signals during our end-to-end
learning approach. Different from prior works, our image reconstruction loss also takes account of
optical flow. Moreover, we impose novel 3D flow consistency constraints over the predictions of all
the three tasks. By explicitly modeling occlusion and taking utilization of both 2D and 3D geometry
relationships, abundant geometric constraints are formed over estimated outputs, enabling the
system to capture both low-level representations and high-level cues to infer thinner scene structures.
Empirical evaluation on the KITTI dataset demonstrates the effectiveness and improvement of
our approach: (1) monocular depth estimation outperforms state-of-the-art unsupervised methods
and is comparable to stereo supervised ones; (2) optical flow prediction ranks top among prior works
and even beats supervised and traditional ones especially in non-occluded regions; (3) pose estimation
outperforms established SLAM systems under comparable input settings with a reasonable margin.
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1. Introduction

The ability to perceive visual environment of one agent is more required than ever due to
the advancing expand in industries such as robotics [1], autonomous driving [2] and augmented
reality [3], among which has many crucial tasks to fulfill including reasoning one’s ego-motion and
the scene structure. In this paper, we propose a jointly learning network in an utterly unsupervised
manner to predict depth, camera pose and optical flow from monocular video sequences with no
labeling data or ground truth.

Years of research in scene understanding has already been studied. Structure from motion
(SfM) [4–6] is a long-standing task in computer vision which aims at reconstructing camera motion and
scene structure, but often hard to integrate reasonable priors for small camera translation or outliers
from low-level sparse correspondences. Visual Simultaneous localization and mapping (VSLAM) [7–9]
use handcrafted sparse or dense abstractions to represent geometry but also limited to a particular
kind of scenes. They also suffer from absolute scale regarding monocular approach and noisy data
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regarding depth sensor. In this paper, we employ deep neural networks for better representation of
high-level cues instead of being restricted to a certain scenario.

Given the advantage of numerous data and learning effectiveness of deep network, recent works
have emerged to formulate these tasks through deep models and achieve considerable results compared
to traditional ones. Most previous works [10–14] target at one specific task only, they neglect the
inherent relationships in between relative tasks. Ref. [15,16] combine depth prediction with camera
motion by image reconstruction loss based on photometric quality. Ref. [17] comprise optical flow
in their work in an implicit way, predicting depth and camera motion meantime. Ref. [18] introduce
3D geometric constraint during propagation. However they all did not explicitly handle occlusions.
Ref. [19] form these three tasks through a stage-wise structure which enforce geometric consistency
with non-rigidity filtered in the second stage, but they cannot fully exploit on geometric relations due
to the cascade network structure. Therefore, we focus on avoiding these shortcomings and elaborate
on them to achieve more accurate results.

Inspired by works that impose geometric constraints on learning procedures [18,19], we also
make our effort in exploiting scene structure constraints in a deep learning system. The main idea of
this paper is by taking account of optical flow simultaneously in addition to depth and camera motion
estimation, jointly learning a network with both 2D and 3D geometry transformations during training
to create additional constraints for better exploitation of nature geometry structure. Since the depth
and camera motion as well as optical flow are calculable, we are able to make following contributions:

1. Jointly learn an unsupervised deep neural network from monocular videos that predicts depth,
optical flow, and camera motion simultaneously at training time coupled by combined loss term.

2. Modeling occlusion all through entire process explicitly through bidirectional flow from consecutive
frames to make the model occlusion-aware and non-occluded region better constrained.

3. Mutually supervise each component of the network in use of both 2D and 3D geometric
constraints combined with occlusion module. The 2D image reconstruction loss takes optical flow
into consideration. The 3D constraint contains two part: 3D point alignment loss and a novel 3D
flow loss.

2. Related Work

2.1. Deep Learning vs. Geometry for Scene Understanding

The study of estimating scene structure and camera motion from sequences of images or
simultaneously mapping and localization in computer vision was considered a purely geometric
problem for decades. It is usually accomplished by pipelines containing several successive
processing steps, as well as simultaneously mapping and localization. However the handcrafted
methods often highly rely on accurate image correspondence, and structure will be ill-posed if arbitrary
deformations are allowed. Whereas deep learning is more capable of capture relatively random details
and learning from them. Possessed of such qualities, more recent methods focus on how to alleviate
such reliance by introducing deep learning into geometric problems. However, rather than apply deep
learning models naively, imposing geometry in deep learning allow us to learn a geometric problem
without massive amount of labeled data, extracting enforcement from nature structure. This is an
exciting breakthrough and has proven to be effective in many researches.

2.2. Deep Learning with Geometry for Scene Understanding

Deep learning from videos has made significant progress since it first appeared and has
a promising future. Many works have explored tasks including depth prediction, optical flow,
and pose estimation. These approaches are mainly divided into two categories, supervised methods
and unsupervised ones.
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2.2.1. Supervised Videos Learning

The work of Eigen et al. [10] manifested deep models’ capability for single view depth estimation
with a coarse-to-fine strategy. Kendall et al. [12] proposed a stereo regression architecture for sub-pixel
disparity from a rectified pair of stereo images by leveraging knowledge of the problem’s geometry.
Brahmbhatt et al. [13] formulated loss terms from geometric constraints expressed by sensory inputs
which usually used in traditional ways were exploited to bring up camera localization accuracy.
Similar spirits have been shared in learning optical flow. Ref. [14,20] proposed FlowNet to compute
dense flow prediction through fully connected convolutional neural networks in an end-to-end fashion
supervised by synthetic datasets. Ummenhofer et al. [16] engineered settings that alternate optical flow
estimation with camera motion and depth estimation, which required various forms of supervision
including an abundant amount of scanned depth data. To eliminate heavy reliance on large labeled
data, an unsupervised setting is exploited in our method.

2.2.2. Unsupervised Videos Learning

Garg et al. [21] leveraged well-understood ideas in visual geometry by proposing a coarse-to-fine
stereopsis-based auto-encoder to predict single view depth using projection objective. Godard et al. [11]
exploited epipolar geometry constraints consistency between the disparities generated during network
training from monocular videos by introducing a left-right consistency loss. While such stereo formulation
has a heavier reliance on scene priors, a monocular setting is preferred by many recent methods.

Ref. [22] achieved a monocular VO system along with dense depth map with recovered absolute
scale in an unsupervised manner by utilizing both temporal and spatial geometric constraints.
Zhou et al. [15] formulated a view synthesis pipeline which learns monocular depth and ego-motion
in a coupled way by building upon the rigid projective geometry with an explainability mask for
compensation of any dynamic factor. Concurrently, Vijayanarasimhan et al. [17] mimicked the
traditional problem of structure from motion through explicit modeling of scene geometry and several
object masks. Ref. [18] considered the inferred 3D geometry with a proposed objective which directly
penalizes inconsistencies in the estimated depth during image reconstruction process. However, they
all overlook the fact that including outliers such as occlusions in training could potentially corrupt
the process. Meister et al. [23] introduced an occlusion-aware bidirectional census loss in optical
flow learning. Yin and Shi [19] proposed a divide-and-conquer strategy to solve depth, optical flow,
and camera motion estimation in a combined way constrained by reconstruction loss formulated of
geometric relationships extracted from the tasks, demonstrating that learning a non-rigid flow residual
is helpful to their designed 3D geometric scene understanding. However, in their rigid flow stage,
learning from overall region including occluded area may cause side effects. The optical flow was
mainly to refine the rigid-flow produced in the first stage, hence they struggled in capturing more
inherent geometric nature between these tasks.

Even though unsupervised-based methods have gained attention in recent times due to
non-requirement of any type of ground truth and have made considerable improvement; however,
there is still need to discover better-suited network structures and loss functions. Differently from
Yin and Shi [19], by imposing optical flow into our system and training synchronously, we are able
to form the combined losses over all predictions which contain abundant geometric information to
lead the backpropagation proving to be effective after. Furthermore, occlusion masks produced from
optical flow estimation are employed for all three tasks all through entire training which will ensure
the filtering of non-rigid cases.

3. Method

Our approach combines depth estimation, optical flow, and camera motion in a whole, in which
they can jointly benefit from each other effectively through geometric observation. This section starts
by giving an overview of our system and then explain each component individually.
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3.1. System Overview

The schematic network architecture is showed in Figure 1. It handles these three tasks separately
with the utilization of three sub-networks, within which each one of them is capable of jointly training
and supervising one another mutually, resolving the scene perception task easier. Additionally, rich
occlusion-aware geometric constraints are applied within and between these tasks to supervise one
task another mutually. We present a way to employ the nature of occlusion to a greater extent instead
of simply filtering it out, by combining it with various geometric constraints.

Figure 1. Overview of our system. It consists of three task-specific sub-networks targeting at estimating
monocular depth, optical flow, and camera motion. Rich geometric constraints are employed extracting
from the natural structure of the scene. Here M denotes input image and P denotes point cloud.

During training, we formulate this problem as: Given consecutive frames Mt−1, Mt with known
camera intrinsic, Dt as per-pixel depth map of each frame is estimated, and Tt−1 denotes relative
camera motion from t− 1 to t, Ff presenting forward optical flow while Fb standing for the backward
optical flow. The forward and backward optical flow are used to generalize the occlusion mask to
reduce the influence of occlusion when applying rigid geometric constraints. As depth and camera
motion are available, we generate point cloud Pt of frame Mt which is a basic element throughout
our 3D constraints of the network. The frames are preprocessed as four pyramid scales from l1 to l4.
Details of the methods are discussed below.

3.2. Bidirectional Flow Loss as Occlusion Mask

To detect occlusion, we conduct the method recommended by [23] which is based on
forward-backward consistency assumption to mask the occluded area. The forward flow F f

t (u f , v f ) and
backward flow Fb

t (ub, vb) are computed by performing a second pass with the input images exchanged
with shared weights and symmetric loss. Occluded pixels are marked whenever there is a significant
mismatch between these two flows. The occlusion flag is set to be 1 when the following constraint

‖F f
t + Fb

t |2 < α1(|F
f

t |
2 + |Fb

t |2) + α2 (1)

is against, and 0 otherwise. In our experiment we set α1 = 0.01, α2 = 0.5. Then the occluded pixel
mask of frame Mt is calculated as Ot.

Forward-backward consistency between adjacent flows for the non-occluded region is applied
during training, along with a constant penalty λp = 3.5 to all occluded pixels in case the whole scene
happens to be occluded:
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L f b = ∑
X∈M

(1−Ot)ρ(‖F f
t (X) + Fb

t (X)‖1) + Otλp (2)

with X denoting pixels of image M, ρ denoting the robust generalized Charbonnier penalty
ρ(x) =

√
x2 + 0.0012.

3.3. 2D Image Reconstruction Loss as Supervision

Following the fashion of most unsupervised approaches, we conduct synthesis image as
fundamental supervision of each task in our network by using differentiable inverse warping [24] with a
bilinear sampler between nearby frames. Given frame Mt and depth Dt, the image projected into a
structured three-dimensional point cloud can be presented as:

Pt(x, y, z) = Dt(x, y) · K−1 · [i, j, 1]T (3)

where (i, j) are the coordinates of the image pixel and (x, y, z) are the point coordinates, K is the
homogeneous camera intrinsic matrix. This way we compute per frame point cloud Pt, t ∈ (1, ...).

We transform the nearby point cloud Pt−1 using camera intrinsic and known rigid scene
transformation T following P

′
t = KTPt−1, then back project it to the image plane to get the warped

frame Mp
t . Mp

t is warped through both forward and backward directions.
The self-supervision approach for optical flow is similar, only the warped image M f

t is obtained
by the predicted flow, which is also in both directions. Let F f

t be the forward flow from Mt−1 to Mt, Fb
t

be the backward flow from Mt to Mt−1. The M f
t warped from Mt−1 is formulated as Mt−1(X + F f

t (X)),
where X denotes image pixel of frame Mt−1. For the backward direction, we define in the same way
with F f

t and Fb
t exchanged.

The reconstruction consistency loss is then produced by comparing image Mt to warped image M
′
t.

Note that the warping schemes make implicitly assumption that there is no occlusion in the scene so
that incorrect deformations could be learned from the occluded regions. Therefore we mask occluded
pixels to alleviate the negative effect of outliers and penalize photometric difference only for every
non-occluded pixel. The occlusion mask is modeled as Ot in Section 3.2, the photometric consistency
loss is formulated as:

Lre = ∑
X∈M

((1−Ot)‖Mt(X), Mp
t (X)‖1 + (1−Ot)‖Mt(X), M f

t (X)‖1) (4)

By performing this way we also take into account the discrepancy between warped image Mp
t and

M f
t without occlusion since they should be ideally identical if predictions of the network are perfect.

3.4. Mutually Supervised 3D Geometric Consistency Loss

3.4.1. 3D Point Alignment Loss

An additional 3D geometric constraint is exploited to the non-occluded area in a differentiable way
recommended by [18] to reinforce the backpropagation for depth map and camera pose estimations.
The core of this constraint is a rigid point matching algorithm, Iterative Closest Point(ICP) which
calculates a transformation between two 3D points by optimizing the minimal point-to-point error,
in our case, between point Pt(1−Ot) and warped point P

′
t (1−Ot). To be specific, we use both outputs,

the best-fit transformation T
′

and a residual distance r after the best transformation has been applied
to guide the regression. r is used as an approximation to the negative gradient of the loss about depth
Dt for adjustment and T

′
is to adjust camera pose. The 3D constraint is formulated as:

Licp = ‖T′ − T‖1 + ‖r‖1 (5)
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3.4.2. 3D Flow Loss

Figure 2 depicts how 3D flow loss is formed in our method. For the better understanding of scene
geometry, we form an additional geometric enforcement to maintain the coherence between the 3D
flow generated from estimated 2D flow and from point cloud, so that all the information we obtained
from these three sub-tasks can be utilized as an unified constraint. As F f

t (u f , v f ) is the predicted dense
2D flow on X-Y image plane from frame t to t + 1, and Dt(x, y) is the predicted depth map, the 3D
flow can be calculated as:

F f
t (z) = Dt+1((x, y) + Ft f (u, v))− Dt(x, y) (6)

F3d = C(Ft f (u, v) + F f
t (z)) (7)

where C denotes the concatenation operation. For the 3D flow computed from point cloud using both
depth and pose prediction, is formulated as:

F
′
3d = KTPt(x, y, z)− Pt(x, y, z) (8)

Thus, the complete mutually supervised geometric consistency loss is:

Lmu = ∑
(x,y,z)∈P

(1−Ot)‖F3d(x, y, z), F
′
3d(x, y, z)‖1 (9)

Figure 2. The 3D Flow is computed for both directions. The loss takes utilization of estimated depth,
optical flow and camera pose.

3.5. Smoothness Constraint

However, depth borders have a tendency to be locally blurred. To smooth out prediction
discontinuities and preserve sharp details, edge-aware weighted smoothness penalties are adapted to
our system. The occluded area is solely guided by smoothness loss since it violates both photometric
and geometric consistency. Depth smoothness is formulated by image gradients while second-order
derivative is used for optical flow loss term:

Lsm = ∑
X∈M
|∇Dt(X)| · (e−α|∇Mt(X)|)T + ∑

X∈M
|∂2

dFf (X)| · e−α|∂d Mt(X)| (10)
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where α controls the weight of edges which is set to be 3 in our experiment, d indexes over partial
derivative on x and y directions.

The final loss term is a weighted summation of above all in which λ denotes loss weights and l
indexes over four different pyramid image scales:

L = ∑
l=(1,2,3,4)

(λ f bL f b + λreLre + λicpLicp + λmuLmu + λsmLsm) (11)

4. Experiments

In this section we first introduce our implementation specification, including network architecture
and training details. Then we show quantitative and qualitative performance in each of these tasks
respectively compared with prior approaches.

4.1. Implementation Specification

4.1.1. Network Architecture

Jointly train three sub-networks could be highly computational burdened. Thus under this
consideration, we choose rather generic networks to conduct and evaluate our method. For depth
estimation, we adopt the network from [11] which uses skip connections between encoder and decoder
at different corresponding resolutions. For optical flow, it is based on a modified structure of FlowNetS
proposed by [14]. This Optical flow prediction is generated using a multi-stage refinement process.
Both our depth and optical flow networks take two consecutive images as input. For camera pose
regression the structure in [15] which regress 6-DoF camera pose is implemented. The input to
the pose estimation network is one target view concatenated with two source views. A multi-scale
image pyramid strategy is applied in image preprocessing so that all tasks can benefit from different
scale information.

4.1.2. Training Details

Our unsupervised network is trained end-to-end on monocular video streams from KITTI
dataset [25] using TensorFlow framework [26] and Adam optimizer with β1 = 0:9 and β2 = 0:999.
The KITTI dataset contains sequences captured from a moving vehicle. The initial learning rate is
set to be 0.0002 and decrease gradually when there is convergence in training loss. The mini-batch
size is 4. During training, we train our model at a reduced resolution of 416 × 128 pixels over
400,000 iterations to make the computational burden decreased. Our experiments are performed
on single NVIDIA Quadro M5000 GPU. We experimentally find that a weighting combination of
[λ f b; λre; λicp; λmu; λsm] = [0.3; 1; 0.5; 0.5; 0.8] in our final loss function results in a stable training.

We evaluated our method with different test splits from training for each task on the popular
KITTI dataset for the sake of fair comparison. The splits are same as Zhou [15]. Our joint training
computes forwardly corresponding to each of these three tasks independently, and backpropagate
through combined loss. Data augmentation is implemented as a widely used strategy to improve
generalization of neural networks which is crucial to avoid over-fitting.

4.2. Experimental Evaluation

4.2.1. Depth Evaluation

We take the split provided by [10] to compare with prior related methods to evaluate the
performance of our network in monocular depth estimation. We exclude the visually similar frames to
the test scenes according to [15]. The predictions are resized at input image resolution by interlinear
interpolation. We use ground truth obtained by a laser scanner. Both 50 m and 80 m threshold of
maximum depth for evaluation are used. It takes two consecutive frames during training because of
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the 3D alignment loss. We compare with both supervised methods and state-of-the-art unsupervised
methods. We also compare with the results of Garg et al. [21] which takes stereo pairs to predict
depth. Some qualitative results are shown in Figure 3. The metrics in Tables 1–3 show the quantitative
results of all standard error measures of these methods. To verify the advantage of the network
architecture and the effectiveness of our loss terms, we trained “Ours(VGG)” on KITTI which shares
the same structure with [15]. The results validated our conclusion. Furthermore, “Ours(ResNet)”
significantly outperforms both supervised works [10,27] and prior unsupervised baselines [15,18,19]
with a reasonable margin, which is benefited from our extensive geometric constraint and mutually
supervised mechanism. We also experimented with pre-training on Cityscapes first. As same as [19],
our result is slightly inferior to [11] when trained on Cityscapes and KITTI due to characteristics of
training data. We believe that such dataset stereo settings may provide more details, which we would
like to explore in the future. Note that during our training process, robust similarity technique like
SSIM [28] are not adopted with which should lead to further improvement.

We also conduct Ablation Experiments on the components of our network in Table 4. In order
to study the importance of each component, we trained and evaluated a series of models with each
one component missing. The study shows our approach is able to benefit from all these components,
and 3D losses make a great difference. On the other hand, a visualized comparison to failed cases
of Zhou [15] in Figure 4. further illustrates our method’s capability of reasoning scene geometry.
However, there are still failure cases remained when large dynamic objects close to camera or intense
lighting changes happened caused by gradient locality. The search for a solution to the gradient locality
of warping-based loss is still in need.

Table 1. Monocular depth results on KITTI by the split of Eigen et al. [10] capped 80 m. Results of other
methods are taken from [15,18,19].

Method Supervise Abs Rel Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [10] Coarse Depth 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen [10] Fine Depth 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu [27] Depth 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Godard [11] Stereo 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Zhou [15] No 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Mahjourian [18] No 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Yin [19] No 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Ours (VGG) No 0.157 1.229 5.960 0.238 0.799 0.932 0.973
Ours (ResNet) No 0.149 1.223 5.732 0.225 0.829 0.944 0.978

Table 2. Monocular depth results on KITTI by the split of Eigen et al. [10] capped 50 m.

Method Supervise Abs Rel Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Garg [21] Stereo 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Mahjourian [18] No 0.155 0.927 4.549 0.231 0.781 0.931 0.975
Yin [19] No 0.147 0.936 4.348 0.218 0.810 0.941 0.977
Ours (Resnet) No 0.142 0.909 4.306 0.203 0.832 0.949 0.978

Table 3. Monocular depth results on Cityscapes and KITTI by the split of Eigen et al. [10] capped 80 m.

Method Supervise Abs Rel Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Godard [11] Stereo 0.124 1.076 5.311 0.219 0.847 0.942 0.973
Zhou [15] No 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Mahjourian [18] No 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Yin [19] No 0.153 1.328 5.737 0.232 0.802 0.934 0.972
Ours (Resnet) No 0.146 1.253 5.614 0.224 0.838 0.941 0.973
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(a) Input (b) GT (c) Eigen et al.

(d) Garg et al. (e) Zhou et al. (f) Ours

Figure 3. Comparison of monocular depth estimation between Eigen et al. [10] (supervised by depth),
Garg et al. [21] (supervised by stereo), Zhou et al. [15] (unsupervised) and ours (unsupervised).
Our method captures more details in the whole scene and particularly in thin structures for both close
and distant regions.

Table 4. Ablation results where individual components are left out on KITTI dataset when capped 80 m.

Method Abs Rel Sq Rel RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

No Occ-Mask 0.161 1.367 6.017 0.236 0.805 0.934 0.972
No 3D ICP Loss 0.160 1.594 5.775 0.226 0.826 0.945 0.976
No 3D Flow Loss 0.157 1.353 5.971 0.232 0.811 0.938 0.975
All losses 0.149 1.223 5.732 0.225 0.829 0.944 0.978

To demonstrate the generalization ability of our model, we test the model on Make3D [29] dataset
which trained only on KITTI and Cityscape. The images of Make3D dataset are in different aspect ratio
thus we evaluate on a central crop of these images. Errors are only computed where depth is less than
70 m in the central image crop similar as Godard [11] and Zhou [15]. As shown in Table 5 and Figure 5,
we compare with several methods including supervised ones using Make3D groundtruth depth.
Though there leaves a performance gap between our method and supervised ones, our predictions
beat Zhou [15] in three metrics, preserving well global scene layout and thin structures.
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(a) Input (b) GT (c) Zhou et al. (d) Ours

Figure 4. Comparison of monocular depth estimation between failed cases of Zhou et al. [15] and same
cases of ours. Our method preserves considerable predictions in vast open scenes and objects close to
the front of the camera.

Table 5. Depth estimation results on the Make3D dataset.

Method Supervision Abs Rel Sq Rel RMSE RMSE Log

Train set mean Depth 0.876 13.98 12.27 0.307
Karsch [30] Depth 0.428 5.079 8.389 0.149
Liu [31] Depth 0.475 6.562 10.05 0.165
Laina [32] Depth 0.204 1.840 5.683 0.084
Godard [11] Pose 0.544 10.94 11.76 0.193
Zhou [15] No 0.383 5.321 10.47 0.478
Ours No 0.406 4.071 9.624 0.385

(a) Input (b) GT (c) Zhou et al. (d) Ours

Figure 5. Comparison of monocular depth estimation between Zhou et al. [15] and ours on Make3D [29]
dataset. The model is trained on KITTI + Cityscapes and tested on Make3D [29] directly. Our method
captures the global scene layout reasonably well and preserves better thin structures.

4.2.2. Optical Flow Evaluation

Only one of prior works include optical flow into depth and ego-motion estimation as a 3D
geometric understanding scheme, thus we conduct the similar evaluation to make a fair comparison.
On the KITTI flow 2015 dataset we evaluated our optical flow component. We adopted the training
images as a testing set. We compared our method with previous state-of-the-art deep learning single
task methods, including handcrafted EpicFlow [33], supervised FlowNetS [14] and FlowNet2 [20],
unsupervised DSTFlow [34], UnFlow-C [23] and the joint learning method GeoNet [19]. By looking
at the EPE of pixels over non-occluded area, we can see that our method beats most deep learning
approaches including carefully designed supervised learning method FlowNet2, and comparable to
UnFlow-C when trained on KITTI. As demonstrated in Figure 6 and Table 6, our system achieves
significant improvement in non-occluded regions against other baselines due to the bidirectional flow
occlusion mask and regularities extracted from different tasks.

By avoiding any improper constraint effecting on occluded regions, the predictions over these
regions tend to be primitive and not refined. However, leveraging our 3D alignment loss and mutually
supervised term, our method still performs comparable to other baselines in overall regions.
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(a) Input (b) GT

(c) Yin et al. (d) Ours (e) Ours Error

Figure 6. Comparison of optical flow estimation between Yin et al. [19] and ours on KITTI Flow 2015
dataset. The ground truth is interpolated for visualization purpose. Our method performs better in
both occluded and overall regions.

Table 6. The reported Average end-point error (AEE) on KITTI flow 2015 over all pixels (All) and
over non-occluded pixels only (Noc). C denotes dataset FlyingChairs, S denotes Sintel and T is
FlyingThings3D.

Method Dataset Noc All

EpicFlow [33] - 4.45 9.57
FlowNetS [14] C+S 8.12 14.19
FlowNet2 [20] C+T 4.93 10.06

DSTFlow [34] K 6.96 16.79
UnFlow-C [23] K 4.29 8.80
GeoNet (FlowNetS) [19] K 6.77 12.21
GeoNet [19] K 8.05 10.81
Ours K 4.41 9.24

4.2.3. Pose Evaluation

During the training process, these three tasks are learned jointly and their accuracy is
inter-dependent. For evaluation of estimated camera pose accuracy, we test our model on KITTI
visual odometry split which contains 11 sequences with ground truth. To compare with prior works,
we train our joint network on the sequences as the same setting as [15], that sequences 00–08 are
for training and 09–10 are for testing. We also compare our method with a full version and a short
version of traditional SLAM approach ORB-SLAM [8]. The input to the full version takes entire
sequence while the short version takes 5 frames. We also employ another experiment where all
the loss weights are naive. As shown in Table 7, our method outperforms all of the competing
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baselines. Our occlusion-aware geometric constrained model is able to capture high-level and more
reliable details.

Table 7. Absolute Trajectory Error (ATE) on KITTI odometry Dataset. The results of other baselines are
taken from [15,18,19].

Method Seq.09 Seq.10

ORB-SLAM (full) 0.014 ± 0.008 0.012 ± 0.011
ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130
Zhou [15] 0.021 ± 0.017 0.020 ± 0.015
Mahjourian [18] 0.013 ± 0.010 0.012 ± 0.011
Yin [19] 0.012 ± 0.007 0.012 ± 0.009
Ours (naive) 0.011 ± 0.007 0.011 ± 0.009
Ours 0.011 ± 0.006 0.010 ± 0.008

5. Conclusions

In this paper, we proposed a joint learning framework to discuss three basic vision tasks of
the long-standing scene understanding problem in an unsupervised manner. We explicitly take the
occlusion and 3D structure of the scene into consideration. By preserving extensive geometric cues to
lead learning, we obtained impressive results which demonstrated how geometry can benefit deep
learning significantly in geometric reasoning.

However, our method is still limited to certain type of scenes where there are not many dynamic
motions. Moreover, lower computational burden and system complexity are in need of discovery.
In the future, we would like to explore the modeling of various motion masks for a more dynamic
environment. Enlarged search space for warping-based loss to solve gradient locality is in the process
of exploration. Also, introducing semantic segmentation into our system can offer more advantages.
Meanwhile, the potential multi-task architecture, which has shared representation and computation in
learning both low-level and high-level vision tasks, could be promising.
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