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Abstract: Different non-ionic cellulose ethers (methyl cellulose, MC; hydroxyethyl 

cellulose, HEC; hydroxypropyl cellulose, HPC; hydroxypropylmethyl cellulose, HPMC) 

and microcrystalline cellulose (MCC) were investigated as matrix formers for preparation 

of mini-tablets targeting vaginal drug delivery. Hexyl aminolevulinat hydrochloridum 

(HAL) was used as a model drug. The mini-tablets were characterized with respect to  

their mechanical strength, bioadhesion towards cow vaginal tissue in two independent tests 

(rotating cylinder test, detachment test using texture analyzer), and dissolution rate in two 

media mimicking the pH levels of fertile, healthy and post-menopausal women (vaginal 

fluid simulant pH 4.5, phosphate buffer pH 6.8). Mini-tablets with a matrix of either 

HPMC or HPC were found to possess adequate mechanical strength, superior bioadhesive 

behavior towards vaginal tissue, and pH independent controlled release of the model drug, 

suggesting that both systems would be suited for the treatment of women regardless of age, 

i.e., respective of their vaginal pH levels. Bioadhesive mini-tablets offer a potential for 

improved residence time in the vaginal cavity targeting contact with mucosal tissue and 

prolonged release of the drug. 
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1. Introduction 

The vagina is an important application site for drug delivery, especially for local therapy of 

different diseases, such as bacterial, fungal and protozoa infections, for HIV prevention, delivery of 

contraceptives, spermicides or labor-inducers and for the treatment of precancerous lesions [1,2].  

It may also serve an alternative route for systemic drug delivery [3]. 

Although the vaginal tissue is referred to as mucosal, the vagina does not have secretory glands. 

However, a mixture of fluids originating from a number of different sources comprises a moist film 

coating the vaginal surface. The pH of healthy pre-menopausal women of 3.5–4.5 is provided by lactic 

acid produced by the bacteria Lactobacillus, an essential part of the vaginal microflora [3,4].  

The composition, volume, pH and viscosity of the vaginal fluids are affected by age, cyclic hormone 

changes, and sexual activity; factors that may also influence the effect of vaginally applied drug 

delivery systems or dosage forms. Changes due to infections or pregnancy may also lead to different 

activity of drugs [3]. 
In order to maintain high patient compliance and adherence to therapy, the dosage forms or delivery 

systems should also be easy to administer and not cause discomfort or irritation. It should provide high 

efficiency based on an even distribution and long retention time of the drug in the vagina [3]. Different 

types of conventional dosage form, such as creams, gels, ointments and tablets, have been investigated 

for vaginal drug delivery, most of which has major drawback, and have been described as messy, 

uncomfortable, leaking in the underpants etc., resulting in low compliance. The low retention time  

is a well-known problem encountered in the formulation of drugs for vaginal application, and can  

also be attributed to the self-cleansing action of the vaginal tract [5,6]. Bioadhesive polymers are often 

included in the formulation to increase the retention time on the mucosal tissue [5,7]. The most widely 

investigated group of bioadhesive polymers are hydrophilic polymers containing numerous hydrogen 

bond forming groups, such as carbomers, chitosan, sodium aginate and cellulose derivatives [7]. Being 

water-soluble, the polymers become adhesive on exposure to moisture, and will readily cohere to 

surfaces. They are known to produce high viscosity at low concentrations, but most of the polymers 

are pH sensitive and may therefore behave differently depending on the vaginal pH. 

Lately, nanopharmaceuticals, e.g., liposomes, dendrimers, cyclodextrines and other nanoparticles, 

have gained attention also for vaginal delivery [6,8]. However, a major disadvantage of most 

nanopharmaceuticals is their liquid nature and their consequently low residence time within the vagina. 

Therefore, different types of vehicle have been proposed to prolong the retention time. Advanced 

delivery systems, such as liposomes-in-gels, have shown promising characteristics in in vitro and  

ex vivo experiments (e.g., [9,10]). Among advanced new systems from the research front that has 

entered into clinical trials can be mentioned: VivaGel® (Starpharma, Melbourne, Australia), which is a 

dendrimer-based antimicrobial platform targeting a range of sexual health products. VivaGel® is based 

on a Carbopol gel with acidic buffering capacity and mucoadhesive properties containing polylysine 
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dendrimers that binds to bacteria or viruses and prevents them from affecting the organism’s cells.  

The VivaGel® bacterial vaginosis (BV) has been confirmed to cure signs and symptoms of BV in 

Phase III clinical trials, and is currently undergoing studies to investigate the effectiveness in 

preventing reoccurrence of BV. The VivagGel® platform is also an interesting technology for 

prevention of transmission of genital herpes, HIV and other sexual transmitted infections including 

human papillomavirus (HPV), the causative agent of cervical cancer. Other examples of bioadhesive 

gel formulations are Carraguard®, a carrageenan based gel that has been shown to prevent transmission 

of high-risk HPV, but not HIV, in clinical trials by acting as an attachment inhibitor at the vaginal 

epithelium. An example of a bioadhesive gel which is on the market is Glynol II® Contraceptive Jelly, 

a spermicide containing gel (nonxynol-9) based on a combination of sodium carboxmethylcellulose 

and polyvinylpyrrolidone. Another promising approach is the foam technology platform from Foamix, 

targeting vaginal among other topical applications. The vaginal foam is bioadhesive emollient foam 

based on an o/w emulsion with a bioadhesive polymer. The company has different vaginal foams in the 

pipeline containing acyclovir, imiquimod and estradiol targeting herpes genitalis, genital warts and 

atrophic vaginitis, respectively. 

Solid formulations have the advantage of high dose accuracy and long term stability, as compared 

to semi-solid systems. However, the vaginal disintegration of conventional vaginal tablets is often 

slow, and the tablets are often rapidly cleared due to gravity combined with the self-cleansing action of 

the vagina. This may be circumvented by use of bioadhesive polymers in the formulation [11–13], but 

some studies also reported loss of bioadhesive tablets [11]. Multiparticulate systems (e.g., pellets or 

mini-tablets) can be used to overcome the problems associated with monolithic systems; the dose is 

divided into multiple smaller units that will spread out more in the vaginal cavity and contribute to 

improved coverage of the vaginal epithelium. Also, the loss of a few multiparticulates will have less 

impact of the outcome of the treatment. Bioadhesive multiparticulates are expected to swell and form 

micro-gels, releasing the drug in a controlled manner and maximizing the drug availability at the 

delivery site. Another multiparticulate approach for vaginal delivery is the microcrystalline starch 

pellets, which disintegrates in the vaginal cavity [14,15]. The pellets show fast disintegration also  

in vivo resulting in even distribution on the vaginal wall and prolonged retention of the formulation in 

the human vaginal cavity [16–19]. An alternative to the conventional solid dosage forms is intravaginal 

rings; e.g., a newly developed ring containing both an antiretroviral drug and a contraceptive has just 

entered into clinical trials [20]. 

The aim of the current study was to investigate bioadhesive mini-tablets for vaginal drug delivery. 

Mini-tablets are tablets with a diameter of 1–3 mm [21,22]. Hexyl aminolevulinat hydrochloridum 

(HAL) was chosen as a model drug because of its potential application in photodynamic therapy (PDT) 

of topical cancers, such as cervical cancer [2,23]. In PDT, a photoreactive substance (photosensitizer) 

is activated by illumination with light of a certain wavelength resulting in formation of reactive oxygen 

species, which will kill the cancer cells [24]. HAL is a derivative of the endogenous substance  

5-aminolevulinic acid (ALA), a precursor of the endogenous photosensitizer protoporphyrin IX (PpIX). 

Exogenous administration of 5-ALA, or its derivatives, induces accumulation of PpIX in cancerous 

lesions [25]. HAL is the hexyl-ester of 5-ALA. For clinical studies of cervical intraepithelial neoplasia 

(CIN), doses of 10 mL of 10 mM HAL-thermogel applied topically 5–9 h before photodynamic 

therapy have been reported [23,25]. HAL has a pKa of 8.31 for the amino-group and is freely  
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water-soluble (0.8 g in 1 g), but unstable in a moist environment [26,27]. Therefore, to eliminate the 

stability issues encountered with moist production steps, we propose direct compression as a suitable 

method for preparation of HAL mini-tablets. Non-ionic cellulose ethers were chosen as matrix formers 

since they are not influenced by changes in pH of the environment, and should therefore be expected to 

show the same performance in pre- and post-menopausal women. Bioadhesive properties were targeted 

to further prolong the retention of the mini-tablets on the vaginal mucosa. 

2. Experimental Section 

2.1. Materials 

Hexyl aminolevulinat hydrochloridum (HAL) was kindly provided by Photocure ASA, Oslo, 

Norway. Hypromellose (Hydroxypropylmethyl cellulose, HPMC) (Metolose 90SH-4000) was from 

Shin-Etsu Chemical Co, Tokyo, Japan, and hyprolose (hydroxypropyl cellulose, HPC) (Klucel® HF 

Pharm), hydroxyethyl cellulose (HEC) (Natrosol® 250LR) and methylcellulose (MC) (Culminal®  

MC-2000) were products of Hercules—Aqualon, Wilmington, Germany. Microcrystalline cellulose 

(MCC) (Avicel® PH101) was obtained from FMC biopolymers, Leeds, UK. Table 1 provides an 

overview of the polymers. 

Table 1. Overview of cellulose derivatives used in the current study. 

Polymer Substituent Group 
Molecular Weight 

(Dalton) * 

Microcrystalline cellulose (MCC) R = H <37,500 ** 
Methyl cellulose (MC) R = H or CH3 70,000 
Hydroxyethyl cellulose (HEC) R = H or CH2CH2OH 90,000 
Hydroxypropyl cellulose (HPC) R = H or CH2CH(OH)CH3 1,150,000 
Hydroxypropylmethyl cellulose (HPMC) R = H or CH3 or CH2CH(OH)CH3 1,200,000 

* Typical values according to product information; ** Estimated from degree of polymerization; not more 

than 350 according to European Pharmacopeia (Ph.Eur). 

2.2. Test Media 

Vaginal fluid simulant (VFS) was prepared by modification of the composition originally reported 

by Owen and Katz [3]. It contained 3.51 g/L NaCl, 1.40 g/L KOH, 0.222 g/L Ca(OH)2, 2 g/L lactic 

acid, 1 g/L acetic acid, 0.16 g/L glycerol, 0.4 g/L urea and 5 g/L glucose. The pH of the mixture was 

adjusted to 4.5 with either HCl or NaOH. 

Acetate buffer pH 4.5 was made by dissolving 77.1 g ammonium acetate in in distilled water.  

Seventy milliliter of glacial acetic acid was added and the mixture was diluted to 1000 mL with 

distilled water. 
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Phosphate buffer pH 6.8 was made from 51.0 mL 0.2 M KH2PO4 and 49.0 mL of 0.5 M Na2HPO4 

diluted to 1000 mL with distilled water. The pH was adjusted to 6.8 with either HCl or NaOH  

when necessary. 

2.3. Particle Density 

The true density of the polymers was determined using a helium gas pycnometer (AccuPyc 1330, 

Micromeritics Instrument Corporation, Norcross, GA, USA). Reported results were the mean of two 

independent experiments with 10 repetitive purge cycles and three runs for each experiment. 

2.4. Preparation of Tablets 

HAL was mixed separately with each of the polymers (MCC, HC, HEC, HPMC and HPC) in the 

ratio 10:90 (w/w) by hand, and compressed to mini-tablets on a costume-made compaction simulator 

(ServoPress 450, Schmidt Technology GmbH, St. Georgen, Germany, with the compaction module, 

IBR, Waldkirch, Germany) equipped with 2 mm concave 15-tip multiple tooling (Ritter Pharma–Technik 

GmbH, Stapelfeld, Germany). Prior to compression, the tips were lubricated using a magnesium 

stearate in acetone suspension. The mini-tablets were prepared by manual die-filling. The compaction 

speed was 10 mm/s. Compaction pressure was 150 ± 5 MPa. The filling volume was kept constant; 

hence, the mass of the biconvex mini-tablet varied depending on the density of the powder mixture. 

In addition, 6 mm flat-faced tablets were prepared following the same procedure, for use in the 

detachment test. 

For HPMC and HPC, additional formulations containing HAL to polymer in the ratio 1:99 and 

50:50 (w/w) were prepared both as 2 mm mini-tablets and 6 mm tablets. 

2.5. Mechanical Strength of the Mini-Tablets 

Thirty mini-tablets of each batch were evaluated with respect to height and crushing force using a 

texture analyzer (TA-XT2i Stable Micro Systems, Godalming, UK) with a 50 kg load cell at ambient 

temperature. For height measurements, the instrument was calibrated using calibration blocks DIN 861 

(W&Z Computer Vertrieb GmbH, Dresden, Germany) with the respective size of 1.000, 1.300, 1.400, 

1.500, 1.600, 1.700, 1.800, 1.900, 2.000, 2.100 and 3.000 mm. A calibration equation was derived, 

which was used for correction of the measured heights. The axial height of mini-tablets was 

determined using a speed of 0.10 mm/s and a trigger force of 5 g. The height registered at detection of 

the trigger force was taken as the mini-tablet height and corrected using the calibration equation. 

The diametrical force needed to crush the mini-tablet was determined at a speed of 0.3 mm/s 

applying a trigger force of 5 g. The tensile strength was calculated using the equation for flat-faced 

tablets according to Fell and Newton [28]. Even though min-tablets are biconvex, this approximation 

has been used in literature for estimation of tensile strength of mini-tablets [21,22]. 
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2.6. Ex Vivo Assessment of Bioadhesion 

2.6.1. Preparation of Tissue 

Cow vaginal mucosa was chosen as a biological matrix, since it is recognised as suitable for the 

simulation of human vaginal mucosa properties [10,12,29]. Vaginal mucosal tissue from heifer was 

obtained from the slaughterhouse (Mydland, Tromsø, Norway). The tissue was collected fresh, 

immediately after slaughtering, and transported in acetate buffer pH 4.5 on ice to the laboratory, where 

the vaginal mucosa was carefully removed from the underlying tissue and cleaned with acetate buffer 

pH 4.5. The tissue was cut into smaller pieces and packed in plastic (cling film) and aluminium foil 

before freezing at −20 °C. Prior to testing, the tissue was defrosted in acetate buffer pH 4.5 at  

37 ± 1 °C for 60 min using a magnetic stirrer and heated disc [29]. The tissue was cut into  

desirable-sized pieces and applied in the tests of bioadhesion. 

2.6.2. Rotating Cylinder Method 

The bioadhesion of mini-tablets to vaginal tissue was assessed in a modified version of the rotating 

cylinder method [30] as previously described [27]. Briefly, the vaginal tissue was attached to a 

cylinder, and 10 mini-tablets from the same batch were gently placed on the tissue without application 

of force. The cylinder with the tissue was placed in a chamber containing 400 mL acetate buffer  

pH 4.5 at 37 °C, and rotated at 150 rpm for 5 min. The number of mini-tablets remaining on the tissue 

after agitation was counted. The test was run in triplicate, and the results were given in percentage 

attached after agitation. 

2.6.3. Detachment Test 

The bioadhesiveness was studied further using in a texture analyzer (TA-XT2i Stable Micro 

Systems, Godalming, UK) with a 50 N load cell equipped with a mucoadhesion rig. The tablet was 

attached to a flat-faces probe using double-sided adhesive tape. Due to the small contact area of 

biconvex 2 mm mini-tablets, it was not possible to obtain appropriate results; therefore, 6 mm  

flat-faced tablets (prepared as described for mini-tablets) were employed in this test. The vaginal tissue 

(approximately 20 × 20 mm) was mounted in the holder and hydrated with 100 µL acetate buffer  

pH 4.5 (ambient temperature). After 1 min, the probe with the attached tablet was moved down to 

contact the tissue. The contact time between the tablet and the tissue was 30 s applying a force of 5.0 g. 

The probe was subsequently withdrawn at a constant speed of 0.1 mm/s. The maximum force 

registered in the detachment test was taken as the detachment force (Fmax) and the area under the curve 

(AUC) of the detachment force versus displacement was taken as the work of adhesion [31]. The test 

was run in eight parallels for each formulation. For reliable measurements, it is important that the 

registered detachment is in fact the detachment of the tablet from the tissue and not e.g., splitting of the 

tablet (due to capping/layering) or detachment of the tablet from the probe (adhesive tape), none of 

which were a problem in the current tests. 
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2.7. Dissolution Rate of Hexyl Aminolevulinat Hydrochloridum (HAL) from the Mini-Tablets 

Samples of approximately 400 mg (80 mini-tablets) were tested in 400 mL test medium using  

the paddle apparatus at 100 rpm and 37 ± 0.5 °C. As test media, vaginal fluid simulant pH 4.5 and 

phosphate buffer pH 6.8 were used. Samples of 2.0 mL were withdrawn after 5, 10, 15, 30, 45, 60 and 

120 min, respectively. The samples were filtered using 0.22 μm syringe filter (Merck Millipore, 

Darmstadt, Germany), and immediately quantified by HPLC–UV. The HPLC (Waters, Milford, CT, 

USA) method was based on reversed phase using a C8 column with 0.02 M phosphate buffer and 

methanol as the mobile phase (40/60), isocratic elution and UV-detection (Waters 2489 UV–vis 

detector) at 210 nm. The flow rate, injection volume and column temperature was set at 1.5 mL/min, 

50 µL and ambient temperature, respectively. HAL was quantified using external standard calibration 

(peak area). The method was validated with respect to precision as repeatability (RSD ≤ 2%), accuracy 

(60%–70%) and linearity (r = 0.992, range 70%–130% of target concentration). Results were 

calculated as mean (n = 3), and the variation expressed as highest and lowest deviation from the mean. 

2.8. Statistics 

Statistical significance of difference between formulations was determined using two-tailed 

Students t-test. p < 0.05 was considered statically significant. 

3. Results and Discussion 

The proper vaginal formulation should spread well out in the vaginal cavity to obtain good effect 

and have bioadhesive properties to ensure sufficiently long retention time at the delivery site and 

maximize drug activity. Previously, we have investigated multiparticulates of HAL prepared by 

extrusion/spheronization of Carbopol 934-containing blends [27]. Since HAL is sensitive to 

degradation in contact with moisture, the wet-massing step of the preparation process, and the 

remaining moisture content of the products resulted in poor storage stability of the formulations.  

By preparation of mini-tablets by direct compression, this issue is avoided. 

3.1. Preparation of Mini-Tablets 

Mini-tablets were prepared from all the different polymers in a drug to polymer ratio of 10:90 (w/w) 

(Table 2). The filling volume was kept constant for all formulations; since the polymers have different 

density, the mass of the mini-tablets varied between the formulations, with MCC producing the 

heaviest and HPC the least heavy units. 

The tensile strength of the mini-tablets showed varying mechanical strength, with those prepared 

with MCC being the strongest, followed by formulations with HPMC and HPC, respectively (Table 2). 

Mini-tablets prepared from MC and HEC possessed low mechanical strength. The strength of the HEC 

mini-tablets was border line with what is allowable with careful handling without falling apart. The 

mechanical strength reflects the formulation’s ability to form tablets by direct compression under the 

applied pressure (150 ± 5 MPa). The excipients producing the strongest tablets (MCC, HPC and 

HPMC) are frequently used as binders in direct compression and/or dry granulation [32], and therefore 

expected to produce strong tablets. MC and HEC may also be used as binder in tablet formulation, but 



Pharmaceutics 2014, 6 501 

 

 

more in wet granulation, which could explain why the mechanical strength of the directly compressed 

mini-tablets was lower with these excipients. 

Table 2. Overview of particle density of the polymers and tensile strength of 2 mm biconvex 

mini-tablets consisting of 10% (w/w) hexyl aminolevulinat hydrochloridum (HAL) and 90% 

(w/w) of the respective polymers. 

Polymer Particle Density * [g/cm3] Tensile Strength ** [N/mm2]

Microcrystalline cellulose (MCC) 1.518 ± 0.008 3.09 ± 0.55 
Methyl cellulose (MC) 1.319 ± 0.002 0.46 ± 0.13 
Hydroxyethyl cellulose (HEC) 1.334 ± 0.001 0.13 ± 0.02 
Hydroxypropyl cellulose (HPC) 1.203 ± 0.001 1.30 ± 0.37 
Hydroxypropylmethyl cellulose (HPMC) 1.341 ± 0.001 1.42 ± 0.45 

* n = 6; ** n = 30. 

3.2. Bioadhesive Characteristics 

The two mechanically weak formulations, namely mini-tablets based on MC and HEC, were found 

to disintegrate immediately upon exposure to fluids. Thus, no results could be obtained with respect to 

their bioadhesive behaviour towards vaginal tissue. 

In the rotating cylinder test, none of the mini-tablets made of MCC were retained on the tissue after 

agitation (Figure 1). Mini-tablets containing HPC and HPMC showed high degree of retention on the 

vaginal tissue after agitation. More than 72% was retained for the HPC-based formulations and more 

than 93% was retained for the HPMC-based formulations. This is in the same order of magnitude as 

found for the most bioadhesive Carbopol 934-containing pellets in the previous study [27]. The 

rotating cylinder test showed a significant difference in bioadhesive behaviour between mini-tablets 

based on HPC and HPMC (p < 0.05). Furthermore, mini-tablets of HPMC also seemed to swell more, 

or more precisely increase more in size during swelling, as compared to those consisting of HPC. It has 

been shown in general terms that the swelling state of the polymer contributes to its bioadhesive 

characteristics [33]. The less hydrophobic character of HPMC compared to HPC may contribute to a 

higher swelling and hence the higher extent of bioadhesion observed for these mini-tablets towards the 

vaginal tissue. Also, the drug itself may contribute to the bioadhesive nature of the formulations; HAL 

is positively charged at pH 4.5 (pKa 8.31) and may therefore interact with the negatively charged 

tissue surface and with mucin. For HPMC and HPC formulations, it may seem like a correlation 

between retention of the mini-tablets on the tissue and their respective tensile strength; however, the 

highest tensile strength was found for the mini-tablet formulation with MCC, which did not show any 

retention to the tissue in the rotating cylinder method. 

To further quantify the bioadhesive character of the mini-tablets, the detachment test was employed. 

However, due to the biconvex shape of the mini-tablets and the small contact area both with the probe 

(double-sided tape) and the tissue, the mini-tablets detached more often from the probe than it 

detached from the vaginal tissue, and no reproducible measurements could be obtained. Therefore,  

to allow measurements, larger fat-faced tablets of 6 mm diameter were prepared with the same 

compositions as the mini-tablets. These allowed quantification of the max detachment force  

(Figure 2a) and the work of adhesion (Figure 2b). 
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Figure 1. Effect of the type of polymer on the bioadhesion of 2 mm biconvex mini-tablets 

to vaginal tissue represented as percentage of retained units on the tissue after applied 

stress in the rotating cylinder test; drug to polymer ratio 10:90 (w/w); (n = 30). Mini-tablets 

of methyl cellulose (MC) and hydroxyethyl cellulose (HEC) disintegrated and no result 

was obtained. 

 

Figure 2. Effect of the type of polymer on the bioadhesion of 6 mm flat-faced tablets to 

vaginal tissue in the detachment test; drug to polymer ratio 10:90 (w/w); (n = 8). (a) Max 

detachment force (Fmax); (b) Work of adhesion (AUC). Tablets of MC and HEC 

disintegrated and no result was obtained. 

 
(a) 

  

0

10

20

30

40

50

60

70

80

90

100

MCC MC HEC HPC HPMC

Re
ta

in
tio

n 
on

 ti
ss

ue
 [%

]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MCC MC HEC HPC HPMC

F m
ax

[N
]



Pharmaceutics 2014, 6 503 

 

 

Figure 2. Cont.

 
(b) 

Even though the amount of fluid present during measurements was considerably lower in this test, 

the MC and HEC tablets started disintegrating upon contact with fluids, and no results were obtained 

for the two formulations. The highest detachment force and the highest work of adhesion were found 

for HPC and HPMC (Figure 2). The order of magnitude for the detachment force was in the lower 

region of what has been reported in a similar test for much larger tablets (13 mm diameter) composed 

of blends of HPMC and Carbopol [12]. Since the tablets in our study are significantly smaller (6 mm 

diameter), the contact area towards tissue is also smaller. In our study, no significant difference was 

observed in bioadhesion between the two polymers HPC and HPMC, but they showed significantly 

higher values in both detachment force and work of adhesion than MCC. 

MCC is generally not considered as a bioadhesive polymer, although it swells to a certain degree in 

water and has several hydrogen bond forming groups. The unexpectedly high detachment forces 
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the detachment did not. This is probably attributed to the different test conditions rather than the 

properties of the polymers. Retrospectively, the detachment force registered for MCC suggests that 

capillary forces might have influenced this particular result. In the literature, a variety of tests are used 

to assess bio- and mucoadhesiveness [34]. The two tests applied in the current study are among the 

most commonly used. Interestingly, as pointed out in the review of Woertz et al. [34], even though the 

European Pharmacopeia monograph on oromucosal preparations contains a chapter on mucoadhesive 

preparations, it lacks an official standardized test for these preparations [35]. 

3.3. Dissolution Behavior 

The drug release from the mini-tablets was evaluated in two different media mimicking the pH of 

pre- and post-menopausal women. Vaginal fluid simulant (VFS) pH 4.5 was used to simulate the 

conditions of vaginal fluids in healthy, fertile women [4], whereas a more simple phosphate buffer  

pH 6.8 simulated the higher pH conditions post menopause [36]. Mini-tablets based on MCC, MC and 

HEC showed fast disintegration and the drug was released within 10–15 min in both media (Figure 3). 

The dissolution rate from HPC and HPMC mini-tablets were slower, with 80%–90% of the drug 

released after 60 min. The slowest release was seen for HPC mini-tablets. The formulations were 

found to behave similar in both media, suggesting that the formulations will not be influenced by the 

age-dependent pH level of the woman. This is beneficial in terms of developing a pharmaceutical 

product. It is of vital importance that the drug release characteristics are predictable and will show 

similar behavior in the population of potential users. 

Figure 3. Dissolution rate of HAL from 2 mm convex mini-tablets in two media; drug  

to polymer ratio 10:90 (w/w); (n = 3) (a) Vaginal fluid simulant pH 4.5; (b) Phosphate 

buffer pH 6.8. 
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Figure 3. Cont.

 
(b) 

The somewhat faster release found from mini-tablets of HPMC as compared to HPC can be 

attributed to the less hydrophobic character of HPMC, and higher degree of swelling discussed above. 

It should be noted that the dissolution test can merely rank the dissolution rate from the different 

formulations, and not simulate vaginal in vivo conditions. As mentioned above, the amount of vaginal 

fluid present in the vagina at any time is less than 1 g on average [4]. Also, agitation is expected to be 

much lower than that simulated in the dissolution apparatus. Therefore, the release must also be 

expected to be slower in vivo than indicated by this simple in vitro test. This is why the bioadhesive 

characteristics of the multiparticulates are of great importance to maximize the effect of the drug. 

3.4. Further Optimization 

Both mini-tablets based on HPC and HPMC seemed suitable for vaginal drug delivery, as they 

show bioadhesive nature towards vaginal tissue combined with a controlled release of the drug. 

Increasing the drug load in the mini-tablets leads to reduced amount of the matrix former. Additional 

mini-tablets of the ratio HAL to polymer 50:50 and 1:99 (w/w) were prepared to evaluate the effect of 

the drug load on the mechanical properties (Figure 4). As expected, the tensile strength of the tablets 

was reduced when the amount of polymer, working as dry binder, was reduced. However, at 50% 

(w/w) polymer content both HPC and HPMC were still able to produce appropriate mini-tablets with a 

tensile strength of approximately 0.75 N/mm2, which is adequate for handling related to packing, 

filling, transportation and use. No significant difference was found in the tensile strength by increasing 

the polymer content from 90% to 99% (w/w). It may be hypothesized that the available binding seats 

on particles of the 10:90 powder mixture are similar to that of the 1:99 powder mixture, resulting in 

tablets of similar mechanical strength. If the tensile strength increases with increasing polymer content 

due to increased fraction of the bond-forming material, it is likely that the tensile strength has reached 

a percolation threshold or a plateau around 90% (w/w) of polymer. 
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Figure 4. Effect of the polymer content on the tensile strength of 2 mm convex  

mini-tablets of HAL and polymer (n = 30). 

 

With respect to bioadhesion, no significant changes related to polymer content were observed in the 

detachment test. The dissolution rate of HAL was increased with reducing polymer content (Figure 5). 

The difference between 90% and 99% (w/w) polymer seemed larger for the more hydrophobic HPC  

as compared to the HPMC, where no significant difference was observed. However, reducing the 

polymer content to 50% resulted in an increased dissolution rate. Again, the dissolution test should 

merely be used to rank the formulations relative to each other, as the test conditions were not 

biorelevant with respect to amount of fluid and agitation. 

Figure 5. Effect of the polymer content (% w/w) on the dissolution rate of HAL from  

2 mm convex mini-tablets (n = 3). Formulations containing 90% hydroxypropylmethyl 

cellulose (HPMC) and hydroxypropyl cellulose (HPC) (dashed lines) are replotted from 

Figure 3 to ease interpretation. 
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In the current study, external lubrication with magnesium stearate in acetone was found to be 

sufficient, but for scale-up to industrial production, a lubricant needs to be included in the formulation. 

The less hydrophobic sodium stearyl fumarate seems as a suitable choice since it is less likely to 

influence the wetting and swelling of the polymers, as compared to the very hydrophobic magnesium 

stearate. Both formulations based on HPMC and HPC are assumed to possess suitable compression 

and compaction properties allowing scale up, however this remains to be demonstrated. Large scale 

production of mini-tablets could be regarded as challenging due to the small matrices potentially 

resulting in high variability, but products based on mini-tablets have been on the market for decades, 

(e.g., pancreatin products from Nordmark, Germany) proving that it is technologically feasible. 

An approximation to a therapeutic dose of HAL for PDT in CIN (cervical cancer) may be derived 

from clinical studies where they applied 10 mL of 10 mM HAL thermogel topically [23,25] to be 

around 25 mg HAL. For mini-tablets with a mass of 5.5 ± 5 mg per unit and a drug load of 10% (w/w), 

this corresponds to around 45 mini-tablet, or 250 mg mini-tablets. This is considered to be a feasible 

amount to administer in one application, yet entailing enough single units to maintain the advantages 

of multiparticulates. Therefore, mini-tablet formulations of HAL in 10:90 (w/w) with HPMC and HPC 

seem to be promising candidates for further in vivo studies. 

For administration, the new mini-tablet formulations might be filled into capsules, but clinical 

studies with volunteers have shown lack of correlation between in vitro and in vivo disintegration times 

for capsules, both with respect to hard gelatin and HPMC capsules, probably due to the low amount  

of vaginal fluid present [18,19]. Intravaginal disintegration times of more than 6 h were reported in 

several of the volunteers. Using an applicator that does not require packing of the multiparticulates into 

capsules, as suggested by Poelvoorde et al. [19], seems like a suitable way to eliminate the influence of 

capsule disintegration and deliver the mini-tablets intravaginally. It is anticipated that due to the small 

size, the mini-tablets will distribute evenly over the vaginal epithelium, and the bioadhesive nature will 

make them less sensitive to gravity and clearance, resulting in a longer residence time maximizing the 

effect of the drug. This still remains to be proven in in vivo studies. 

From a safety perspective, the irritation potential of new vaginal delivery systems is the most vital 

characteristics because irritation causes inflammation and can, in severe cases, lead to cell toxicity and 

tissue damage, which further may increase the transmission of diseases (e.g., [37]). Also, mild mucosal 

irritation, such as genital burning, itching and discharge, is highly undesired for these types of products. 

Non-ionic cellulose derivatives in contrast to ionic polymers are not expected to influence the local  

pH nor form ionic bonds with the mucosal surface. Hydroxyethylcellulose (HEC) is even used as the 

base of the “universal placebo” gel that is commonly used in efficacy and safety trials of new 

microbicides [38,39]. The “universal placebo” gel is an isotonic get that is proven not to cause mucosal 

irritation in the standard rabbit vaginal irritation test assay [38], in the slug mucosal irritation assay [40] 

as well as in humans [39]. Whereas tonicity has been shown to be important to prevent epithelial 

swelling or dehydration [40], dry formulations seems to be less irritating on the vaginal mucosa [15–18], 

unless they contain materials that are irritating as such. This is supported by the several vaginal tablet 

products on the market. It is therefore assumed that mini-tablets based on non-ionic cellulose ester will 

be non-irritating and safe, but this remains to be verified in clinical studies. 
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4. Conclusions 

Bioadhesive mini-tablets offer potential for improved residence time in the vaginal cavity targeting 

contact with mucosal tissue and prolonged release of the drug. Mini-tablets with a matrix  

of either HPMC or HPC were found to possess adequate mechanical strength, bioadhesive behavior 

towards cow vaginal tissue, and show pH independent controlled release of the drug, suggesting that 

both systems are equally suited for the treatment of both pre- and post-menopausal women. Mini-tablet 

formulations based on MC or HEC were mechanically weaker and disintegrated fast upon contact with 

fluids, and therefore released the full drug load within a few minutes. Bioadhesion towards vaginal 

tissue could not be successfully evaluated, either in the rotating cylinder test or in the detachment test. 
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