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Abstract: Transdermal delivery of certain drugs is challenging because of skin barrier 

resistance. This study focuses on the implementation of feature-selection algorithms to 

design chemical penetration enhancers. A database, consisting of 145 polar and nonpolar 

chemicals, was chosen for the investigation. Replacement, enhanced replacement and 

stepwise algorithms were applied to identify relevant structural properties of these 

compounds. The descriptors were calculated using Molecular Modeling Pro™ Plus. Based on 

the coefficient of determination, the replacement methods outperformed the stepwise 

approach in selecting the features that best correlated with the flux enhancement ratio. An 

artificial neural network model was built to map a subset of descriptors from sixty-one 

nonpolar enhancers onto the output vector. The R
2
 value improved from 0.68, for a linear 

model, to 0.74, which shows that the improved framework might be effective in the design 

of compounds with user-defined properties. 
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1. Introduction 

Transdermal drug delivery is the transport of a therapeutic chemical substance into the body 

through the skin in the forms of ointment or a patch. The first transdermal drug-delivery system 

(TDDS), dating back to 1979, consisted of a scopolamine patch prescribed to treat motion sickness [1]. 

However, until the release of nicotine patches in 1991 [1], little attention was paid to this approach. 
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Currently, there exists over 21 TDDSs. They are becoming more accepted, by the pharmaceutical 

industry, as viable drug-delivery methods. 

The dermal route offers several advantages. Applying a transdermal patch is easy, painless and 

rapidly effective, as opposed to hypodermic injections or oraldrug-delivery systems, which usually 

require a long time for the medication to reach its target site. In spite of these benefits, only a limited 

number of drugs are administered using this method because of the skin barrier properties. The dermal 

membrane consists of three main layers of tissue: the epidermis (stratum corneum and viable epidermis), 

dermis and a subcutaneous region [2]. The skin is particularly resistant to the permeation of most 

external chemicals due to the presence of the stratum corneum, composed mainly of dead cells. 

Chemical penetration enhancers (CPEs) are designed to stimulate transport across the skin. These 

sorption promoters (or accelerants) increase the drug flux and reduce the resistance of the skin barrier [3]. 

Penetration enhancers are added to the formulation of TDDSs to allow the permeation of molecules 

that would have crossed the dermal layer at a rate too slow for clinical applications or have been 

precluded from traversing the biological membrane. The effectiveness of an accelerant is measured by 

the Enhancement Ratio (ER), defined as the ratio of the flux in the presence of a fixed concentration of 

CPE to the delivery rate when the enhancer is not added to the formulation [4]. The application of 

CPEs has had positive impact on TDDSs. As a result, efforts have been devoted to the development of 

several numerical tools to help design CPEs that exhibit desired properties.  

Previous studies suggest that the activity of a penetration enhancer is related to the structure of the 

drug as well as that of the enhancer [5]. A quantitative structure-activity relationship (QSAR) 

modeling framework can be adopted to derive mathematical relationships between the ER and the 

enhancers’ molecular descriptors (or features) [4]. However, the number and type of features to 

include in a model is generally not known a priori. In this study, three different methods for 

determining an optimal subset of molecular descriptors are investigated: the replacement method (RM), the 

enhanced replacement method (ERM) and the traditional forward stepwise regression. Artificial neural 

networks (ANNs) are then implemented to produce more accurate models. This contribution is the first 

to employ ERM and RM in selecting the best descriptors for transdermal applications. 

The RM and ERM are provided to help identify the best combination of descriptors from a large 

pool of variables. Artificial neural networks are built to map a series of input patterns onto a set of 

output variables. When possible, these ANN models can be implemented to refine the initial  

QSAR models. 

1.1. Replacement Method for the Selection of QSAR Descriptors 

Given a multiple linear regression model: 

1

M

i i

i

y b a x


   (1)  

where ix is a feature (e.g., molecular weight) from a pool of size N and y is the output variable. The 

replacement method (RM) helps select a subset of M descriptors that result in the lowest standard 

deviation from Equation 1. In this procedure, an initial set of M features (V) is selected arbitrarily [6] 

from a population W. One of the descriptors in V is chosen (first path) and replaced one at a time by 

the remaining descriptors from W V . The set that yields the smallest standard deviation (S) is  
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saved [7]. The second step involves choosing the descriptor with the coefficient showing the greatest 

relative error and replacing it with features from the remaining set. Note that the replacement is made 

if it decreases S. This scheme is repeated until the set of descriptors remains unchanged. For each 

cycle, the descriptor optimized in the preceding cycle is not altered [6,8]. In the end, the best descriptor 

of the first path is obtained. The procedure continues for all of the M possible paths and the one with 

the smallest S is retained.  

1.2. Enhanced Replacement Method for the Selection of QSAR Descriptors 

The ERM can be applied to predict an optimal group of molecular descriptors from a large set. This 

technique consists of the implementation of two algorithms, the RM and a modified RM (or MRM), in 

the following sequence: RM, MRM and RM. The MRM follows the same strategy as the RM except 

that, in this case, the descriptor with the largest error is replaced in each step even when the 

substitution does not reduce the S value further [6].  

1.3. Stepwise Methods for the Selection of QSAR Descriptors 

The forward selection method assumes no variable in Equation (1) and adds one variable at a  

time [9]. A regressor is inserted if it improves the model as determined by the F-ratio statistic. The 

procedure continues until no selected predictor results in an F-ratio value larger than a user-defined 

threshold. In the backward elimination method, all the variables are included in Equation (1). The 

predictor with the smallest F-ratio is deleted. The process is repeated until the deletion of any feature 

would produce an F-ratio greater than a threshold. These techniques can also be implemented to find 

the best p-term equation using criteria that are based on the residual sum of squares [9]. 

1.4. Artificial Neural Networks 

Artificial neural network (ANN) models were developed [10,11], as nonlinear predictors, to 

calculate an output vector from the QSAR descriptors. In this work, a feed-forward ANN model with 

back-propagation was built to estimate the enhancement ratio. Artificial neural networks include a set 

of weights, w  (to be adjusted in a training phase), bias functions  .f  and parameter p : 

 , ,y f x w p  (2)  

In a supervised ANN model, examples, representative of the process, are provided in the training 

phase. The best w and p, that minimize a performance criterion, are calculated. In the testing phase, 

new input patterns are supplied with the optimal w and p (Figure 1). Only one hidden-layer 

architecture is proposed for this application. There is also flexibility in the number of neurons 

associated with the hidden layer. Algorithms have been designed to prune large networks [12,13].  
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Figure 1. Artificial neural network model using one hidden layer and two nodes. The input 

vector is connected to the hidden neurons through weights w and p. The hidden layer and 

output variable are also connected. A nonlinear activation function σ is applied. 

 

1.5. Selection of Descriptors and Prediction of ER 

Three skin penetration enhancer sets were analyzed in this study. These data consist of: 

 Sixty-one (61) nonpolar enhancers using hydrocortisone (HC) as a control in measuring ER 

(Table 1 of Iyer et al. [4]).  

 Forty-two (42) small and relative polar enhancers using hydrocortisone (HC) as control 

(Table 2 of Iyer et al. [4] except for AT-TERPENE/HC-7 and AT-TERPENE/HC-7).  

 Forty-two (42) nonpolar enhancers using Hydrocortisone Acetate (HCA) as a control (Table 

3 of Iyer et al. [4]). 

2. Experimental Section 

The experimental method for measuring the ER was the same for all three datasets examined in this 

study [4]. The slope of the linear portion of the cumulative drug amount released versus the time 

corresponds to the steady-state flux (J, mg cm
−2

 h
−1

). The software MOLECULAR MODELING 

PRO™ Plus (MMP+) estimated the molecular descriptors of the 145 CPEs from their structures. 

MMP+ calculated approximately 114 descriptors. However, this number was reduced to 31 descriptors 

selected from the combined set used in studies of skin penetration enhancers provided in [4,5]. The 

ERM, RM and forward stepwise regression methods were introduced to discover significant 

relationships between a subset of structural parameters, taken from the 31 descriptors, and the ER. 

Statistical analyses were performed in MATLAB (The MathWorks Inc., Natick, MA, USA) using a 

QSAR/QSPR search algorithm Toolbox [6]. To minimize the possibility of correlation, the program 

was instructed to select eight descriptors, a number that was less than one-fifth the size of the supplied 

data [14]. A linear regression model was developed for each set and the following values were 

reported: N, the number of data; R
2
, the coefficient of determination; S, the standard deviation.  
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3. Results and Discussion 

The relevant descriptors obtained by the enhanced replacement method were: hydrogen bond 

acceptor, polar surface area, moment of inertia, glass temperature (Tg), molar volume, radius of 

gyration (RG), dipole moment and polarity (Table 1). The applicability domain (AD) was not 

explicitly determined. However, the three data sets (i.e., Database or DB #1, DB #2, DB #3) obtained 

from Iyer et al. [4] were separated on the basis of polarity and the control drug (i.e., hydrocortisone 

and hydrocortisone acetate). In this sense, the data within a group, share a “common mechanism of action”. 

The y-intercept and regression coefficients are also shown in the table. For example, the following 

equation was built for the 61 nonpolar enhancers (DB #1) using the ERM: 

  120.8055  80.4322  hydrogen bond acceptor  1.7554  polar surface area 

            0.0017  moment of inertia  0.1102    0.0654  molar volume + 

           16.9552  5.0650  dipole 

g

ER

T

RG

     

     

   moment  20.6850  polarity  

 (3)  

The performance of the ERM was similar to that of the RM. The stepwise method produces the 

lowest R
2 

value (i.e., 0.671). Figure 2 illustrates both the experimental and predicted values. 

Figure 2. Correlation between the linear predicted and experimental ER for the set of 61 

nonpolar CPEs that enhanced the permeability of hydrocortisone. The enhanced 

replacement method (ERM) was applied for the selection of the descriptors. 

 

In the work of Iyer et al. [4], six classic QSAR descriptors yield an R
2
 of 0.732. Seventy-nine 

classic QSAR descriptors were drawn for the analyses. A quadratic model was fitted to the data. When 

using the forty-two small and relative polar enhancers (DB #2), R
2 

values for the different methods 

were less than 0.4. These findings agree with the results in Iyer et al. [4] because no meaningful model 

could be developed from classic QSAR descriptors. Figure 3 shows the calculated and experimentally 

determined ER values for the ERM.  
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Table 1. Results of the ERM, RM and the forward stepwise selection procedure applied to 

the three datasets (i.e., DB #1, 2 and 3). Databases 1 and 2 were composed of 61 nonpolar 

and 42 polar enhancers, respectively, with hydrocortisone serving as a control molecule. 

Forty-two compounds were in the third database. The 
2R , y-intercepts and coefficients of 

the multiple linear models are listed. 

   DB # 1 Nonpolar DB # 2 Polar DB # 3 Nonpolar 

   N = 61 Hydrocortisone N = 42 Hydrocortisone N = 42 Hydrocortisone Acetate 

  ERM RM Stepwise ERM RM Stepwise ERM RM Stepwise 

R2 0.683 0.683 0.671 0.385 0.361 0.323 0.522 0.488 0.390 

Intercept −120.81 −120.81 −132.43 −14.98 −14.50 6.39 233.64 181.96 203.21 

Molecular Descriptor                   

Density (g/cm3)                 −237.02 

Dipole Moment (debye) −5.07 −5.07 −5.24             

Dispersion (J/cm3)1/2       1.57 1.02 2.76 × 10−1       

Number of Torsional Bonds             −12.67 −9.22   

Energy of Cohesion (J/mol)       1.00 × 10−4 1.00 × 10−4 1.00 × 10−4 7.00× 10−4     

Hydrophilic Lipophilic 

Balance (HLB) 
                  

Highest Occupied Molecular 

Orbital (HOMO) 
          1.02 532.18 449.36   

Hydrogen Bond Acceptor 80.43 80.43 83.28 −3.74       127.28 92.98 

Hydrogen Bond Donor         −9.81 −1.63   −121.54   

Hydrogen Bonding  (J/cm3)1/2         4.36 × 10−1   −7.32   −5.83 

Hydrophilic Surface Area 

(cm2/mol) 
                  

Kappa 2                   

Log P       −1.15           

Lowest Unoccupied 

Molecular Orbital (LUMO) 
        −7.33 × 10−1 −1.32       

Mean Water of Hydration                   

Molar Volume (cm3/mol) −6.54 × 10−2 −6.54 × 10−2               

Molecular Length (Å)     1.65       7.27 6.72 −2.56 

Molecular Volumes(Å3)       −4.27 × 10−1       2.64   

Molecular Weight (Da)         −5.53× 10−2     −1.85   

Molecular Width (Å)       −1.51   −1.71       

Moment of Inertia  

(g cm2/mol) 
−1.70 × 10−3 −1.70 × 10−3 −2.00 × 10−3             

Molar Refractivity (MR)             −12.10 −4.01   

Percent Hydrophilic Surface 

Area 
                  

Polar Surface Area (Å2) −1.76 −1.76 −1.82           −6.53× 10−1 

Polarity (J/cm3)1/2 20.69 20.69 21.01     3.69 × 10−1 4.05   6.44 

Radius of Gyration (Å) 16.96 16.96 12.04             

Surface Area (Å2)       3.39× 10−1     2.44     

Surface Tension (dynes/cm)       −8.79× 10−2 −6.90 × 10−2 −8.83 × 10−2     2.22 

Tg (C)  −1.10× 10−1 −1.10 × 10−1 −1.01 × 10−1           3.83× 10−2 

Tm (C)                   

Water Solubility (mol/L)         2.85× 10−1         
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Figure 3. Correlation between the linear predicted and experimental ER for the set of  

42 polar CPEs from DB #2. The enhanced replacement method (ERM) was applied for the 

selection of the descriptors. 

 
The third dataset (DB #3) yields R

2 
values of 0.522, 0.488 and 0.390 for the ERM, RM and stepwise 

method, respectively. The data are plotted in Figure 4. For the ERM, Based on 77 classic descriptors 

and applying a quadratic model, an R
2 

value of 0.738 was achieved in Iyer et al. [4]. It is customary to 

consider log( )ER instead of ER  when modeling skin penetration enhancers [3]. However, this 

measure did not necessarily lead to improved outcomes. For example, based on the ERM algorithm, 

the molecular weight and Log(P) are determining factors in the formulation of enhancers from DB #1. 

Yet, a much lower R
2 
of 0.47 was observed.  

Figure 4. Correlation between the linear predicted and experimental ER for the set of  

42 nonpolar CPEs from DB #3. The enhanced replacement method (ERM) was applied for 

the selection of the descriptors.  

 

Replacement techniques (i.e., ERM and RM) are more effective than the stepwise method in 

selecting the best descriptors for predicting skin penetration enhancement. Given that a multiple linear 
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model was adopted and a relatively small pool (31 versus 77 and 79 features) was chosen, this 

approach is comparable to other techniques published in the literature. The inclusion of features, such 

as 4D-fingerprint descriptors [4], may help improve the performance of replacement procedures.  

The significance of the parameters to enhance drug permeation has been reported by other 

researchers. For example, Potts and Guy employed hydrogen bond acceptors and the molecular volume 

to predict skin permeability [15]. A smaller average dipole moment of the penetration enhancer causes 

the enhancement ratio to increase [16]. The radius of gyration, a topological index which describes the 

compactness of a molecule, affects the ability of the enhancer to penetrate the skin layers. This 

parameter was used by Zheng et al. [16]. In the design for skin penetration enhancers, the ERM may 

serve as a tool for selecting molecular structures that play a key role in promoting transdermal drug 

delivery. Artificial neural networks are then built to generate a more accurate model. Database #1 was 

selected for this application because it produced the best results. The Neural Networks package in 

Mathematica (Wolfram Reasearch, Inc., Champaign, IL, USA) was chosen for this study. The 

descriptors obtained by the ERM method were used as inputs to the neural networks. One hidden layer 

and two nodes were selected to capture the input-output relationship. A simple topology was adopted 

to prevent over-parameterization and to reduce the complexity of the final NN equation. The database 

was first randomized and divided into a training set, consisting of 75% of the compounds, and a testing 

set. Input and output patterns were scaled between 0.1 and 0.9. A feed-forward ANN model, composed 

of a sigmoid-type activation function, one hidden layer and two neurons, was constructed using eight 

inputs and one output (i.e., an 8:2:1 network). The total number of iterations was set at 150. To avoid 

over-training, the training phase was instructed to stop if the MSE did not decrease steadily for a 

number of consecutive iterations. It took 35 iterations to identify an input-output relationship  

(Figure 5). The optimized neural network function, based on the scaled vectors, is: 

 
0.546401

ˆ 0.138207
ˆ1 exp

y
x

 


 (4)  

where:  

1 2 3 4

5 6 7 8

ˆ ˆ ˆ ˆ ˆ23.4289 22.7143 31.7314 32.634 8.81476

ˆ ˆ ˆ ˆ0.274705 62.4769 20.5876 32.0392

x x x x x

x x x x

    

   
 (5)  

and: 

 

 

 

 
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3

g

3

ˆ 0.012 0.63 0.1

0.89 hydrogen bond acceptor 0.2 0.1

0.012 polar surface area 1  0.1

2.8 10 moment of inertia 732.50 0.1

.1 10 T + 85.95 0.1

.7 10 molar volume  175.61 0

ˆ

ˆ 2.03

ˆ
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
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 (6)  
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The results of the training are shown in Figure 5 ( 2 0.74R  ). The ANN model outperformed 

Equation 1 when it is applied to the training set and was able to predict the testing set (Figure 6, 
2 0.62R  ). 

Figure 5. Training results for DB #1 (N = 47 patterns). The ERM was used for the 

selection of the descriptors. 

 

Figure 6. Testing results for DB #1 (N = 14 patterns). The enhanced replacement method 

was used for the selection of the descriptors. 

 

An analytical ANN model makes it possible to design penetration enhancers based on user-defined 

performance criteria. The ERM-ANN approach can be extended to include the irritation potential (IP) 

of the CPE [5]. This strategy is suitable for estimating the flux enhancement ratio given a set of 

molecular descriptor values (x). The inverse problem [17], which consists of computing x necessary to 
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meet a target ER, is more difficult. The reverse engineering of chemical structures from such 

descriptors is also a challenge [18]. However, robust techniques, such as the ERM, that identify the 

relevant features and powerful data-based modeling tools could play important roles in the process. 

4. Conclusions  

A database of skin penetration enhancers was assembled to compare the performance of 

replacement techniques to the more traditional stepwise method, when selecting the best molecular 

descriptors. The collection was divided into three sets that differ by the control compound and the 

polarity of the accelerants. R
2
 values of 0.683, 0.683 and 0.671, which corresponded to the enhanced 

replacement (ERM), replacement (RM) and forward stepwise methods, respectively, were computed 

for 61 nonpolar enhancers with hydrocortisone serving as the reference (DB #1). The other two case 

studies, composed of forty-two compounds each, yielded lower 
2R values. Better predictions were 

obtained when the ERM-resulted selections for DB #1 were fed into a feed-forward back-propagation 

network model trained with only two hidden neurons ( 2 0.74R  ). The 
2R  value for the testing phase 

was found to be 0.62. Based on these results, the combined ERM and artificial neural network 

approach can be implemented in the design of chemical enhancers. 
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