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Abstract: Certain triple nucleoside/tide reverse transcriptase inhibitor (NRTI) regimens 

containing tenofovir (TDF) have been associated with rapid early treatment failure. The 

mechanism is unknown, but may be at the level of drug transport. We measured the 

lipophilicity of the drugs [3H]-lamivudine (3TC), -didanosine (ddI), -TDF and -ABC. 

Peripheral blood mononuclear cells (PBMCs) were used to evaluate drug–drug interactions 

at the level of drug transport. PBMCs were measured for the expression of P-glycoprotein 

(P-gp), multidrug resistance-associated protein-1 (MRP-1) and breast cancer resistance 

protein (BCRP) by flow cytometry. The rank order of the lipophilicity of the drugs were 

ABC>>>3TCddI>TDF. The accumulation of [3H]-3TC, -ddI and -TDF were temperature 

sensitive (suggesting facilitated transport), in contrast to [3H]-ABC. ABC reduced the 

accumulation of [3H]-3TC, and cell fractionation experiments suggested this was mainly in 

membrane-bound [3H]-3TC. ABC/TDF and ABC/ddI increased the accumulation of  

[3H]-3TC and 3TC/TDF also increased the accumulation of [3H]-TDF. In contrast, none of 

the NRTI/NtRTI incubations (alone or in combination) altered the accumulation of  

[3H]-ABC and -ddI. PBMC expression of P-gp, MRP1 and BCRP were detected, but none 

correlated with the accumulation of the drugs. The high failure rates seen with TDF, ABC 

and 3TC are not fully explained by an interaction at transporter level. 
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1. Introduction 

Tenofovir disoproxil fumarate (TDF) is a potent nucleotide reverse transcriptase inhibitor (NtRTI) 

widely used in combination antiretroviral therapy. However, several studies have reported excessive 

and rapid early treatment failure in triple nucleoside reverse transcriptase inhibitor (NRTI) regimens 

containing TDF, lamivudine (3TC), didanosine (ddI), abacavir (ABC), (3TC+ddI or ABC+3TC) [1,2] 

or in non-nucleoside reverse transcriptase inhibitor (NNRTI)-containing regimens with TDF+ddI as 

backbone in patients with high baseline viraemia [3-5]. 

Phenotypic susceptibility to the drug combinations is reduced with the development of the K65R 

mutation in HIV-1 reverse transcriptase. Although the K65R mutation is rarely selected as compared 

with the thymidine analogue mutations associated with stavudine and zidovudine, the use of 

TDF+ABC, TDF+ddI and ABC+d4T in combination with 3TC or emtricitabine [6] is to be avoided 

due to the high levels of treatment failures.  

Although the explanation for these high failure rates is unclear, overlapping resistance profiles, 

variable drug permeation into target cells, esterase cleavage of TDF, drug–drug and drug-food 

interactions at the level of influx/efflux transports may contribute to the acquisition of resistance. 

NRTIs and NtRTIs are prodrugs requiring intracellular phosphorylation to their active metabolites. 

Consequently, cellular entry of the drugs is important for successful inhibition of viral replication. 

Intracellular accumulation of a drug is dependent on several factors, including lipophilicity, ion 

trapping, protein binding, and drug transporters. Generally, the transport of most nucleoside analogues 

is mediated by one or more of the following nucleoside transporter systems: concentrative nucleoside 

transporters, (Na+-dependent), equilibrative nucleoside transporters (Na+-independent) and H+/peptide 

transporters [7]. Nevertheless, P-glycoprotein (P-gp), multi-drug resistance proteins (MRPs), breast 

cancer resistance protein (BCRP) and influx transporters such as human organic cation and anion 

transporters (hOCTs/hOATs) may mediate the transport of nucleoside and nucleotide analogues. There 

is some evidence that some NRTI/NtRTIs are substrates of P-gp, BCRP and MRPs [8-19], but there is 

no evidence that the efflux of ddI and TDF are BCRP-mediated. In other studies, the activities of P-gp 

and MRP were inhibited by ABC, 3TC and TDF [20-22]. However, evidence suggests that ddI does 

not inhibit P-gp activity and that 3TC is also not a substrate of P-gp [23]. There is evidence for the 

involvement of hOATs and hOCTs in the intracellular accumulation of some NRTI/NtRTIs [14,24-26]. 

However, while TDF, ddI and 3TC are devoid of any BCRP inhibitory effect, ABC inhibits  

BCRP [21].  

We postulate that suboptimal concentrations as a consequence of drug–drug interactions at the level 

of transport may favour the emergence of drug resistant viruses. Here, the effects of the drug 

lipophilicity and drug transporter expression on the transport and cell-associated concentrations of 
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[3H]-3TC, -ddI, -TDF and -ABC were evaluated in primary human cells (which express transporters 

[27,28]) in the absence or presence of unlabelled interacting NRTI/NtRTI (singly or in combination). 

2. Materials and Methods 

2.1. Reagents 

Blood buffy coats were purchased from the North West and North Wales Regional Blood Services 

(Liverpool, UK). [3H]-3TC, -ddI, -TDF and -ABC (specific activities 8.0 Ci/mmol, 41.0 Ci/mmol 3.4 

Ci/mmol and 2 Ci/mmol, respectively) were purchased from Moravek Biochemicals, Inc, CA, USA. 

CEM, CEMVBL and CEME1000 cell lines were from Dr R Davey (Royal North Shore Hospital, St 

Leonards, NSW 2065, Australia) and U937 cells obtained from Porton Down (Salisbury, UK). Mouse 

anti-human IgG2A (IgG2A and IgG2A:rPE) and IgG1 isotype control antibodies were purchased from 

Serotec Ltd (Oxford, UK). Mouse anti-human P-gp antibody (UIC2:rPE) was obtained from 

Immunotech (Marseilles, France). Mouse anti-human BCRP (BXP-21) and MRP1 specific mouse anti-

human primary antibody QCRL-1 were obtained from Abcam Ltd (Cambridge, UK) and Monosan 

antibodies (NL) respectively. Secondary goat anti-mouse IgG conjugated to rPE and FITC were 

obtained from Serotec (Oxford, UK) and Sigma respectively. All other reagents unless otherwise 

stated were purchased from Sigma Chemical Co (Poole, UK).  

2.2. Octanol-saline partition coefficient  

 

Since the cellular association of a drug within target cells is a composite of the physicochemical 

properties of the drug (passive diffusion, ion trapping), and active influx/efflux, we measured the 

lipophilicity of each drug ([3H]-3TC, [3H]-ddI, [3H]-TDF, [3H]-ABC and [14C]-mannitol (as the 

positive control) as described previously [24] to establish the contribution of lipophilicity to drug 

uptake. Briefly, an equal volume of octanol and phosphate buffered saline (PBS) were presaturated by 

vigorously vortexing them for 5 min. The suspension was allowed to settle for 10 min before the upper 

saturated octanol layer was carefully removed and stored in a separate tube. Then [3H]-3TC (10 nM),  

-ddI (15 nM), -TDF (15 nM), -ABC (10 nM) and [14C]-mannitol (31 nM) were then diluted with 3 mL 

of PBS. Then 540 µL aliquots of each compound were added to an equal volume of presaturated 

octanol and vortexed for 5 min. The samples were centrifuged (1000 g for 5 min). The concentrations 

of radiolabelled drug in a volume of the octanol (upper layer) and in a similar volume of saline (lower 

layer) were measured using scintillation counting. The octanol-saline partition coefficient was 

determined as a ratio of radiolabelled drug in the octanol phase to radiolabelled drug concentration in 

the saline phase. 

 

2.3. Isolation of Peripheral Blood mononuclear cells (PBMCs)  

 

11 PBMC samples were isolated from blood buffy coats using Lymphoprep (Alexis-sheild, Oslo, 

Norway), following the manufacturer’s instructions. An aliquot of the PBMC samples were 

cryopreserved in fetal calf serum containing 10% dimethyl sulphoxide for batch analysis of membrane 

proteins by flow cytometry. 
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2.4. Drug–drug interaction studies of [3H]-ABC, -3TC, -ddI and -TDF and effects of the unlabelled 

drugs 

A series of preliminary transport experiments were performed to look at the concentration-ranging 

(0–100 µM) effects of the unlabelled drugs on cell-associated concentrations of the labelled drugs in 

T-lymphoblastoid cell lines (CEM(parental), CEMVBL (P-gp-overexpressing) and CEME1000  

(MRP1-overexpressing) and the monocytic cell line U937. The CEM and its variant cells have been 

also shown to express hOATs [28]. 

We also used 50 µM dipyridamole, 100 µM of deoxycytidine (dC), deoxyinosine (dI) and 

deoxyguanosine (dG) as positive controls to inhibit the transport of the drugs. The concentrations used 

of these inhibitors were based on previous observations [27,29,30]. The isolated PBMCs (5  106 cells) 

were incubated with 1 µM of [3H]-3TC, -ddI, -TDF or -ABC in RPMI 1640 medium containing 10% 

fetal calf serum at 4 °C or 37C, for 30–45 min in the absence or presence of fixed concentrations  

(50 µM) of the interacting unlabelled drugs (3TC, ddI, TDF, and ABC). In a limited number of PBMC 

samples, we investigated the effects of two drug combinations on the uptake of labelled compounds as 

described above. The incubations were terminated by centrifugation (15,000 g, 1 min at 0 °C).  

A-100 µL aliquot of the supernatant was counted for radioactivity and the cell pellets were washed 

three times in ice-cold phosphate buffered saline followed by rapid centrifugation before the pellets 

were solubilised in 100 µL of distilled water as described previously [31] and counted for radioactivity. 

Data were expressed as cellular association ratio (CAR), this being the ratio of the amount of 

radiolabelled drugs associated with the cell pellets to the amount in a similar volume of supernatant 

after incubation; cell volume of each PBMC being 0.4 pL [32]. 

In a separate experiment, cells were incubated with the tritiated compounds ([3H]-3TC, -ddI  

and -TDF) in the absence or presence of 50 µM ABC as described. The assay was terminated by rapid 

centrifugation in a chilled microcentrifuge and the cell pellets were washed three times in ice-cold PBS 

as described, followed by three times of rapid freezing in liquid nitrogen and thawing at room 

temperature. The suspension was layered on top of 1 mL of ice-cold 42% percoll solution containing 

0.25 M sucrose, 1.5 mM magnesium chloride, pH 7.1, and centrifuged (12,000 g, 30 min at 4 °C). 

After centrifugation, the radioactivity in the clear supernatant (assumed as intracellular drug) and in 

the pellet/debris, harvested from the bottom of the gradient (assumed as membrane-bound drug) were 

determined by scintillation counting. 

 

2.5. Flow cytometric analysis of membrane proteins for P-gp, MRP1 and BCRP 

 

PBMC expression of P-gp, MRP1 and BCRP were performed on the frozen samples as previously 

described [33,34]. 

Ethics: No ethical approval was required in the collection and use of the blood products from the 

blood transfusion services. 
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2.6. Statistical analysis  

 

Data were expressed as mean ± S.D. Shapiro-Wilk test was used to assess the distribution of the 

data, followed by Kruskal-Wallis test to allow multiple comparisons of drug-treated samples to 

respective controls. In each case, significance between control and drug-treated means was assumed if 

P < 0.05. Analyses were performed using Statsdirect statistical software version 2.3.1, 2003 

(StatsDirect LTD, Cheshire, UK). 

3. Results and Discussion 

3.1. Results 

Table 1 shows the octanol-saline partition coefficient for [14C]-mannitol (control), [3H]-3TC, -ddI,  

-TDF and -ABC, with the following rank order: with ABC >> 3TC  ddI > TDF (Table 1). 

Preliminary studies examined the concentration-dependent effects of the unlabelled interacting drugs 

on the intracellular accumulation of the labelled drugs in CEM, its variant cells and U937 cell lines. Of 

all the compounds, only [3H]-ddI showed any differential accumulation in the CEM and its variant 

cells (data not shown). We observed no concentration-dependent effects of the unlabelled interacting 

drugs (3TC, ddI, TDF and ABC) on the accumulation of the labelled drugs in CEM, CEMVBL, 

CEME1000 and U937 cells (data not shown). We observed that the cell-associated concentration of 3TC, 

ddI and TDF were temperature-sensitive, being significantly (P < 0.001) reduced at 4 °C (Figure 1A, 

1B and 1C). In contrast, incubation at 4 °C did not affect the concentration of [3H]-ABC. The drugs 

displayed differential association, being highest in [3H]-3TC and least in [3H]-TDF (7.62 ± 1.32 >> 

3.10 ± 0.8 > 2.91 ± 0.68 > 2.20 ± 0.29 for [3H]-ABC, -ddI, -3TC and -TDF, respectively).  

Table 1. Octanol-saline partition coefficients of the drugs.  

Drugs Partition coefficient
(mean ± SD) 

[14C]-Mannitol (control) 0.0022 ± 0.0001 
[3H]-Lamivudine 0.117 ± 0.0049 
[3H]-Didanosine 0.058 ± 0.0028 
[3H]-Tenofovir 0.0061 ± 0.0004 
[3H]-Abacavir 7.065 ± 0.44 

 

The CAR of 3TC was unaffected by ddI, but TDF significantly (P < 0.05) reduced uptake (Figure 

1A). Similarly, ABC significantly (P < 0.001) decreased the CAR of [3H]-3TC. As expected, the 

cytidine analogue, dC and the inhibitor of nucleoside transporter systems, dipyridamole significantly 

(P < 0.0001) reduced the CAR of [3H]-3TC. Manipulations that investigated the effects of ddI/TDF 

did not alter the CAR of [3H]-3TC, but both ABC/TDF and ABC/ddI significantly (P ≤ 0.05) increased 

the accumulation of [3H]-3TC. 3TC, TDF, ABC, 3TC/TDA, ABC/3TC and ABC/TDF had no effect 

on the accumulation of [3H]-ddI. However, dI (an inosine analogue) and dipyridamole significantly  

(P < 0.01) reduced the CAR of [3H]-ddI (Figure 1B). Of the drug incubations tested only 3TC/TDF 

significantly (P < 0.05) reduced the CAR of [3H]-TDF (Figure 1C). As TDF is not a nucleoside 
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analogue, its accumulation was unaffected by dI or dipyridamole. None of the manipulations altered 

the accumulation of [3H]-ABC (Figure 1D). 

Given the marked inhibitory effect of ABC on the accumulation of [3H]-3TC (Figure 1A), 

subsequent studies investigated its effects on membrane-bound and intracellular drug levels. ABC 

significantly (P < 0.05) decreased the membrane-bound and intracellular drug concentrations of both 

[3H]-3TC and -ddI, respectively. In contrast, intracellular [3H]-3TC, membrane-bound [3H]-ddI and 

both membrane-bound and intracellular [3H]-TDF were unaffected by ABC (Figure 1D). 

The average levels of P-gp, MRP1 and BCRP were 0.61 ± 0.23, 16.94 ± 5.03 and 0.55 ± 0.14, 

respectively, but there was no relationship between individual transporter expression for each PBMC 

sample and the CAR values for any drug. 

 

3.2. Discussion 

 

The rapidity (within 12 weeks of treatment start) with which treatment failure develops and the 

emergence of resistance mutations is surprising for the highly potent three drug combinations used in 

TDF-containing regimens. In order to find a mechanistic basis for this, we studied an important aspect 

of intracellular drug accumulation (i.e., lipophilicity), used primary human cells to investigate 

nucleoside/nucleotide interactions at the level of transport and also examined the effects of drug 

transporters on the accumulation of the compounds under investigation. 

The octanol-saline partition coefficient determined for [14C]-mannitol was similar to reported 

values [24]. We observed differential lipophilicity of the drugs with ABC being the most lipophilic and 

tenofovir the least (Table 1). The accumulation of all of the compounds was inhibited by incubation at 

4 °C, but thie manipulation did not affect the accumulation of [3H]-ABC (Figure 1D) due to its highly 

lipophilic nature. Interestingly, the rank order of accumulation of the drugs is identical to their 

lipophilicity. 

Although there is some evidence that some NRTIs/NtRTI are substrates of P-gp, BCRP and MRP 

[8-19], we observed that of the compounds tested, only [3H]-ddI may be a P-gp substrate (data not 

shown). Our observation that [3H]-3TC is not a P-gp substrate is in agreement with published  

literature [23]. 

As evidence shows that some of the compounds under investigation are substrates of influx 

transporters such as hOATs and hOCTs [14,24-26], we postulate that they may compete for cellular 

entry which will consequently reduce the accumulation of the measured NRTI or NtRTI. Reciprocal to 

this, other studies have shown that ABC, 3TC and TDF inhibit the activities of P-gp and MRP [20-22] 

which would increase the accumulation of the labelled interacting drug. Here, we observed that the 

positive control inhibitors (dC and dipyridamole) significantly (P < 0.001) reduced the accumulation 

of [3H]-3TC). However, we observed no evidence in our preliminary studies that [3H]-3TC is 

transported by P-gp. Therefore, the observation that TDF and ABC separately (P ≤ 0.05) reduced the 

CAR of [3H]-3TC, suggests the potential of these drugs to inhibit the influx of [3H]-3TC or their direct 

competition with [3H]-3TC for influx (Fig 1A). We postulate that the extensive lipophilicity and 

accumulation of ABC may have reduced the capacity of the cells to accumulate [3H]-3TC. ABC/TDF 

and ABC/ddI significantly (P ≤ 0.05) increased the accumulation of [3H]-3TC, but not ddI/TDF. This 

observation is favourable in explaining the rationale for triple drug combination; its reveals that these 
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drug–drug interactions at the transporter level cannot explain the treatment failures seen with TDF, 

ABC and 3TC. Evidence suggests that ABC inhibits BCRP, but TDF and ddI are devoid of any BCRP 

inhibitory effects [21]. Thus as ddI does not inhibit P-gp or MRP activity [23], we postulate that the 

possible inhibitory effects of the interacting drugs (ABC/TDF and ABC/ddI) on BCRP which mediates 

the efflux of 3TC [10, 19] may be responsible for the increase in accumulation of [3H]-3TC. 

Figure 1. (A) The effects of drugs (alone or in combination) on the CAR of [3H]-3TC;  

(B) [3H]-ddI; (C) [3H]-TDF, (D) [3H]-ABC and (E) effects of 50 µM ABC on  

membrane-bound and intracellular [3H]-3TC, -ddI and -TDF in PBMCs isolated from 

blood buffy coats. Isolated PBMCs (5  106 cells) were incubated (30–45 min, 4 °C, or 

37C °C) in the absence or presence of the drugs (at concentrations indicated) before the 

assays were terminated as described in the methods section. Each bar represents mean ± 

SEM. *P < 0.05, **P < 0.01, ***P < 0.001 compared to control; n = 11. dC, 

deoxycytidine; dI, deoxyinosine; dG, deoxyguanosine. 
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Figure 1. Cont. 
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Previous observations (examined using guinea-pig brain perfusion and choroid plexus models) have 

shown increased intracellular accumulation of [3H]-ddI by ABC [25], which was shown to inhibit P-gp 

[20]. Although we observed that ddI may be a P-gp substrate, there was lack of interaction between 

TDF, ABC, 3TC and [3H]-ddI (Figure 1B). However, our observation complements previous studies, 

which showed no significant interaction between TDF and ddI in primary human cells [35]. As 

expected, the positive controls (dI and dipyridamole) significantly (P < 0.001) reduced the 

accumulation of [3H]-ddI. 

None of the drug incubations decreased the accumulation of [3H]-TDF. The increase in the CAR of 

[3H]-TDF by 3TC/ABC cannot explain the emergence of treatment failure. However, this observation 

somewhat corroborates the observations of no adverse intracellular drug interaction between TDF and 

ABC that could explain the suboptimal viral response in patients treated with TDF+ABC+3TC 

regimens [36]. Furthermore, the accumulation of [3H]-ABC was not altered by any of the 

manipulations, suggesting that the extensive lipophilicity of the [3H]-ABC over rides the effect of any 

drug–drug interactions.  

Given the marked reduction in 3TC accumulation obtained with ABC-treated samples we further 

studied its effects on membrane-bound and intracellular drug concentrations on [3H]-3TC, -ddI and -

TDF. These studies revealed a modest, but significant, reduction in membrane-bound and intracellular 

drug concentrations of both [3H]-3TC and -ddI, respectively, suggesting the potential for ABC to 

reduce the cellular concentration of co-administered NRTIs and NtRTI. 

Except for [3H]-ddI, we observed no evidence that the drugs are substrates of the drug efflux 

transporters (P-gp, MRP and BCRP); and there was no correlation between the accumulation of the 

drugs to any single transporter. The high lipophilicity of ABC may explain its observed effects. 

Overall, we observed some dug-drug interactions which may alter the concentrations of the active 

phosphorylated metabolites and potentially contribute to the emergence of resistance. Therefore, it 

may be important to focus on drug–drug interactions and the possible effects of drug-food interactions 

on changes in the intracellular phosphorylated metabolites of the drugs.  

4. Conclusions 

Although TDF and ABC separately appeared to limit cell-associated accumulation of 3TC, 

inconsistent findings were noted when both drugs were co-incubated. The impact of drug–drug 

interactions and the possible effects of drug-food interactions on levels of phosphorylated metabolites 

warrant further study. 
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