Pharmaceutics 2010, 2(2), 182-198; doi:10.3390/pharmaceutics2020182
Article

Optimization of Salbutamol Sulfate Dissolution from Sustained Release Matrix Formulations Using an Artificial Neural Network

1email, 2email and 1,* email
Received: 29 March 2010; in revised form: 4 May 2010 / Accepted: 5 May 2010 / Published: 6 May 2010
(This article belongs to the Special Issue What's on Board in Pharmaceutics)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: An artificial neural network was used to optimize the release of salbutamol sulfate from hydrophilic matrix formulations. Model formulations to be used for training, testing and validating the neural network were manufactured with the aid of a central composite design with varying the levels of Methocel® K100M, xanthan gum, Carbopol® 974P and Surelease® as the input factors. In vitro dissolution time profiles at six different sampling times were used as target data in training the neural network for formulation optimization. A multi layer perceptron with one hidden layer was constructed using Matlab®, and the number of nodes in the hidden layer was optimized by trial and error to develop a model with the best predictive ability. The results revealed that a neural network with nine nodes was optimal for developing and optimizing formulations. Simulations undertaken with the training data revealed that the constructed model was useable. The optimized neural network was used for optimization of formulation with desirable release characteristics and the results indicated that there was agreement between the predicted formulation and the manufactured formulation. This work illustrates the possible utility of artificial neural networks for the optimization of pharmaceutical formulations with desirable performance characteristics.
Keywords: Salbutamol sulfate; artificial neural networks; sustained release; hydrophilic matrix tablets
PDF Full-text Download PDF Full-Text [248 KB, uploaded 6 May 2010 11:24 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Chaibva, F.; Burton, M.; Walker, R.B. Optimization of Salbutamol Sulfate Dissolution from Sustained Release Matrix Formulations Using an Artificial Neural Network. Pharmaceutics 2010, 2, 182-198.

AMA Style

Chaibva F, Burton M, Walker RB. Optimization of Salbutamol Sulfate Dissolution from Sustained Release Matrix Formulations Using an Artificial Neural Network. Pharmaceutics. 2010; 2(2):182-198.

Chicago/Turabian Style

Chaibva, Faith; Burton, Michael; Walker, Roderick B. 2010. "Optimization of Salbutamol Sulfate Dissolution from Sustained Release Matrix Formulations Using an Artificial Neural Network." Pharmaceutics 2, no. 2: 182-198.

Pharmaceutics EISSN 1999-4923 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert