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Abstract: In this work, we conducted a study of the interaction between DNA and favipiravir (FAV).
This chemotherapeutic compound is an antiviral drug for the treatment of COVID-19 and other
infections caused by RNA viruses. This paper examines the electroanalytical characteristics of FAV. The
determined concentrations correspond to therapeutically significant ones in the range of 50–500 µM
(R2 = 0.943). We have shown that FAV can be electro-oxidized around the potential of +0.96 V ÷ +0.98 V
(vs. Ag/AgCl). A mechanism for electrochemical oxidation of FAV was proposed. The effect of the
drug on DNA was recorded as changes in the intensity of electrochemical oxidation of heterocyclic
nucleobases (guanine, adenine and thymine) using screen-printed graphite electrodes modified with
single-walled carbon nanotubes and titanium oxide nanoparticles. In this work, the binding constants
(Kb) of FAV/dsDNA complexes for guanine, adenine and thymine were calculated. The values of
the DNA-mediated electrochemical decline coefficient were calculated as the ratio of the intensity of
signals for the electrochemical oxidation of guanine, adenine and thymine in the presence of FAV to the
intensity of signals for the electro-oxidation of these bases without drug (S, %). Based on the analysis of
electrochemical parameters, values of binding constants and spectral data, intercalation was proposed
as the principal mechanism of the antiviral drug FAV interaction with DNA. The interaction with calf
thymus DNA also confirmed the intercalation mechanism. However, an additional mode of interaction,
such as a damage effect together with electrostatic interactions, was revealed in a prolonged exposure
of DNA to FAV.

Keywords: favipiravir; electrochemistry; modified electrodes; DNA; drug/DNA interaction

1. Introduction

Favipiravir’s (6-fluoro-3-hydroxy-1,4-pyrazine-2-carboxamide, Scheme 1) (FAV) is rather
broad antiviral activity has led to great interest being shown in it by the research community [1].
This synthetic analog of natural nucleobases shows efficacy against various RNA-containing
viruses: orthomyxoviruses (human influenza type A, B and C viruses) [2–6], flaviviruses
(Zika, denge and West-Nile fever viruses) [7–9], arboviruses (Rift Valley, Crimean-Congo fever
viruses) [10,11], arenaviruses [12], paramyxo-, alpha-, bunya-, and noroviruses [13,14]. FAV
was found relatively efficient against such dangerous pathogens as Ebola fever [15] and rabies
viruses [16].

FAV was shown to effectively inhibit the reproduction of human influenza viruses,
including those resistant to neuraminidase and M2 protein inhibitors, as well as potentially
dangerous swine and avian influenza viruses [4–6,17,18]. A number of clinical trials
demonstrated FAV efficacy in treating infections caused by coronaviruses SARS-CoV, MERS
and SARS-CoV2 [19–22]. However, in the course of clinical studies and observations,
the side effects of FAV were revealed (nausea and vomiting, hyperuricemia, increased
hepatic transaminases, neutro- and leukopenia, in some cases—cardiotoxicity and a number
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of others) [6,19–24]. The results of FAV preclinical studies on small laboratory animals
indicated its teratogenicity and embryotoxicity [6]. This imposes restrictions on the use of
FAV medications in a number of patients. The side effects are mainly associated with the
effect of this compound on the metabolism of nucleobases and potential mutagenicity by
interacting with DNA [24].
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screen DNA-targeting drugs. 
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FAV is a prodrug. It turns into the active compound 5’-ribosyl triphosphate FAV in
human body cells [3,5,25–27]. This nucleotide analog can be recognized as a substrate by
RNA-dependent RNA-polymerases from various viruses and can be incorporated in viral
RNA as an analog of 5′-guanilic acid (G) or, less likely, of 5′-adenylic acid (A), thus causing
lethal mutations in the viral genome, behaving as a purine analog [28,29]. However, FAV
also can form FAV:G and FAV:A pairs, and, in this case, FAV would behave as a pyrimidine
analog [29]. This process is considered a principal mechanism of FAV activity against
various viruses [28–31]. During influenza virus replication, FAV can also act as an inhibitor
of viral RNA polymerase, causing the formation of truncated RNA chains [25,32]. DNA-
dependent RNA polymerases do not recognize FAV ribosyl triphosphate as a substrate and
do not incorporate it in transcribed RNA, thus establishing the base for selective effects of
FAV on RNA-containing viruses [3].

FAV phosphoribosylation to ribosyl monophosphate nucleotide is catalyzed by
hypoxanthine-guanine phosphoribosyl transferase [25–27]; the enzymes that are em-
ployed in the further phosphorylation up to ribosyl triphosphate FAV are unknown [27].
FAV conversion to the corresponding nucleotide proceeds much slower than in the
case of natural nucleotides: monophosphoryl-ribosylation is 4700 times slower on aver-
age [26]. In addition, the rates of these conversions depend on cell types [33]. Hence, a
substantial part of FAV that penetrates the cells may remain as the nucleobase, and this
prodrug form can cause a part of its side effects. Therefore, it was of interest to study
the possibility of interaction of FAV with cellular components at the molecular level.
Taking into account base-pairing properties of FAV [29], its interaction with DNA by an
intercalation between nucleobase residues in the double helix seems possible.

DNA plays an important role in a variety of biological processes such as gene tran-
scription, mutagenesis and carcinogenesis. The interaction of a drug with DNA can help
to understand the mechanisms and patterns of pharmacological chemicals actions and to
screen DNA-targeting drugs.

Electroanalytical techniques provide useful insights into the mechanisms of the inter-
actions of DNA with medications [34–39]. Electroanalysis has a triple function, registering
the drug itself, DNA, and the DNA/drug complex. Scrutiny of the electrochemical signals
of DNA or DNA/chemotherapeutic agent complex before and after biding can register the
interaction and clarify the binding mechanism.

The goal of this research was to assess the impact of FAV as a remedy with a broad
spectrum of antiviral action on the DNA molecule via the registration of electro-chemical
oxidation signals of heterocyclic bases guanine, adenine, and thymine. The novelty of our
research lies in the first investigation of FAV with dsDNA and ctDNA from a pharmacoge-
nomics viewpoint.
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2. Materials and Methods
2.1. Apparatus

In our experiments, we used two types of potentiostat/galvanostat, such as PGSTAT 12
Autolab (Metrohm Autolab, Utrecht, The Netherlands) with the GPES software (version 4.9.7)
and a PalmSens potentiostat (PalmSens BV, Houten, The Netherlands) with PSTrace software
(version 5.8). Electrochemical measurements were conducted at 20.0 ◦C. All experiments were
performed in a supporting electrolyte—0.1 M potassium phosphate buffer with 50 mM NaCl
(PBS, pH 7.4). For the registration of direct analysis of electrochemical dsDNA oxidation,
the differential pulse voltammetry (DPV) method was used. The following optimized DPV
parameters were used: potential range of 0.2–1.2 V, pulse amplitude of 0.025 V, potential step
of 0.005 V, pulse duration of 50 ms, and modulation amplitude of 0.05 V. The square wave
voltammetry (SWV) settings were as follows: potential range of 0–1.2 V, pulse amplitude
of 0.005 V, potential step of 0.005 V, and frequency 10 Hz. Triplicated measurements were
applied for electrochemical estimation of various DNA concentrations. These values were
within 10–12% (the standard deviation, SD =10–12%), which satisfies the repeatability of the
electrochemical installation when studying biological objects.

The UV–vis absorption spectra were registered with Cary 100 Scan spectrophotometer
UV–Vis (Agilent Technologies, Inc., Santa Clara, CA, USA) with the software Cary WinUV
version 3.00(182). The absorption spectra for FAV, DNA and the FAV/DNA complex were
recorded in the range of 200–500 nm.

Commercially available screen-printed electrodes (SPEs) were obtained from Col-
orElectronics, Moscow, Russia (http://www.colorel.ru (accessed on 1 February 2024)).
The SPEs contained graphite working electrodes (geometric area 0.0314 cm2), auxiliary
electrodes, and silver/silver chloride reference electrode (Ag/AgCl). All potentials were
referred to the Ag/AgCl reference electrode.

2.2. Chemicals

“Medsintez” Ltd. (Moscow, Russia) kindly provided Favipiravir drug substance.
Single-walled carbon nanotubes (SWCNT, diameter 1.6 ± 0.4 nm, length > 5 µM, surface
area 1000 m2/g) TUBALL™ BATT H2O, with water dispersion of 0.4%, stabilized by
carboxymethylcellulose, were obtained from OCSIAL Ltd. (https://ocsial.com, (accessed
on 1 February 2024)). Potassium phosphate monobasic (≥99%), and potassium phosphate
dibasic trihydrate (≥99%) were purchased from Sigma-Aldrich. Sodium chloride (99.5%)
was purchased from Acros Organics (Carlsbad, CA, USA). Double-stranded fish sperm
DNA (dsDNA) as lyophilized powder was bought from Sigma-Aldrich (D 3159, Tokyo,
Japan). Calf thymus DNA was obtained from Serva (Heidelberg, Germany). All other
chemicals were of analytical grade and used without further purification. All aqueous
solutions were prepared using Milli-Q water (18.2 MΩcm) purified with a Milli-Q water
purification system by Millipore. The quality and purity of the DNA stock solution was
checked by taking the absorbance ratio of A260/A280, which was found to be in the range of
1.8–1.9, indicating there is no contamination of protein in ds-DNA solution [39]. The stock
solution of dsDNA (3 mg/mL) was prepared in 100 mM potassium phosphate buffer with
50 mM NaCl (PBS, pH 7.4) [40,41].

2.3. Preparation of Modified Electrode

To modify the surface of working electrodes with single-walled carbon nanotubes,
we applied 2 µL of dispersion of SWCNT by drop casting. The commercial dispersion of
SWCNT TUBALL™ BATT H2O was preliminarily diluted 5 times in distilled water (named
SPE/CNT; 0.75 ± 0.05 mg/mL). The concentration of SWCNT was chosen empirically as
the best signal-to-noise ratio.

For surface modification with titanium oxide, the TiO2 suspension (1 mg in 0.5 mL
of H2O:C2H5OH mixture, 1:1 v/v [42,43]) was sonicated for 1 h and a 2 µL aliquot of
the suspension was pre-mixed with 2 µL of dispersion of SWCNT. SPE/CNT/TiO2 was
prepared by drop casting of 4 µL mixture of CNT and TiO2 suspensions.

http://www.colorel.ru
https://ocsial.com
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Electrodes SPE/CNT and SPE/CNT/TiO2 stayed at room temperature until com-
pletely dried. Modified SPEs were used for a single measurement in order to avoid the
blockage of the electrode surface by oxidation products of DNA or FAV.

For noncovalent immobilization of dsDNA, 60 µL of the dsDNA solution (1.5 mg/mL)
prepared in PBS, with pH 7.4, was dropped onto the surface of the modified electrode and
incubated for 15 min before measurements. For the investigation of DNA/drug interaction,
a complex of DNA with FAV was formed at the constant concentration of DNA 1.5 mg/mL
and specified concentrations of FAV, and was incubated 40 min before adsorption onto the
electrode surface. DPV measurements were performed after 60 s deposition time.

A horizontal measurement regimen was used for all electrochemical experiments. A
60 µL drop of PBS was placed onto the SPEs to cover the surface of all three electrodes.
Experiments were performed under aerobic conditions at room temperature (25 ± 3 ◦C).
To assess the reproducibility of the results for each concentration, at least 3 electrodes were
used and the standard deviation was calculated.

The calibration curve as kSD/b (k = 3 for the limit of detection, LOD, b = slope) was
employed for the calculation of LOD (SD =standard deviation of the intercept) [44,45].

Linear plots for 1/(I0 − I) depending on 1/[FAV] were used for the calculation of
the binding constant Kb [40,41] in accordance with the following equation: Kb ≈ (I0 − I)/
(I0 × ([FAV] − (I0 − I)).

3. Results and Discussion
3.1. Electrochemical Profiling of Favipiravir on SPE/CNT and SPE/CNT/TiO2

The rising interest in FAV is ascribed to its efficient suppression of dangerous and even
lethal infections caused by numerous viruses, such as hemorrhagic fevers, COVID-19, SARS,
MERS, rabies, etc. [8–33], and by its possible efficacy against viruses, which can be transferred
to humans from animals and have a high epidemic potential [1,4–6,17,18]. Several drug
preparations of FAV have been already developed and registered for clinical use (T-705,
Avigan, Favilavir, Avifavir, Areplivir, Coronavir) [5,20–22] and many derivatives and analogs
are under development (reviewed in [46]). Clinical usage stimulates FAV research in the field
of its side effects and the mechanisms involved therein, and the elaboration of methods of
drug control and determination in organs, tissues and the environment.

For quantitative determination of FAV in biological fluids and in pharmaceutical for-
mulations, environmental samples have been collected and several methods have been de-
scribed, such as UV–Vis spectrophotometry, spectrofluorimetric method, high-performance
liquid chromatography (HPLC), and liquid chromatography–tandem mass spectrometry
(LC–MS/MS) [47,48]. Electrochemical methods offer great advantages, such as high sensi-
tivity, elaboration of the instrumental equipment with friendly software, quick response
rate, usage of low-toxicity reagents, such as aqueous electrolyte buffer solutions, and
miniaturization mode for the analysis in a “point-of-care” regimen [49,50].

In our experiments, we used disposable screen-printed electrodes as commercially
available transducers, with a relatively low cost, to explore in clinical laboratories their
suitability for modifications with different types of nanomaterials [51,52]. Electrochem-
ical profiling of FAV on the screen-printed electrodes modified by single-walled carbon
nanotubes (SPE/CNT) and carbon nanotubes with nanosized TiO2 was studied. Carbon
nanomaterials, such as carbon nanotubes and carbon nanotubes with nanosized titanium
(IV) oxide TiO2, significantly improve the sensitivity of electrodes [53–56]. TiO2 in various
forms (nanoparticles, nanotubes, nanoneedles) has properties that make it attractive for the
modification of electrodes, such as biocompatibility, specific binding to biomolecules owing
to amphoteric chemical nature, optical transparency, large specific surface area for high
biomolecule content, and a stimulating effect for electron transfer between the electrode
and molecule under investigation [56]. Previously, we employed/applied CNT + titanium
(IV) oxide nanoparticles for protein and amino acid immobilization on electrode surface
for the fabrication of electrochemical biosensors based on the electrochemical oxidation of
amino acids, such as tyrosine, tryptophan, histidine, methionine, and cysteine [42,43]. In
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our study, we used this nanomaterial for the electrochemical analysis of FAV. Before the
measurements, we used adsorptive accumulation of favipiravir on the electrode surface
within 40 min. The electrochemical behavior of FAV was studied in physiologically relevant
PBS, with pH 7.4.

Electrochemical analyses were performed using cyclic voltammetry (CV) and the
differential pulse voltammetry (DPV) technique. Disposable carbon SPEs modified with
CNT (SPE/CNT) and CNT/TiO2 (SPE/CNT/TiO2) were used for CV and DPV, respectively.
CVs for the 500 µM FAV in the potential range of 0.6 V÷ +1.2 V were analyzed in electrolyte
PBS (pH 7.4).

During the anodic scan from 0.6 to +1.2 V, one broad oxidation peak was received
at around +0.98 V and +0.96 V for SPE/CNT and SPE/CNT/TiO2, respectively, while
no reduction peak was observed in the reverse cathodic scan (Figure 1a). The peak at
E = +0.98 V ÷ +0.96 V of FAV could reflect the oxidation of the hydroxyl group to the keto
group, as was shown earlier [48,49].
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The oxidation peak potential (Epa) of FAV recorded by cyclic voltammetry shifted
towards the positive direction, with the increase in the scan rate as an additional char-
acteristic of an irreversible electrode reaction (Figure 1a) [57–61]. We registered a lin-
ear relationship between the oxidation peak current and the scan rate ν, and between
the oxidation peak current and square root of scan rate ν1/2 for SPE/CNT (Figure 1b,c)
and for SPE/CNT/TiO2.These experimental dependences indicated that the FAV electro-
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chemical oxidation process revealed a mixed mechanism, controlled by both adsorption
and diffusion [57–61]. The same properties of the FAV electrochemical oxidation pro-
cess were also demonstrated while using boron-doped diamond electrodes and carbon
electrodes [47,48,62]. The slope of the log Ipa against log v is 0.38 (Figure 1d); the equa-
tion’s slope confirmed that the FAV electrochemical oxidation process revealed a mixed
mechanism controlled by a mixed diffusion-controlled electrochemical reaction [57–61].

The irreversibility of the oxidation process was also confirmed by means of lin-
ear dependence of plot of (E) on logarithmic (ν) in accordance with Laviron’s theory
(Figure S1) [47,48,60–66].

Differential pulse voltammetry (DPV), one of the most sensitive and contemporary elec-
trochemical techniques, possesses high analytical sensitivity, which permits us to register
heterocyclic nucleic bases separately for the detailed analysis of intricate drug/DNA interac-
tion mechanism. The DPV of FAV in the potential range of +0.6 V÷ +1.2 V was investigated
in electrolyte PBS. The DPV of FAV revealed a single anodic peak at E = +0.972 ± 0.003 V
and E = +0.967 ± 0.003 V (Figure 2a) for SPE/CNT and for SPE/CNT/TiO2, respectively.
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Figure 2. (a) Comparative DPV curves of 500 µM FAV on SPE/CNT (black) and SPE/CNT/TiO2

(red), (---) and (---) curves corresponded to blank electrodes; (b) DP voltammograms recorded in
0.1 M potassium phosphate electrolyte buffer, pH 7.4 (PBS) with increasing FAV concentration in the
range of 50–500 µM (-), 40 µM; (-) 100 µM; (-), 150 µM; (-), 200 µM; (-) 300 µM; (-), 400 µM; (-), 500 µM.
Dashed black line represents DPV of SPE/CNT/TiO2 in PBS. The standard deviation of the DPV
response on the SPE/CNT/TiO2 for three experiments was ± 5%; (c) DPV peak current versus the
concentration of FAV for SPE/CNT (black) and SPE/CNT/TiO2 (red); (d) DPV of first (-) and second
(-) scan of 50 µM SPE/CNT/TiO2.
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Favipiravir dosing regimens differ for different viral infections. To achieve drug
efficacy, medical doses are high and correspond to the micromolar region [46,62]. In
our experiments, we used a pharmacologically relevant FAV concentration range from
50 to 500 µM [5,19–22]. For the range of 50–500 µM, the regression equations were
I = (0.0049 ± 0.0005) [FAV] − 0.38 ± 0.10 and I = (0.0082 ± 0.0005) [FAV] + 0.52 ± 0.10
for SPE/CNT or SPE/CNT/TiO2, respectively (Figure 2b,c). The described method was
validated for parameters such as linearity and limits of detection (LOD). Electroanalytical
parameters of quantitative FAV analysis with SPE/CNT and SPE/CNT/TiO2 are pre-
sented in Table 1. The sensitivity of SPE/CNT/TiO2 was approximately twice as high in
comparison with SPE/CNT.

Table 1. Electroanalytical parameters of DPV for FAV determination with SPE/CNT and
SPE/CNT/TiO2.

Parameters SPE/CNT SPE/CNT/TiO2

Eox, V 0.972 ± 0.003 0.967 ± 0.003
Sensitivity, µA/µM (Slope) 0.0049 0.0082
Linear range, µM 50–500 50–500
LOD, µM 60 37
Equation for linear regression 1 Iox = (0.0049 ± 0.0005) [FAV] − 0.38 ± 0.10 Iox = (0.0082 ± 0.0005) [FAV] + 0.52 ± 0.10
Correlation coefficient, R2 0.958 0.980

1 Iox corresponds to the oxidative currents (peak heights) for FAV.

The calculation using Equation (1) and DPV parameters for FAV on SPE/CNT or
SPE/CNT/TiO2 and [67,68] showed that one electron is involved in the oxidation process
of this drug [48,62,63,69]:

W 1/2 = 3.52 RT/nF (1)

where we used common abbreviations for parameters, as W 1/2 is the DPV half peak width,
R is gas constant, 8.3145 J K−1mol−1, T is temperature, in Kelvin, F is Faraday constant
96,485 C mol−1, and n is the number of electrons involved in the oxidation reaction.

The irreversibility of FAV electrochemical oxidation was also confirmed via comparing
the first and second scan of DPV, which demonstrated the decline in oxidation current
corresponding to the second scan (Figure 2d). On the other hand, the decrease in oxida-
tion peak current might be explained by partial fouling and inactivation of the available
electrode surface area [62–67].

Earlier, it was shown that FAV could be analyzed electrochemically using different
type of electrodes and modifications [47–50,62,63,69]. FAV can be electro-oxidized using a
bimetallic nanocomposite based on gold/silver core–shell nanoparticles with conductive
polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate and functionalized multi-
carbon nanotubes on a glassy carbon electrode. DPV technique and the working potential
of 1.25 V with two linear ranges from 0.005 to 0.009 and 0.009 to 1.95 µM with a limit of
detection of 0.46 nM (S/N = 3) were described [47]. Boron-doped diamond electrodes [48]
and screen-printed electrodes modified by means of MnO2/graphene derivatives [45] were
used for the electroanalytical sensing of FAV at the potential of 1.23 V. A comparison of the
electroanalytical methods for FAV analysis is given in Table S1.

3.2. Investigation of the Interaction between Favipiravir and dsDNA

Binding models for the interaction between dsDNA and drugs classify them as elec-
trostatic interactions, including binding in minor or major grooves and intercalative bind-
ing [36–38,68,70].

Spectroscopic methods are the traditional technique for the investigation of drug/DNA
interactions from the pharmacogenomics viewpoint. We analyzed the UV-vis absorption
spectra of FAV, dsDNA and the complex of FAV/DNA (Figure 3). FAV shows two absorp-
tion peaks at 234 nm and 362 nm. When complex FAV/DNA was formed, a hypochromic
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effect (i.e., a decrease in absorbance) at 257 nm was recorded together with a slight hyp-
sochromic blue shift. As can be seen from Figure 3, FAV, FAV/DNA complex and DNA have
absorption spectra with close maximum wavelengths. Therefore, the explanation of the
mechanism of drug/DNA interaction is ambiguous. However, based on the hypochromic
effect, it is possible to propose that FAV interacts with DNA in accordance with the inter-
calative mechanism [69].
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Figure 3. Absorption spectra in presence of 0.075 mg/mL dsDNA (black), 25 µM FAV (green), and
FAV/dsDNA complex (red) in PBS.

The electrochemical technique was used for the investigation of the FAV/dsDNA
interaction mechanism as a sensitive and robust technology. Earlier, we showed that elec-
trochemical oxidation of dsDNA was successfully achieved on SPE/CNT after dsDNA
immobilization by physical entrapment/absorption on the surface of the modified elec-
trodes. Modification of SPEswith CNT stabilized with carboxymethylcellulose (SPE/CNT)
allowed the registering of electrochemical oxidation of guanine, adenine and thymine in the
immobilized dsDNA [40,41,71]. Adding nanosized titanium (IV) oxide TiO2 improved the
sensitivity of electrodes for the registration of dsDNA (Figure 4a,b), as in the case of protein
registration [43]. Based on this data, we used SPE/CNT/TiO2 for the investigation of
interaction between FAV and dsDNA. We carried out electrochemical measurements with
the DPV method. DPV was chosen as a sensitive and informative technique for drug/DNA
assay. The main advantage of DPV is also a significant decline in the contribution of
capacitive current in comparison with faradaic current.

DPV of the first (black line) and second (red line) scan of dsDNA (1.5 mg/mL) on
SPE/CNT/TiO2 demonstrated the irreversible nature of the electrochemical process and
fouling of the electrode by means of DNA or FAV oxidation products (Figure 4c) [71,72].
Based on this observation, we used SPEs only for single measurements. This regimen is
typical for the irreversible electrochemical process [40,41,73].

DNA carries genetic information required for the synthesis of proteins. Apart from
this role of DNA, different types of DNA or RNA molecules may be present in normal
and pathological cells and fluids in human body, such as circulating tumor DNA (ctDNA),
microRNA, therapeutic nucleic acids and cell free DNA (cfDNA). These types of DNA
or RNA possess diagnostic relevance as specific markers of diseases and play a role in
organism defense at the transcription/translation regulation level [72,74–77]. The detection
of DNA/drug complex formation and study of the mode of interactions are the main points
of pharmacogenomics [36,78–83].

FAV itself demonstrated a DPV oxidation signal at around + 0.96 ÷+1 V, in the region
of non-overlapping potentials with nucleobases oxidation potentials. Therefore, the investi-
gation of binding of FAV with dsDNA via electrochemical methods was more effective in
comparison with the spectrophotometric technique by means of the observation of changes



Pharmaceutics 2024, 16, 503 9 of 17

in peak current intensity of guanine, adenine and thymine of DNA in the presence of FAV
(Figure 5a).
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(red line) of dsDNA (1.5 mg/mL) on SPE/CNT/TiO2.

Electrochemical analysis of dsDNA based on direct electrochemical oxidation of gua-
nine, adenine and thymine residues [82] was used. This technique was applied for the
analysis of the interactions of FAV with DNA. In our designed experimental approach,
we used the increased concentration of FAV in the range of 50–500 µM and registered the
DPV peak current intensity of G, A and T oxidation of a constant concentration of dsDNA
(1.5 mg/mL) immobilized on single-use SPE/CNT/TiO2. It is a well-known viewpoint
that the positive shift of the oxidation of heterocyclic bases peak potentials is typical for
the intercalative hydrophobic mode of drugs during binding to DNA. In contrast, the
negative shift is representative of the binding modes such as electrostatic interaction or
groove binding [35–38,80,83]. In order to determine the optimum time for FAV/dsDNA
complex formation, we compare the intensities of nucleic bases´ oxidation signals after the
interaction of dsDNA with 500 µM in time intervals of 5 and 40 min. The main question of
complex formation in a non-covalent system with a reversible equilibrium is to find the
balance between complex formation and complex dissociation. We have shown that 40 min
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interaction time is optimum for an FAV/dsDNA complex (Figure 5a). For this reason, we
incubated the complex for 40 min before electrochemical measuring.
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Figure 5. (a) The average guanine, adenine and thymine signals after interaction with 500 µM FAV
at 0 min (1), 5 min (2) and 40 min (3); (b) DPV of dsDNA (1.5 mg/mL) on SPE/CNT/TiO2 (black
line), blank SPE/CNT/TiO2 (---) and FAV/dsDNA complex with 400 µM FAV concentration (-),
500 µM FAV concentration (-). Inset: DP voltammograms of dsDNA in the presence of FAV in the
concentration range of 50–500 µM (from (-, 50 µM) to (-, 500 µM).

The adequacy of the proposed approach was evaluated by experiments in which
the dsDNA sensor was incubated in phosphate buffer pH 7.4 without adding FAV. No
changes in G, A or T oxidative peak current intensities were observed. In contrast, the
interaction of dsDNA with FAV is accompanied by a decrease in the peak current intensities
of G, A and T heterocyclic bases (Figure 5b). The influence of FAV is accompanied by
a shift of the oxidation potentials of the heterocyclic bases of G, A and T in the anodic
direction, registered as 4 ± 2 mV, 10 ± 2 mV and 5 ± 2 mV, respectively. The most
pronounced shift was registered for adenine oxidation. Based on this experimental data, it
is possible to assume that FAV interacts more intensively with adenine than with guanine
or thymine. Positive shifts, observed for registered heterocyclic bases, corresponded to the
intercalative mode of drug/DNA interaction mechanisms, as was confirmed during the
study of numerous examples [48–52].

Investigation of the mechanism of the FAV inhibition mode revealed that FAV can form
FAV:G and FAV:A pairs with pyrimidine-like analog behavior [29]. To estimate the mode of
interaction, the binding constants for the complex FAV/dsDNA were calculated based on
the values of the oxidation current of nucleobases before and after the interaction of DNA
with the drug, in accordance with an earlier-published approach for the determination
of this parameter [54,72] (Figure S2). Intercalation-based interactions are characterized
by high Kb values, usually 104–106 M−1, while lower Kb values imply a rather weaker
interaction, such as groove or electrostatic interactions [36,38,78–80]. The structure of FAV
permits the formation of two hydrogen bonds with adenine residue. The Watson–Crick
hydrogen bonding in a canonical G-C pair requires the formation of three bonds; however,
FAV cannot constitute exactly three bonds. Based on this speculation, it is possible to
explain the most intensive interaction of FAV with the adenine nucleobase [29].

The values of Kb confirmed the intercalative mode of FAV/DNA interaction (Table 2).
The changes in Gibbs free energy, ∆G, were found to be negative, and confirmed that
FAV/DNA interaction was spontaneous and energetically favorable (Table 2).
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Table 2. Values of FAV/dsDNA binding constants (Kb) and the Gibbs free energy (∆G).

FAV/dsDNA Kb, M−1 ∆G = −RTln Kb, kJ/mol

Based on G oxidation signals 0.24 × 104 −18.96
Based on A oxidation signals 1.03 × 104 −22.51
Based on T oxidation signals 0.20 × 104 −18.52

The influence of FAV was also represented as the DNA-mediated electrochemical
coefficient of toxicity using Equation (2):

S = (Ss/Sb) × 100% (2)

where Sb and Ss are nucleobase oxidation signals before and after interaction of the FAV
with dsDNA, respectively [40,41,84]. We used this criterion such that if a drug does not
have a toxic effect, S is higher than 85%; it has a moderate toxic effect if the S parameter is
between 50 and 85%, and has a toxic effect if S is below 50% [83]. FAV manifested a toxic
effect only at a 500 µM concentration (Figure 6a–c).
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Figure 6. DNA-mediated electrochemical coefficient of toxic effect, S(%), of FAV in the concentration
range of 50–500 µM on the signals of electrooxidation of guanine (a), adenine (b) and thymine
(c) heterocyclic bases.

Double-stranded DNA from calf thymus (ctDNA) was also used as a molecular bio
model for the investigation of the interaction with FAV. A total of 2 µL of samples was
allowed to rest for 10 min at +37 ◦C on the surface of the SPE/CNT/TiO2 electrodes before
measurements. A horizontal measurement regimen in a 60 µL drop of PBS placed onto
the SPE to cover the surface of all three electrodes was used for all measurements. As can
be seen from Figure 7, the SW voltammogram of ctDNA revealed only one broad peak,
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centered at a potential of +0.84 ± 0.01 V, and under complex formation, the FAV/ctDNA
peak potential shifted by 0.03 V to the more positive direction (0.87 ± 0.01 V), confirming
the intercalative mode of interaction with FAV. In comparison with low-molecular-weight
dsDNA from salmon sperm, demonstrating three clear peaks, calf thymus DNA exhibited
only one peak due to the more compact structure of the DNA molecule [82–84]. Investiga-
tion of the interaction of the drug with dsDNA permits us to register G, A and T separately
and to register the electrochemical response of each base upon drug intake.
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Figure 7. SW voltammograms of 0.43 mg/mL ctDNA (-) and 0.43 mg/mL ctDNA + 500 µM FAV (-);
SPE/CNT (---). Inset: the current intensities of the base line corrected SWV peaks for electrochemical
oxidation of the ctDNA (-) and for complex ctDNA+500 µM FAV (-).

Adverse effects of FAV, such as genotoxicity and oxidative stress, were investigated at
the molecular level in cell models [23]. When H9c2 cardiomyoblasts or CCD-1079Sk skin
fibroblasts were treated with FAV for 24 h, significant DNA damage was registered with
Comet assay at a 400 µM FAV concentration, confirming the genotoxic effects of FAV [23].
In our experiments, we incubated dsDNA with FAV (50–500 µM) for 24 h and observed
an increase in the oxidative peak current of the heterocyclic bases with negative shifts of
oxidation potentials, especially pronounced for A and T residue (registered as 3 ± 1 mV
(G), 13 ± 2 mV (A) and 15 ± 2 mV (T) (Figure 8).
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The increase in current may reflects the damage to DNA during prolonged incubation
with FAV. The negative shift of oxidation potential during 24 h FAV treatment with DNA
reflects the transition of the binding mode of DNA/drug interaction from intercalative
to electrostatic attraction-assisted groove-binding interactions. Based on the chemical
structure of FAV as 6-fluoro-3-hydroxypyrazine-2-carboxamide (Scheme 1), it is possible to
assume that this drug not only intercalates into DNA molecule but also forms hydrogen
and ionic bonds through NH2- and HO- groups as a secondary process of the prolonged
incubation of FAV with dsDNA.

4. Conclusions

Favipiravir (FAV) is an effective antiviral medication for curing COVID-19 and other
infections caused by RNA viruses. However, the interaction of this drug with dsDNA had
not been studied earlier. The next focus of our experiments will be the investigation of the
pharmacogenomic properties of favipiravir in the process of drug/DNA complex formation.
Electrochemistry, as a modern and sensitive platform for the analysis of drug/DNA inter-
actions, possesses remarkable advantages, such as miniaturization, high sensitivity and
broad potential window permitting registration of the drug itself and the DNA response
as oxidation signals of nucleic bases [35–38,41,42,81,83,84]. This study utilizes single-use
electrodes (SPE/CNT/TiO2/DNA) as sensing elements for the investigation of the an-
tiviral drug favipiravir’s interaction with dsDNA. Voltammetric detection of DNA before
and after the concentration-dependent drug complex formation permits the calculation of
the binding constants Kb of FAV/dsDNA complexes for guanine, adenine and thymine.
The qualitative characteristics of FAV/dsDNA interaction, such as the DNA-mediated
electrochemical coefficient of toxicity, were also determined. FAV revealed non-toxic or
moderate toxic effects in the concentration range of 50–400 µM. Based on the values of the
equilibrium constant Kb as 104M−1 and shifts of the oxidation potentials of heterocyclic
nucleobases to the anodic direction (4÷10 mV), we concluded that FAV interacted with
DNA via an intercalative mode. We registered the most pronounced effect for adenine in
comparison with guanine and thymine residues. The changes in Gibbs free energy ∆G were
calculated as negative values, confirming the spontaneous process of complex formation.
Favipiravir’s adverse effect during 24 h incubation with dsDNA was shown. The increase
in the oxidation current of DNA could reflect the damage to DNA during the prolonged
incubation with FAV.

The novelty of our study is the elucidation of the structural changes in DNA after
interaction with the antiviral drug favipiravir using a DNA detection approach based
on an electrochemical DNA biosensor. In our investigation, we used a new composite
material for electrode modification, carbon nanotubes with titanium oxide nanoparticles,
allowing us to improve the sensitivity of the analysis. For registration of binding events as
models of pharmacogenomics, we used dsDNA from fish sperm and calf thymus DNA.
We discovered that favipiravir showed a mechanism that is more complicated during
prolonged incubation with DNA. Monitoring of drug/DNA interactions by means of
an electrochemical technique has great promise and may help in the development of
new pharmaceuticals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics16040503/s1, Figure S1: The relationship between
Epa vs. ln ν at the surface of on SPE/CNT; Figure S2: Linear plots for 1/(I0 − I) depending on
1/[drug]: (a) FAV/dsDNA (for guanine signals); equation for linear fit: y = 718x + 1.75*106, R2 = 0.899,
Kb = 0.24*104 M−1; (b) FAV/dsDNA (for adenine signals); equation for linear fit: y = 221x + 2.29;
R2 = 0.917, Kb = 1.03*104 M−1; (c) FAV/dsDNA (for thymine signals); equation for linear fit:
y = 120.45x + 241154, R2 = 0.927, Kb = 0.20*104M−1; Table S1: Electrochemical FAV detection based
on electro oxidation.
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48. Allahverdiyeva, S.; Yunusoğlu, O.; Yardım, Y.; Şenturk, Z. First electrochemical evaluation of favipiravir used as an antiviral

option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a
boron-doped diamond electrode. Anal. Chim. Acta 2021, 1159, 338418. [CrossRef]

49. Mohamed, M.A.; Eldin, G.M.; Ismail, S.M.; Zine, N.; Elaissari, A.; Jaffrezic-Renault, N.; Errachid, A. Innovative electrochemical
sensor for the precise determination of the new antiviral COVID-19 treatment Favipiravir in the presence of coadministered
drugs. J. Electroanal. Chem. 2021, 895, 115422. [CrossRef] [PubMed]
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82. Paleček, E.; Bartošík, M. Electrochemistry of Nucleic Acids. Chem. Rev. 2012, 112, 3427–3481. [CrossRef]
83. Bolat, G. Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with

anticancer drug Irinotecan. Microchem. J. 2020, 159, 105426. [CrossRef]
84. Muti, M.; Muti, M. Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant.

Talanta 2018, 178, 1033–1039. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.bioelechem.2020.107579
https://www.ncbi.nlm.nih.gov/pubmed/32534381
https://doi.org/10.1149/1945-7111/ac39d6
https://doi.org/10.1016/j.molstruc.2006.05.004
https://doi.org/10.3390/pr10112324
https://doi.org/10.1016/j.pharmthera.2019.107458
https://www.ncbi.nlm.nih.gov/pubmed/31863816
https://doi.org/10.1016/j.jpba.2022.115036
https://www.ncbi.nlm.nih.gov/pubmed/36244084
https://doi.org/10.1146/annurev-genom-120821-100535
https://doi.org/10.3390/chemosensors11100517
https://doi.org/10.1016/j.jpba.2021.114368
https://www.ncbi.nlm.nih.gov/pubmed/34571322
https://doi.org/10.1016/j.trac.2022.116813
https://doi.org/10.1007/s40262-015-0364-1
https://www.ncbi.nlm.nih.gov/pubmed/26798032
https://doi.org/10.1016/j.bioelechem.2018.06.002
https://www.ncbi.nlm.nih.gov/pubmed/29894899
https://doi.org/10.3390/nano13152229
https://www.ncbi.nlm.nih.gov/pubmed/37570547
https://doi.org/10.2174/1385272003375978
https://doi.org/10.1021/cr200303p
https://doi.org/10.1016/j.microc.2020.105426
https://doi.org/10.1016/j.talanta.2017.08.089
https://www.ncbi.nlm.nih.gov/pubmed/29136793

	Introduction 
	Materials and Methods 
	Apparatus 
	Chemicals 
	Preparation of Modified Electrode 

	Results and Discussion 
	Electrochemical Profiling of Favipiravir on SPE/CNT and SPE/CNT/TiO2 
	Investigation of the Interaction between Favipiravir and dsDNA 

	Conclusions 
	References

