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Abstract: This study aimed to develop a practical semi-mechanistic modeling framework to predict
particle size evolution during wet bead milling of pharmaceutical nanosuspensions over a wide range
of process conditions and milling scales. The model incorporates process parameters, formulation
parameters, and equipment-specific parameters such as rotor speed, bead type, bead size, bead load-
ing, active pharmaceutical ingredient (API) mass, temperature, API loading, maximum bead volume,
blade diameter, distance between blade and wall, and an efficiency parameter. The characteristic
particle size quantiles, i.e., x10, x50, and x90, were transformed to obtain a linear relationship with
time, while the general functional form of the apparent breakage rate constant of this relationship
was derived based on three models with different complexity levels. Model A, the most complex
and general model, was derived directly from microhydrodynamics. Model B is a simpler model
based on a power-law function of process parameters. Model C is the simplest model, which is
the pre-calibrated version of Model B based on data collected from different mills across scales,
formulations, and drug products. Being simple and computationally convenient, Model C is expected
to reduce the amount of experimentation needed to develop and optimize the wet bead milling
process and streamline scale-up and/or scale-out.

Keywords: milling; wet bead milling; particle size prediction; modeling; semi-mechanistic modeling;
microhydrodynamic model; process scale-up; process optimization

1. Introduction

Wet bead milling (also known as wet stirred media milling) is a unit operation used
in the pharmaceutical industry for the preparation of suspension-based products [1]. A
recent survey indicates that wet bead milling is the preferred approach for the preparation
of ultrafine drug suspensions and nanosuspensions compared to other techniques, such
as liquid antisolvent precipitation and high-pressure homogenization [2]. This is not
unexpected since wet bead milling has several advantages as it is a robust, reproducible,
scalable, organic solvent-free, and environmentally friendly process [3,4]. It enables the
preparation of concentrated stable suspensions of drug particles [3], which can have several
applications in drug delivery such as modulating drug dissolution and absorption [5–9]
and the design of long acting injectables (LAI) [10–13].

Developing the fundamental mechanistic understanding of manufacturing processes,
underpinned by a science- and risk-based approach, is a key element of the Quality-by-
Design (QbD) framework of product development, aligned with the expectations outlined
in the International Council on Harmonization (ICH) guidance Q8 (R2), Q9, and Q10 [14].
In this work, we have focused our efforts on developing an enhanced level of process
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understanding of wet bead milling to support the development of the predictive design
capability for this unit operation based on process modeling. There is a need to enhance
the mechanistic understanding of potential process-related challenges encountered during
wet bead milling, guided by the QbD principles of development. These failure modes may
include poor milling efficiency due to aggregation and Ostwald ripening [15–17], long
processing times [3,18,19], bead wear and product contamination [20,21], potential chemical
degradation [22], and mechanical or thermal-stress-induced solid-state transformations
and generation of higher energy metastable phases during milling, such as amorphization
and polymorphic transitions [22,23].

The modeling of the wet bead milling process can significantly help process devel-
opment and optimization [24,25] and offers multiple benefits; at a minimum, mechanistic
or first-principle-based models provide a quantitative, fundamental understanding of the
impact of operation–design parameters. Since APIs are typically very expensive, there is
a need to predict their behavior in the unit operations prior to committing a significant
amount of material in the developmental stage. Evaluating the behavior of a formulation in
wet bead milling and establishing a design space typically requires significant investment
in time and material. Computational models for milling performance would be beneficial
not only because they reduce API quantities needed for process development but also
because they would help inform product development teams in advance regarding whether
a process is likely to achieve reasonable throughputs at production scale.

Interestingly, statistically based models such as empirical regression fits, response sur-
face methodology (RSM), etc., have been overwhelmingly preferred over the mechanistic–
phenomenological models according to a review of the wet bead milling modeling in
the pharmaceutical nanotechnology literature [25]. This is not surprising: (i) Except the
SI–SN [26,27] and the MHD models [28,29], the mechanistic–phenomenological models are
computationally expensive, requiring specialized software and expertise. (ii) The usage
of the SI–SN and the MHD models can be limited if reliable information on model inputs
such as average power consumption during milling, the apparent shear viscosity, and
the density of the suspension are not available. (iii) Except for PBM, no complex models
such as CFD [30,31] or DEM [32–34] consider the evolving PSD due to particle breakage.
And (iv) PBMs must incorporate the operation–design parameters into the kernels for
process predictions, which makes model calibration difficult and requires computationally
intensive global optimizers for parameter estimation. On the other hand, statistically based
models are easier to develop and use and are more accessible to pharmaceutical engineers
and scientists. Characteristic drug particle sizes (x50 and x90) or specific surface area can be
described and/or predicted by RSM and regression analysis as a function of formulation
and process parameters. Most of the statistically based empirical studies have correlated
the particle sizes with the milling time and speed [35–38]; only a handful of studies have
additionally considered bead size [39,40], bead loading [41], or API loading [42]. Other
studies have considered only bead loading [43,44] or milling time and bead loading [45,46].
Finally, empirical breakage kinetic models such as the first-order kinetics, nth-order kinetics,
and warped-time model have been used to describe the timewise evolution of the median
drug particle size or specific (external) surface area [35,47,48]. An empirical correlation for
the breakage rate constant of the first-order kinetic model based on stirrer speed and a scal-
ing factor was developed in [35], but no direct scale-up was demonstrated. Moreover, such
empirical correlations are only applicable to the specific process, unless its application is
demonstrated for different case studies. The breakage rate constant of the nth-order model
was successfully correlated with the MHD parameters to a lab-scale mill; however, explicit
correlation of the MHD parameters on the process parameters has not been established,
and scale-up has not been considered [48].

The take-away of the above analysis of the statistically based empirical models is
that despite the obvious need for pharmaceutical manufacturing engineers to have a
good model for prediction and optimization of wet bead milling processes across scale,
incorporating the impacts of all process–formulation–design parameters, it is not easy to
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develop such a model. Besides being practical and computationally convenient, it should
also predict impacts of changes in process parameters and scale-up or scale-out across
equipment. One such model [47] described the evolution of the specific surface area using
a first-order kinetic model with a characteristic time constant, which was correlated with
the rotation speed, bead loading, and API loading. The time constant is purely empirical
with no physical (microhydrodynamic) basis, and it does not include the effects of bead
properties, which have a significant impact on breakage kinetics, cycle time, and energy
consumption [20,29].

The aim of this study is to develop a practical semi-mechanistic modeling framework
that is computationally efficient, easy to use, and convenient to calculate and that can be
used as an engineering tool during process development. The scope of this work included
an analysis of six internal GSK drug products and two drug products at NJIT as milled
by six mills across six different scales, with an expected outcome that a common model
can be used to model every scale and drug product. A challenge to creating a widely
encompassing model for wet bead milling is the high number of potential parameters that
are important. Developing a practical model with a large number of independent variables,
including process parameters, formulation parameters, and equipment-specific parameter
was an ambitious undertaking. To this end, in this work, we developed three models with
different levels of complexity and mechanistic rigor. First, we linearized the reciprocal
of the characteristic particle size quantiles (x10, x50, x90) to describe the timewise particle
size evolution. Then, we used microhydrodynamic theory [20,29] to derive the general
functional form of the apparent breakage rate constant, which accounts for the impact of
all process parameters and bead properties. The apparent breakage rate constant was then
derived as a linear function of the frequency of drug particle compressions between the
beads to obtain Model A. As the most general and demanding model, Model A requires
one to calculate the granular temperature, which can be estimated by solving the power
dissipation equation in the microhydrodynamic model [25]. Model B was developed by
assuming a general power-law expression for the granular temperature. This simplification
has general applicability and great practical utility as we can obtain the exponents of the
process parameters in Model B by fitting it to experimental data. Here, we fit Model B
to several case studies conducted by GSK and NJIT on various stirred media mills of
multiple scales, which resulted in common exponents for each process parameter, resulting
in the simplest model, i.e., Model C. Overall, we have formulated a modeling framework
encompassing models with varying complexity and practical utility, and we hope that
such models can be adopted and/or adapted by engineers for optimization, scale-out, and
scale-up of wet bead milling processes.

2. Materials and Methods
2.1. Materials

The APIs used for investigation at NJIT were fenofibrate (BP grade, purchased from
Jai Radhe Sales Ahmedabad, India) and griseofulvin (BP/EP grade micronized, Letco
Medical, Decatur, AL, USA). The drug product formulations at GSK are proprietary APIs
that will not be listed explicitly but simply referred to as a drug product (DP) number, i.e.,
DP1, DP2, . . . DP8. Both NJIT studies used Hydroxypropyl cellulose (HPC, L grade, Nisso
America Inc., New York, NY, USA) as a nonionic polymeric stabilizer, and sodium dodecyl
sulfate (SDS, ACS grade, GFS chemicals, Columbus, OH, USA) as an anionic surfactant
where the formulation was 10% drug, 7.5% HPC-L and 0.05% SDS with respect to 200 g
DI water [49,50]. In addition, 400 µm nominal sized Zirmil Y grade zirconia beads and
HCC grade polystyrene beads were purchased from Saint Gobain ZirPro (Mountainside,
NJ, USA) and Norstone Inc. (Bridgeport, PA, USA), respectively. Additionally, GSK
formulations contained commonly used excipients such as surfactants, stabilizers, etc.
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2.2. Experimental Setup

Each of the experiments described in this manuscript involved wet bead milling in one
or more of six different mills, purchased from Netzsch Fine Particle Size Technology, LLC
(Exton, PA, USA). A tabulated list of the relevant mill characteristics and parameter ranges
explored is shown in Table 1. The experiments conducted on each mill varied substantially
in the process parameter operating space. A total of 64 runs were executed in the mills,
respectively, across 8 different drug products.

Table 1. Overview of wet bead mills utilized and associated experiments.

Location GSK GSK GSK GSK GSK NJIT

Equipment DV50 DV150 DV300 DV2000 DV4000 MicroCer

Drug products used
Proprietary formulations

Griseofulvin,
FenofibrateDP5, DP4,

DP6
DP3, DP2,
DP4, DP6

DP3, DP1, DP5,
DP2, DP6 DP1 DP1

Batch volume (L) 0.1–0.5 0.3–1 1–5 10–30 30–200 0.2

Milling time (hour) 0.5–4 0.5–4 1–6 3–10 6–40 3

Number of rotors (-) 2 5 8 7 8 2

Chamber diameter, Dm (mm) 76 76 76 128 180 77

Agitator Diameter, Da (mm) 68.5 65 65 110 152 60

Agitator Length, La (mm) 25.0 65.5 118 170 255 32

100% Bead Mill Volume, Vm (mL) 56.3 157 243 1659 4120 60

Range of Tip speed, Utip (m/s) 4.5–6 4.5–5.5 4–7.8 4–6.6 5–6.5 11–14.7

Bead Loading, BL (%) 75, 85 85 75–99.8 80–90 85 56–79

Bead size, Db (mm) 0.3, 0.65 0.3, 0.65 0.3, 0.65 0.3 0.3 0.2–0.4

# of experiments 8 4 20 8 6 18

2.3. Particle Size Measurement

For particle size measurements performed at GSK, the PSD of the drug suspension
at various milling times was determined using laser diffraction by Malvern Mastersizer
3000 particle size analyzer (software v3.81 or validated equivalent) with Hydro MV Disper-
sion Unit and Temperature Control Unit. At NJIT, the particle size distribution (PSD) of the
drug suspensions at various milling times was determined by LS 13-320 Beckman Coul-
ter instrument (Brea, CA, USA). While the sampling interval varies for each experiment
depending on the total milling time at GSK, predefined time intervals (2 s, s = 0, 1, 2, . . .
7 min) with the addition of 40 s, 24 min, 48 min, 96 min, 128 min and 180 min were used
at NJIT.

For measurements performed in GSK, ~2 mL samples of suspension were taken
from the bulk holding tank at predefined time intervals. Two drops from each sample
were transferred via an 18G needle (or equivalent) to a microcentrifuge tube containing
~1 mL of water for injection (WFI). The sample with WFI dilution was then mixed to
homogeneity. During measurements, obscuration was maintained at 4–6%. Measurements
were repeated three times, and the average and standard deviation of these measurements
were determined. The Malvern instrument was turned on for no less than 30 min prior
to use.

For the particle size measurements performed at NJIT, the samples were taken from
the mill outlet at predefined time intervals. The final sample was taken from the holding
tank and all samples were measured with laser diffraction. Before each measurement, a
suspension sample (~2.0 mL for griseofulvin and ~1.0 mL for fenofibrate) was diluted with
5.0 mL of the respective vehicle using a vortex mixer (Fisher Scientific Digital Vortex Mixer,
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Model No: 945415, Pittsburgh, PA, USA) at 1500 rpm for a minute. During measurements,
polarized intensity differential scattering (PIDS) was maintained between 40% and 50%,
while the obscuration was maintained below 8%. PSD was provided by the equipment
software, which used the Mie scattering theory. The refractive indices of GF, FNB and water
were taken as 1.65, 1.55, and 1.33, respectively [49,50]. Measurements were repeated four
times, and the average and standard deviation of these measurements were determined.

2.4. Young’s Modulus of Compacts

A compaction simulator (Styl’One Evolution, Medelpharm, Beynost, France) was used
to produce compacts of each API (with no excipients) with a round flat-faced 11.28 mm B
punch at a target compression speed. The compression cycle included a precompression
phase followed by main compression. The methodology reported by Mazel et al. [51]
was used in this work to measure the Young’s modulus (YM) of the bulk API materials
based on compaction analysis. To obtain the Young’s modulus as a function of compact
porosity, a range of main compression forces were applied to the powders in the die. For
each compaction, ~500 mg of API was used. The tablet weight and thickness values were

measured, and the out-of-die porosity of each compact was calculated using ε =
mc
Vc
ρ , where

mc and Vc are the weight and volume of the out-of-die compact, and ρ is the true density of
API powder [51].

For measuring YM, the compact must only be undergoing elastic deformation.
This corresponds to the linear part of compression pressure–tablet thickness curve.
During elastic deformation, the linear stress–strain relationship can be written as
(σ ax − 2PRσrad) = YM − YM h

h0
, where σax and σrad are axial and radial stresses equal to

the pressure levels (Pax is a mean value of lower and upper punch pressures, and Prad is the
radial pressure to the die wall), PR is Poisson’s ratio, h is the thickness of the powder bed,
and h0 is the initial thickness. Plotting (σ ax − 2PRσrad) vs. h provides a linear relationship
with YM as its intercept, and YM can be obtained at different pressure levels that yield
different compact porosities [51].

An exponential decay function was fit to YM versus porosity data, and the YM at the
zero compact porosity was estimated for the model compounds in this study.

3. Theoretical

The approach to model the timewise particle size evolution during wet bead milling
entails first establishing a data transformation to linearize the characteristic particle size
quantiles x10, x50, and x90 of the cumulative PSD (Section 3.1) and then developing a model
to predict the timewise evolution of linearized particle sizes.

The general model training workflow is presented in Figure 1.
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Figure 1. Model training workflow comprising three major steps: (1) data transformation to linearize
characteristic particle size quantiles xj(t) (j = 10, 50, 90) via Transformation 1 (Equation (1)) or
Transformation 2 (Equation (2)); (2) model fitting to capture particle size evolution during wet bead
milling via Model A (Equation (4)), Model B (Equation (5)) or Model C (Equation (6)); (3) reverse
data transformation to return particle size quantiles.

3.1. Particle Size Data Transformation for Linearization

One of the challenges of modeling wet bead milling is the highly nonlinear and
potentially sigmoidal nature of the timewise variation in the characteristic particle sizes of
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x10, x50, and x90. Like most types of models, there is a substantial benefit to simplifying the
model by linearizing the input data with respect to time. This section describes the data
transformation that we employed for data linearization. While other data transformation
strategies may also be useful, we justified the transformation here through two different
theoretical approaches in the milling literature and derived them based on breakage kinetics
models (Appendix A).

For drug products where the drug crystals tend to exist as individual crystals, we
applied model fits to the complete dataset including the initial particle sizes. However,
we disregarded a few data points in the neighborhood of time t = 0 [52,53] for the drugs
that tend to agglomerate, which can be justified by the following considerations. First, the
initial specific breakage rate of the coarse particles and any drug clusters (agglomerates) is
so high that it, when compared with that of the fine particles and nanoparticles, may not
be adequately captured by simple empirical kinetic models, even if they account for the
size dependence of the specific breakage rate. If agglomerates are initially present, they are
broken down in the mill during the first few turnovers. Here, the number of turnovers Nt
is defined by Nt = Qt/Vtb, where Q is the pumping rate (suspension flow rate) and Vtb is
the total batch volume. Since crystal agglomeration is subject to significant variation even
within the same batch from crystallization, these initial particle size data may be subject to
noise (see also the discussion in [35]), making these not meaningful for the prediction of the
behavior after completion of the first few turnovers. Thus, it follows that initial breakage of
coarse particles and deagglomeration of clusters should be omitted since the main focus
of wet bead milling process development is the breakage of particles into sub-micron size
(i.e., the behavior after the first few turnovers). Also, from a theoretical standpoint, the
transform we used is supported by an analytical solution of a self-similar PBM [54] away
from the initial condition.

After discarding the particle size data for the first few turnovers, the second step in
the data transformation strategy was to take the inverse of x10, x50, and x90. Our experience
suggests that this part of the transformation process mostly linearizes the data, though
some curvature with respect to time and sigmoidal behavior is expected if the milling
process is pushed to near the apparent grinding limit. When the milling process is not
nearing the grinding limit and no sigmoidal behavior is observed, then only the third step
of the transformation is needed. In this third step (see Equation (1)), a shape factor Nj
was introduced for each inverse particle size quantile, which minimizes the error when a
line is fitted through the data with respect to time. The proposed transform Yt of the jth

size quantile, which can be derived by a semi-empirical nth-order rate-based model (see
Appendix A), is expressed as in Equation (1):

Ytj = Ytj
(
1/xj

)
=
(
1/xj

)Nj = k jt + Bj (1)

where j = 10, 50 and 90, and kj is the apparent breakage rate constant that varies with the
process conditions. Here, Bj is a parameter that was obtained by fitting to the dynamic
data. From a theoretical standpoint, it is related to the initial feed PSD prior to milling.
Bj equals either the value of (1/xj(0))N

j of the actual feed PSD at t = 0 or its value for a
theoretical feed PSD that is self-similar with the asymptotic self-similar size distribution at
longer milling times (see the discussion on the self-similar solution of a PBM for milling in
Appendix A). However, Bj was ultimately obtained from fitting because it is not expected
to satisfy the actual initial condition due to the issues of using the initial time points, as
discussed in the previous section. It is assumed that both Nj and Bj are invariant to the
processing conditions and that the kinetic influence of all process variation is captured
by kj. Though the model will have higher fidelity if Nj and Bj are separately fitted to the
particle size evolution of each batch/experiment with different processing conditions, such
a model will have little predictive capability and will not be useful. Hence, the success
of our model largely rests upon how well kj captures the process variations across scales.
We note, however, that the fitted values of Nj for each particle size quantile can and likely
will be different from each other when fitted separately. Equation (1) is supported by two
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theoretical approaches which are self-similar solution of PBM and microhydrodynamic
model along with Charles’ energy–average particle size relationship (see Appendix A).

Equation (1) and the theoretical approaches suggest xj → 0 and 1/xj → ¥ as
t → ¥, which may not pose a serious problem unless the milling is prolonged to ap-
proach an apparent grinding limit size xj,inf [55]. Thus, if the data for 1/xj display sigmoidal
behavior at long milling times, the best approach is to fit a transform that is similar to the
“Prout-Thompkins” transform utilized in auto-catalyzed solid state kinetics [56] as shown
in Equation (2):

Ytj = Ytj
(
1/xj

)
=

(
1/xj

1/xj,inf − 1/xj

)Nj

= k jt + Bj (2)

Equation (2) requires two parameters to describe a sigmoid: the exponent Nj describes
aspects of the nonlinear behavior with respect to time, while 1/xj,inf describes the value of
1/xj that could be achieved if milling were carried on for an infinite time. Away from the
asymptote which emerges after prolonged milling, the expression 1/xj,inf − 1/xj at 1/xj,inf
is valid, and Equation (2) reduces to Equation (1) following some algebraic manipulations.
In Appendix A, we also present a derivation of Equation (2) based solely on breakage
kinetics without any transforms.

3.2. Model Development for the Apparent Breakage Rate Constant

We now develop models for the functional dependence of the apparent breakage rate
constant kj on the operational–design parameters of wet bead milling and bead properties.
We describe here three models with varying levels of complexity. We start by describing the
development of Model A, which is a mechanistic model derived from microhydrodynamic
theory (Section 3.2.1) that requires significant effort to parameterize. Following that, the
development of a more computationally efficient semi-mechanistic Model B is described
(Section 3.2.2). Model B is a practical, generalizable, semi-mechanistic model that can
be used to describe the wet bead milling process development across mills and scales.
Finally, a semi-mechanistic model, fitted to the milled particle size data covering the model
compounds in this study (Model C), is presented in Section 3.2.3. Model C is a simplified
variant of Model B requiring minimum number of milling experiments to parameterize
the model (Section 3.2.3). This latter approach (Model C) offers a computationally and
experimentally efficient modeling framework compared to fully mechanistic approaches,
making it attractive for industrial simulations within timescales of interest. A high-level
comparison of the modeling approaches described in this work is presented in Table 2.
With these three models, we can effectively describe particle size evolution during wet
bead milling for multiple drug products across mill scales.

3.2.1. Model A: A Microhydrodynamics-Based Model

As small molecule organic materials are relatively brittle and easy to break compared
to inorganic materials such as ores and minerals, their breakage kinetics are expected to
be governed by the stressing frequency rather than the stress intensity, unless the latter is
extremely low. Several in-depth studies using the microhydrodynamic (MHD) theory have
concluded that the breakage kinetics during wet bead milling are governed by the average
frequency of drug particle compression a [29,48]. Hence, our starting point in developing
this model was to assume that the extent of milling kjt for a given drug nanosuspension
formulation processed in a recirculation mill is given by kjt = A∗

j Ntaτm, where A∗
j is a

constant dimensionless parameter that is presumed to correlate with the brittleness of
APIs [57,58], Nt is the number of turnovers defined earlier, and τm is (the single-pass) mean
residence time of the suspension in the mill with volume Vm containing a true volume
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fraction c of beads in the milling chamber. Inserting the definitions of Nt, τm = Vm(1 − c)/Q
into Equation (2) and noting γAPI = mAPI/Vtb, we arrived at Equation (3):

Ytj = A∗
j a

γAPIVm(1 − c)
1000mAPI

t + Bj (3)

where γAPI was the mass concentration of the drug in g/mL and 1000 was a unit conversion
factor since mAPI was in kg. Equation (3) shows that the apparent breakage rate constant kj
equals the pre-factor in front of t; one may consider A∗

j a as the true breakage rate constant
because Vm(1 − c)t/Vtb appears to be the effective milling time in recirculation milling, also
known as mean residence time of the circuit (mill and holding tank).

Table 2. Comparison of the modeling approaches described in this work.

Micro-Hydrodynamic Model,
Model A

(Section 3.2.1)

Semi-Mechanistic Model, Model B
(Section 3.2.2)

Pre-Calibrated
Semi-Mechanistic Model,

Model C
(Section 3.2.3)

Description MHD-based mechanistic
model Flexible semi-mechanistic model

Pre-calibrated version of
Model B based on particle size

data from several studies

Fitting Parameters
A*, Bj, Nj, xj,inf, (+more

parameters to develop a
model for Power)

Aj, Bj, Nj, xj,inf, K2j, E, N1, N2, N3, N4 Aj, Bj, Nj, K2j, xj,inf

Complexity Level Highest Medium Lowest

Number of
Experiments needed

1 experiment to calibrate
model parameters (after

power is estimated)

Design of Experiments (DoE) varying
mill scale, tip speed, bead loading,

size, material, chiller set temperature

If K2j needs to be fitted 2;
otherwise, only 1 experiment

When it should be
preferred?

If power during milling and
viscosity and density of the

suspension are known

If data from a full DoE is available to
calibrate this more flexible model,
which would represent a specific
application and parameter ranges

with less error

If experimentation is costly
and the materials and

parameter ranges used are
similar to those in this study

Advantage Less dependency on the
particle size data

Can be applied to all applications
from pharmaceuticals to inorganic
materials, and all parameter ranges

of interest

The most efficient both
experimentally and

computationally

Disadvantage

Less predictive capability as it
depends on experimental

input for power. To have the
same capability as Model B

and C, a power model should
be developed

High risk of overfitting;
experimentally costly

Application outside the
ranges used in this study is

not evaluated

According to the microhydrodynamic theory [28,29,59], the average frequency of drug
particle compressions between the beads a is calculated by multiplying the probability of a
single drug particle to be caught by the beads p and the average oscillation frequency of a
single bead ν, and is a function of bead material density ρb, Poisson’s ratio PRb, Young’s
modulus YMb, and diameter Db, as well as the granular temperature θ, which is dependent
on both operation–design variables and drug suspension properties such as apparent
shear viscosity (refer to Appendix B for the principal equations of the microhydrodynamic
theory). Inserting a (refer to Equation (A13) in Appendix B) into Equation (3), we obtain
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Equation (4), or Model A, which is the most general microhydrodynamics-based model for
the prediction of the particle size evolution during wet bead milling.

Ytj = A∗∗
j

γAPIVm

mAPI
c2

[
1 −

(
c

clim

)0.33
]−1

ρb

(
1 − PR2

b

)
YMb

0.4

θ0.9

D2
b
+ Bj (4)

Determining the granular temperature θ for different operational and design condi-
tions within the context of the microhydrodynamic theory entails significant effort and is
outside the scope of this manuscript. The calculation of θ for a lab-scale mill for various
drugs, stirrer speeds, bead loadings, bead types and sizes, etc., is described in earlier MHD
studies [16,20,29,48]. However, this approach may not be practical as it requires accurate
measurements of power P and power density Pv = P/Vm in mills at various scales, as well
as density and apparent shear viscosity of the suspensions. Previous studies showed that
the granular temperature θ varies with the rotational speed ω of the rotor [20,29,48–50,60],
the volume fraction of the beads in the suspension c [20,29,48–50], the density of the beads
ρb [29,48,49], the diameter of the beads Db [20,50,60], and the apparent shear viscosity of
the suspension µs at the reference temperature [16]. The density of the suspensions ρs is
another factor that has an impact on θ (Appendix B). While the comparative impacts of the
process variables and bead type/size on θ were established in the aforementioned studies,
a mathematical expression to calculate θ directly based on process variables has not yet
been formulated.

3.2.2. Model B: A Practical Semi-Mechanistic Model for Wet Bead Milling

In this section, we approach the wet bead milling modeling from a semi-mechanistic
standpoint describing the development of semi-mechanistic Model B. In Section 4, we
will discuss fits to Model B and specific case studies which were used to support the
structure of this model. Influenced by Model A and prior knowledge on parameters with
potential impact on the granular temperature as discussed in Section 3.2.1, we formu-
lated a semi-mechanistic model (Model B) with a power-law structure as described in
Equation (5).

Ytj = Aj
γAPIVm

mAPI

(
ω

ωref

)N1
BLN2

(
ρb

ρYSZ

)N3
(

1−PR2
b

YMb

)0.4
DN5

a(
Db

Db,ref

)N4

(
µs

µs,ref

)N6
(

ρs

ρs,ref

)N7

KtjEt + Bj (5)

Model B incorporates all the important process parameters governing milling. Similar
to Model A, it is a function of the API mass mAPI and concentration γAPI, the mill volume
Vm, rotational speed ω, the bead loading BL (BL = c/clim), the density of the beads ρb, the
Poisson’s ratio of the beads PRb, the Young’s Modulus of the beads YMb, the diameter of
the beads Db, the apparent shear viscosity of the suspension at the reference temperature µs,
and the density of the suspensions ρs. While the terms with parameter groups (mAPI, γAPI,
Vm) and (PRb, YMb) have been transferred directly from Model A, other parameters were
raised to power N. Since these quantities can span orders of magnitude, we normalized each
of these terms by a standard reference quantity to ensure that each term remains around an
order of magnitude of one. Two additional parameters (Kt and E) were included in Model
B. We introduced Kt as a factor that accounts for temperature change from a reference
temperature (15 ◦C) during milling, which is an Arrhenius function with a K2j parameter

to be fitted exp
[
−K2j

(
1

273.15+(T °C)
− 1

288.15

)]
. To account for different milling efficiencies

across different pieces of milling equipment, we also introduced a mill-scale efficiency factor,
E, which is further discussed in Section 4.3.2. E accounts for the energy transfer efficiency
of any mill with respect to a reference mill, which captures the impact of mill design
differences at different scales; it is constant for a given mill and independent of the API
formulation. Model B can be fitted to particle size data from different milling experiments
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with varying process conditions to obtain the corresponding unknown parameters (i.e., Aj,
N1, N2, N3, N4, N5, N6, N7, K2j, Bj). The reference values for these parameters were set as
1000 rpm, 0.63 (the packing limit of the beads), 6000 kg/m3 (the density of the YSZ beads),
0.33 mm (a commonly used bead size in our studies), and 1.13 cP (viscosity of water at
15 ◦C), respectively. The unit for Aj in Model B depends on the exponent of the tip speed
N5 (kg0.4 m−N5−0.4s−1.8). The connectivity between Equations (3) and (5) is explained in
Appendix C.

To ensure that θ remains invariant upon scale-up from a reference mill, the power den-
sity Pv must remain invariant according to the microhydrodynamic theory. The asymptotic
scaling analysis in Appendix B suggests a scaling of the form θ ∝ P0.7

v for fully (upper) tur-
bulent flow. In the upper turbulent flow regime, for which Reynolds number Re > 2 × 105,
the following scaling is applicable [61]: Pv = P/Vm ∝ ω3D3

a/L, where L is the effective
length of the mill chamber. This scaling led us to θ ∝ ω2.1D2.1

a /L0.7 and θ0.9 ∝ ω1.9D1.9
a /L0.6;

therefore, as per Equation (5) to Equation (6), N1 = N5 emerged; thus, we fitted only N1–N4
independently. As will be shown below, fitting data across scales yielded N1 = N5 ∼= 2,
supporting the microhydrodynamic result of N1 = N5 = 1.9. For the lower turbulent flow
regime (3.5 × 104 < Re < 2 × 105), using the same scaling θ ∝ P0.7

v , we found N1 = 1.8
and N5 = 1.6, which are not far from the fitted values. It must be noted that in the lower
turbulent flow regime, θ may follow Pv

0.7–Pv
0.8 scaling as some minor viscous effects

emerge (for laminar flow θ ∝ Pv scaling applies). When θ ∝ P0.8
v was used, N1 = 2.0 and

N5 = 1.9 were obtained for the lower turbulent regime. The conclusion from this analysis,
upon consideration of all complexities of the fluid flow in the mill and the assumptions
made in the asymptotic scaling analysis, is that the microhydrodynamic model suggests
N1

∼= N5 ∼= 2.

3.2.3. Model C: Semi-Mechanistic Milling Model Fitted to Milled Particle Size Data

Equation (5) was used along with the Yt transform in Equation (2) to fit the recip-
rocal of x10, x50, and x90 for various model compounds in this work and estimate the
model parameters, i.e., N1–N4, Aj, Bj, Nj and xj,inf. The resultant equation is given in
Equation (6), which we refer to as Model C, where exponents N1–N4 were determined as
described in Section 4. While Model C can be applied towards future datasets without
re-fitting the exponents, unlike Model B, making it the most computationally and experi-
mentally efficient model, it bears the signatures of the specific mills and formulations used
in this study. In Model C/Equation (6), Aj, Bj, Nj, xj,inf, and K2j are the fitting parameters
and vary with the size quantiles, API, and formulation. Parameters were obtained through
nonlinear fitting.

Ytj =

(
1/xj

1/xj,inf − 1/xj

)Nj

= Aj
γAPIVm

mAPI

(
ω

1000
)2BL3( ρb

6000
)1.4
(

1−PR2
b

YMb

)0.4
D2

a(
Db

0.33

)0.3 KtjEt + Bj (6)

If multiple mill scales were used during the Design of Experiments (DoE) and the
efficiencies of the mills are unknown, Equation (6) can be used with a match function
for the mill-scale efficiency factor E term, which can be fitted to the experimental data to
estimate efficiencies of different mills. This procedure will be discussed in Section 4.3. The
efficiencies for DV50, DV150, DV300, DV2000 and DV4000 mills were estimated as 0.70,
1.00, 0.83, 0.24 and 0.19, respectively. If readers are interested in estimating the efficiencies
for mills that are different from the specific Netzsch mills used in this study (see Table 1)
but have similar chamber and impeller geometry, they can apply the empirical relationship
shown in Equation (7) to estimate E (refer to Section 4.3 for more details). Here, log E in
Equation (7) is a function of the agitator diameter Da and length La.

log E = −14 − 5.1log Da + 2.0log
(

La

Da

)
+ 8.1

[
(log Da + 2.4)×

(
log
(

La

Da

)
− 0.111

)]
(7)
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In addition, if milling was not run for too long to approach the apparent grinding
limit (i.e., a significant fit for xj,inf cannot be obtained), readers can estimate xj,inf via an
empirical relation (Equation (8)) with coefficient Cj as 0.057, 0.088 and 0.125 for x10, x50 and
x90, respectively (refer to Section 4.3 for more details).

xj,inf = CjBL−0.25D0.12
b YM0.24

API (8)

With the additional flexibility provided by Equations (7) and (8), Model C (Equation (6))
is a convenient model that can be parameterized with as few as one experiment for a
specific drug product and formulation. It can then predict the particle size and milling time
required to reach a target particle size for any process condition across milling scales (from
lab to pilot or commercial scales).

3.3. Reversing the Transform

When Equation (1) was used as the linearizing transform, reversing the transform
was straightforward: the Yt function was raised to the power of (1/Nj) to then calculate
1/xj at different time points. When Equation (2) was used as the linearizing transform,
Equation (9) was used to calculate the reciprocal particle size:

1
xj

=
Yt

1/Nj
j

1
xj,inf

1 + Yt
1/Nj
j

(9)

Using statistical analysis software with nonlinear solving capabilities like JMP version
17, it is possible to substitute Equation (4), Equation (5), or Equation (6) for the Yt term
in Equation (9) and directly solve for the reciprocal particle size. In this study, Model B
(Equation (5)) was fitted in JMP in this way with reasonable guesses for each parameter as
starting points. The reverse-transformed Equation (5), with reference values substituted
following Equation (9), would be as shown in Equation (10).

1
xj

=

Aj
γAPIVm

mAPI

( ω
1000 )

N1 BLN2(
ρb

6000 )
N3
(

1−PR2
b

YMb

)0.4

D
N1
a(

Db
0.33

)N4
KtjEt + Bj


1/Nj

1
xj,inf

1 +

Aj
γAPIVm

mAPI

( ω
1000 )

N1 BLN2(
ρb

6000 )
N3
(

1−PR2
b

YMb

)0.4

D
N1
a(

Db
0.33

)N4
KtjEt + Bj


1/Nj

(10)

The term Ktj in the above equation was derived as an Arrhenius equation in
Section 3.2.2, but in the interest of brevity, this substitution is not shown explicitly. In
our studies, we fitted Equation (10) directly to the data from our case studies, solving
for the product-specific terms Aj, Bj, Nj, xj,inf and the temperature term K2j for each size
quantile and the nonlinear exponents (N1 − N4) on ω, BL, Db, and ρb, which were shown to
be consistent in value across all studies and thus product independent, as will be illustrated
in Sections 4.1 and 4.2. We note that not all power-law exponents can be estimated in every
case study, as the relevant process parameter might not have been investigated in the exper-
imental design, in which case the associated exponents were fixed to those in Equation (6)
(Model C). A model of this complexity required several case studies to establish validity
across numerous products and five different scales as described Sections 4.1 and 4.2.

4. Results and Discussion

In Section 4.1, an overall summary of the Model B (Equation (5)) fits and the impact of
process parameters on the particle breakage will be discussed. In support of Section 4.1,
Section 4.2 will illustrate the specific examples from case studies involving different drug
products. Finally, Section 4.3 will show how Model C was used to derive mill efficiency
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correlations based on mill properties (Equation (7)); grinding limit correlations based on
process and material properties (Equation (8)); and milling rate correlations based on
material properties.

4.1. Impact of Process Parameters on Particle Size: Journey from Model B to Model C

The exponents of Model B were found by fitting Equation (5) to particle size data from
a number of wet bead milling studies, but since not all studies had variations on all w, BL,
Db, and ρb process parameters, Model C was obtained using insights from all case studies
collectively. Some of the process parameters, such as rotor speed and bead loading, were
investigated in multiple case studies. The exponents obtained for the different particle size
quantiles (x10, x50, and x90) have some variation. In each of the subsequent subsections, we
summarize the fitted values of the N1, N2, N3 and N4 exponents. When parameterizing
Model C, we only recorded the fitted values of the exponents if all parameter estimates
were statistically significant in the model. If the coefficient estimates were more than two
standard deviations away from zero, the estimates were identified as statistically significant.

4.1.1. Impact of Rotor Speed

The rotational rotor speed ω (in rpm) is one of the most important and impactful
process parameters [32,41] for wet bead milling. It increases the breakage rate, as it provides
more frequent and stressful collisions [48]. Our microhydrodynamic analysis suggests that
ω should have an exponent of 2. We tested this hypothesis in the case studies described in
Sections 4.2.1–4.2.3 with Model B (Equation (5)). A summary of the findings for all studies
is presented in Table 3, which shows N1 ∼= 2 is the most frequent exponent, which agrees
well with an earlier scale-up study in Ref. [47]. The value of 1.39 found for DP1 could be
due to a tendency to aggregate at certain mill scales, which takes longer than expected to
break down.

Table 3. Fitted exponents of normalized ω (N1) in various case studies.

Study x10 Rotor Speed
Exponent

x50 Rotor Speed
Exponent

x90 Rotor Speed
Exponent

DP1 2000 mL Scale (Section 4.2.1) 1.71 1.84 1.64
DP1 All Scales (Section 4.2.1) 2.05 1.62 1.39
NJIT Bead Size Study (Supplementary Materials) N/A 1.99 N/A
NJIT Bead Type Study (Supplementary Materials) N/A 2.13 2.02

4.1.2. Impact of Bead Loading

Bead loading BL has been shown to be the most impactful parameter for particle break-
age in the literature [29,47,48]. An increase in BL increases the number concentration of the
beads and the value of the radial distribution function at contact, decreases the inter-bead
distance, and dramatically increases the number of bead–bead collisions, which ultimately
increases the frequency of drug particle compressions and the apparent breakage rate con-
stant [20,29]. The studies described in Section 4.2.1, Section 4.2.2 (Figure S1), Section 4.2.3
(Figure S2) and Section 4.2.4 are summarized in Table 4 with the bead loading range ex-
plored in each study, the fitted exponent for bead loading with Model B (Equation (5)), and
the relative milling rate due to bead loading (BLN2), which accounts for the differences
in the milling rate resulting from the different bead loading levels. Since there were only
two levels of bead loading in the DP3 dataset, 85% and 99.8%, and a different exponent
was observed between the two of only 1.29, the relative milling rate at 99.8% was calculated
as a ratio to the rate at 85% using the following equation: 85%2.89 99.8%1.29

85%1.29 , where 1.29 is the
exponent obtained in the DP3 study, and 2.89 was obtained in the DP1 study which used
85% bead loading. Only parameter fits that were significant were included in this analysis.
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Table 4. Fitted exponent of BL (N2) averaged across x10, x50 and x90 quantiles in various case studies.

Study Bead Loading, BL Fitted Exponent, N2
Relative Milling Rate Due to

Bead Loading, BLN
2, Observed

DP3 99.80% 1.29 0.769
DP1 DV2000 90% 2.89 0.737
DP1 DV2000 85% 2.89 0.625
DP1 DV2000 80% 2.89 0.525

NJIT Bead Size 79% 2.84 0.512
NJIT Bead Size 68% 2.84 0.334
NJIT Bead Size 56% 2.84 0.193
NJIT Bead Type 79% 3.24 0.466
NJIT Bead Type 56% 3.24 0.153

When the relative milling rate due to bead loading is plotted versus bead loading
(Figure 2), a nearly perfect cubic relationship is observed over all studies carried out using
56–90% bead loading. The DP1 and DP3 studies at DV300 scale added the complexity that
the bead loading was 99.8%, near the maximum packing limit in the mill, where some level
of inefficiency was observed. In addition, 90% bead loading and 99.8% bead loading did
not lead to markedly different observed milling rates.

Pharmaceutics 2024, 16, 394 14 of 36 
 

 

 
Figure 2. (a) Observed milling rates for 56–90% bead loading following a cubic relationship. (b) 
Observed and predicted milling rates for 56–99.8% bead loading following a more complex 
relationship (Equation (11)). 

If the process stays within 56–90% bead loading, then the simple cubic term on bead 
loading is appropriate (i.e., N2 = 3), but in excess of 90% bead loading, a more complex 
term instead of BLN2 is needed, as shown in Equation (11). 𝐵𝐿 =  11.23 + 30.0(𝐵𝐿 − 95.0%)  (11) 

where “BL” is the bead loading expressed as a percentage. Guner et al. [29] showed that 
the impact of bead loading becomes more significant when bead loading approaches the 
packing limit since beads become much closer to each other, as shown by the radial 
distribution function. However, bead loading beyond 95% was not explored in that study, 
and the mills used in this study seem to have an efficiency loss when bead loading was 
higher than 95.0%, as implied by Equation (11). Hence, the right-hand side of Equation 
(11) was substituted in place of BL3 in Equation (6) for studies where BL exceeded 90%. 

4.1.3. Impact of Bead Material 
Density is an important property of the bead materials as it directly affects the energy 

input to the process, and therefore collision frequency and stress [29,48]. A detailed 
microhydrodynamic analysis suggests that because these have higher density, Yttrium-
stabilized zirconia (YSZ) beads induce more frequent and forceful collisions than 
crosslinked polystyrene (CPS) beads, which favors drug particle breakage as signified by 
the higher apparent breakage rate constant when using YSZ beads [29,48]. Bead density 
in our model was considered a ratio to the density of the YSZ beads (6000 kg/m3), as it is 
the most preferred bead material [25]. Normalized bead density was raised to the 1.4 

power, 
.

, as per results from a study completed at NJIT comparing milling rates 
of crosslinked polystyrene (CPS) beads to YSZ beads [29,48,49]. CPS beads in this study 
were noted to have a density of 1040 kg/m3. This study is discussed in more detail in 
Section 4.2.2. The power of 1.4 was obtained by averaging the N3 fits to x50 and x90 size 
classes with Model B (Equation (5)), as the x10 fit was insignificant due to noise. The 
Young’s modulus YMb and the Poisson’s ratio PRb of the beads are 200 GPa and 0.20 for 
the YSZ beads [62] and 1.5 GPa and 0.33 for the CPS beads [63]. 

  

Figure 2. (a) Observed milling rates for 56–90% bead loading following a cubic relationship. (b) Ob-
served and predicted milling rates for 56–99.8% bead loading following a more complex relationship
(Equation (11)).

If the process stays within 56–90% bead loading, then the simple cubic term on bead
loading is appropriate (i.e., N2 = 3), but in excess of 90% bead loading, a more complex
term instead of BLN2 is needed, as shown in Equation (11).

BLN2 =
1

1.23 + 30.0(BL − 95.0%)2 (11)

where “BL” is the bead loading expressed as a percentage. Guner et al. [29] showed
that the impact of bead loading becomes more significant when bead loading approaches
the packing limit since beads become much closer to each other, as shown by the radial
distribution function. However, bead loading beyond 95% was not explored in that study,
and the mills used in this study seem to have an efficiency loss when bead loading was
higher than 95.0%, as implied by Equation (11). Hence, the right-hand side of Equation (11)
was substituted in place of BL3 in Equation (6) for studies where BL exceeded 90%.
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4.1.3. Impact of Bead Material

Density is an important property of the bead materials as it directly affects the energy
input to the process, and therefore collision frequency and stress [29,48]. A detailed microhy-
drodynamic analysis suggests that because these have higher density, Yttrium-stabilized zir-
conia (YSZ) beads induce more frequent and forceful collisions than crosslinked polystyrene
(CPS) beads, which favors drug particle breakage as signified by the higher apparent break-
age rate constant when using YSZ beads [29,48]. Bead density in our model was considered
a ratio to the density of the YSZ beads (6000 kg/m3), as it is the most preferred bead ma-

terial [25]. Normalized bead density was raised to the 1.4 power,
(

ρb
ρYSZ

)1.4
, as per results

from a study completed at NJIT comparing milling rates of crosslinked polystyrene (CPS)
beads to YSZ beads [29,48,49]. CPS beads in this study were noted to have a density of
1040 kg/m3. This study is discussed in more detail in Section 4.2.2. The power of 1.4 was
obtained by averaging the N3 fits to x50 and x90 size classes with Model B (Equation (5)),
as the x10 fit was insignificant due to noise. The Young’s modulus YMb and the Poisson’s
ratio PRb of the beads are 200 GPa and 0.20 for the YSZ beads [62] and 1.5 GPa and 0.33 for
the CPS beads [63].

4.1.4. Impact of Bead Size

Bead size can be an important process parameter as it may provide combined advan-
tages of faster breakage [21,50,64], lower heat generation rate [65–67], and lower media
wear [21,64]. However, its impact on the breakage rate may be more subtle because it
has counteracting microhydrodynamic trends where smaller beads capture drug particles
more frequently but apply less stress upon contact [20,60]. Therefore, the exponent for
the bead size term was small, at only 0.3 in our model. The normalized bead size with
the reference 0.33 mm bead size, corresponding to a nominal size of 300 µm, affects the

apparent breakage rate constant kj through
(

Db
0.33

)0.3
. The impact of bead size was rather

weak compared to other parameters; so, a carefully designed DoE and data with minimal
noise are required to detect this relationship with a significant model fit. Among the studies
in this paper, only an NJIT study in Section 4.2.3 and a DP3 study in Section 4.2.4 varied the
bead sizes. However, since the DP3 data did not have enough degrees of freedom, and the
NJIT study had noise in the x10 and x90 data, only the x50 fit with Model B (Equation (5))
provided an accurate prediction for the bead size exponent. Even though a 0.3 fit was
obtained by only one quantile particle size of one drug, the fixed 0.3 exponent worked well
for both drugs and all quantiles.

4.1.5. Impact of Temperature

Temperature during milling varies over time and is influenced by the process parame-
ters [65–67], which may have an impact on the particle size evolution. To investigate this
hypothesis, we proposed an Arrhenius function for the jth size quantile that accounts for
the temperature dependency, i.e., Ktj (see Section 3.2.2). K2j is a fitted Arrhenius parameter
that accounts for the temperature effect for the jth quantile. At the reference temperature
of 15 ◦C, Ktj will normalize to a value of one. This prevents uncertainties in the estimate
of K2j from affecting the error estimate of Aj. The Arrhenius parameter K2j is analogous
to an activation energy divided by the universal gas constant R and is likely affected by
several competing temperature-dependent processes that are all exponential with respect
to temperature, including changes in viscosity, Young’s modulus, and possibly particle
growth mechanisms like Ostwald ripening, where higher temperatures and temperature
swings can dissolve the finer particles and recrystallize the material on the larger particles.
In general, milling should speed up with a reduction in formulation viscosity that would
tend to occur with increasing temperature; however, this is often balanced or overshad-
owed by the faster aggregation–Ostwald ripening rates at higher temperatures [68], or
slower breakage rates associated with changes in Young’s modulus [69]. Temperature does
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vary somewhat within each run. For this reason, the time-averaged temperature at the ith

timepoint (Tavgi) was used with Model B and Model C fits (Equation (12)).

Tavgi =

[
Tavgi−1 ∗ ti−1 +

(
Tin + Tout

2

)
∗ (ti − ti−1)

]
/ti (12)

where ti is time at the ith time point, and Tin and Tout are the inlet and outlet temperatures
to the mill. This equation was used to calculate the time-averaged value up to each point
in time for model calculation. In general, GSK sees a trend that milling rates speed up at
cooler temperatures [70]; so, negative values of K2j are estimated during model fitting. It is
possible that systems with higher viscosity may exhibit a dominant temperature-dependent
viscosity effect, and milling becomes faster at increased temperatures, with resulting fits
for K2j being positive. Future studies examining more formulation effects than those
considered in this paper might require breaking Ktj up into separate viscosity, Young’s
Modulus, and particle growth effects. If the formulation does not change, then Ktj alone
appears to be a sufficient descriptor for the temperature effect. We demonstrated successful
K2j estimations for DP1 and DP5, as shown in Section 4.2.1 and Figure S15, respectively.

4.2. Case Studies in Support of Model C Development
4.2.1. Impact of Rotor Speed, Bead Loading, Temperature at DV2000 Scale (DP1)

The first version of Model B was developed at GSK in support of Drug Product 1
(DP1). After the development of the final version of Model B (Equation (5)), we first fitted it
to a dataset coming from a Design of Experiments (DoE) exploring the impacts of tip speed
and bead loading, as well as supplemental runs where batch size was changed from 4 kg to
2 kg API mass. This eight-run set of experiments was completed using the DV2000 wet
bead mill where the tip speed was varied from 5 to 6 m/s, and bead loading was varied
from 80% to 90%. The average temperature among runs also varied from 11.8 to 19.6 ◦C.
Pumping rate Q was set based on Vm at one mill volume per minute flowrate. The product
team sampled several of the batches with a relatively large sample size, taking 18% of the
batch mass in a sample point an hour before completion of milling. For this reason, the
time-averaged batch mass (Average_Massi) was used with Model B and Model C fits for this
drug product (Equation (13)), similar to what we did with the time-averaged temperature.

Average_Massi = [ Average_Massi−1 ∗ ti−1 + (Massi) ∗ (t i − ti−1)]/ti (13)

We have seen in this dataset that an increase in tip speed (or rotation speed for a given
mill) and bead loading both led to higher Tavg. This finding is in line with earlier heat
transfer–generation studies [65–67], which demonstrated that a higher power consumption
was observed at the higher rotation speed, and that higher bead loading was the origin of
higher heat generation and ensuing temperature rise.

YTZ beads of 300 µm nominal size were used throughout the experiments; thus,
exponents of the bead density and bead size terms were not explored in this case study.
Since only one mill scale had been used here, the mill-scale efficiency factor (E) was not
explored either. The exponents of the parameters that were not explored in this case study
were set to those from Model C, which was developed based on a combination of case
studies as summarized in Section 4.1. Model B, as shown in Equation (5) with N3 = 1.4
and N4 = 0.3 and N5 = N1, was fitted to the reciprocal particle size quantiles to find the
ω and BL exponents, N1 and N2. Milling was not carried out for long enough to find an
xj,inf fit for the x90 population; so, this was estimated as 0.219 µm using Equation (8) for
the DV2000 dataset. The resulting model parameter fits and model goodness-of-fit (R2

values) as calculated by JMP version 17 using analytic Gauss Newton nonlinear solver for
the prediction of 1/x10, 1/x50, and 1/x90 for the DV2000 dataset are shown in Figure 3. In
the JMP figures, the dots are for the experimental data, the lines are for the model fit and
shades are for the error of the fit.
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The deviations in the parity plots (Figure 3) appear random, which indicates that
the γAPIVm

mAPI
term could capture the impact of the change in API mass well. The fits for

the exponent N1 for the prediction of 1/x10, 1/x50, and 1/x90 consistently showed values
in the range of 1.6 to 1.9. The bead loading BL was noted to have an exponent N2 in
the 2.6–3.2 range. The N1 and N2 fits slightly varied among different case studies, as
discussed in Section 4.1, since those exponent fits were influenced by measurement and
sampling errors, and the fitted numbers in this case study have averages of approximately
N1 = 2 and N2 = 3 as in Model C. Most interestingly, the negative K2j values suggest that
milling proceeded significantly faster at lower temperatures, and this effect was more
pronounced for the coarser sizes (x90 vs. x50), with no temperature impact for x10. This drug
product is known to exhibit Ostwald ripening, which proceeds more quickly at warmer
temperatures [68]. This mechanism may explain why x90 is more strongly impacted by
temperature than x10 and x50. The overall goodness-of-fit was 96.9%, 97.9%, and 96.3% for
the 1/x10, 1/x50, and 1/x90, respectively.

This drug product was scaled up from non-DoE experiments at DV300 scale, to DoE
experiments at DV2000, and to multiple runs at DV4000 scale where batch size varied
between 10 kg and 30 kg of API, and tip speed varied from 5.5 to 6.5 m/s. Flow rates
through the mill were also changed from 2 L/min to 4 L/min at each batch size change. This
resulted in 26 runs across three scales. Since the DV300 data included batches with 99.8%
bead loading, the more complex version of the bead loading term shown in Equation (11)
was used instead of BL3. In some of the DV4000 experiments, the suspension was diluted,
causing a change in the drug loading. In this case, we used time-averaged drug loading
(γAPI,avgi) in Equation (14), where γAPIi is the current API loading in the system, similar to
what we did with the time-averaged temperature.

γAPI,avgi =
[

γAPI,avgi−1 ∗ ti−1 + (γAPIi) ∗ (t i − ti−1

)]
/ti (14)



Pharmaceutics 2024, 16, 394 17 of 35

Model B (Equation (5)) was used to model this set of experiments, with N3 = 1.4,
N4 = 0.3 and N5 = N1 and fitted mill efficiencies. The “match” function in JMP was used to
assign parameters to each mill scale, and the E2000 and E4000 terms were estimates of the
mill-scale efficiency factor E at the DV2000 and DV4000 mill scales. Here, the DV300 was
assigned an efficiency value of 0.83, which is the efficiency estimate of DV300 as described
in Section 4.3, and the E2000 and E4000 parameters then describe the relative efficiencies
for the DV2000 and DV4000 mL mills as compared to the DV300. The resulting parameter
fits for the 1/x10, 1/x50, 1/x90 models and parity plots at each scale are shown in Figure 4.
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DV4000 (green)—for 1/x10, 1/x50, 1/x90 from Model B (Equation (5)) with bead loading term as in
Equation (11), instead of BLN2, N3 = 1.4, N4 = 0.3, and N5 = N1.

We found that the model fit well across every scale considered in the DP1 study with
R2 values ranging from 0.95 to 0.98. Mill-scale efficiency factors did vary by the particle
size quantile considered with each mill scale. DV2000 and DV4000 mills were found to be
less efficient since their tip diameters are larger than the small-scale mills. When scaling
across mills, we also found that the exponent of ω (N1) may need to be fixed at a value of 2,
as ω changed with scale, and some covariance can occur between the mill-scale efficiency
factor estimate and N1. For this reason, the N1 was fixed at 2 and the mill-scale efficiency
factors were re-estimated as shown in Figure S3 of the Supplementary Materials. This way,
we obtained a better estimate of the mill-scale efficiency factors so that we could use them
in Model C and Equation (11) with higher confidence.

4.2.2. Impact of Bead Loading, Bead Material, Rotor Speed (NJIT Study)

This dataset followed a two-level full-factorial design of experiments (DoE) with
stirrer speed (3000, 4000 rpm), bead loading (56%, 79%), and bead material (YSZ, CPS)
variations. The formulation of 10% FNB, 7.5% HPC-L, and 0.05% SDS was milled with
Microcer 80 mL in all runs. The details of the solid-state characterization of the milled
suspension, the particle size evolution in each run, and the stability of the formulation
can be found in Refs. [29,48,49]. YSZ beads have been the most preferred beads in the
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wet stirred media milling literature, followed by CPS beads. While YSZ beads provide
more stressful and frequent collisions due to their higher density (ρYSZ = 6000 kg/m3 vs.
ρCPS = 1040 kg/m3), CPS beads can capture more drug particles in-between as they are
softer and form a larger contact circle than YSZ beads (YMb for zirconia = 200 GPa [62] vs.
YMb for polystyrene = 1.5 GPa [63]). Even though both bead materials have the potential
for providing fast breakage kinetics through different mechanisms, the collision stress
and frequency outweigh the contact circle diameter, and zirconia beads provide faster
breakage overall [29,48]. On the other hand, according to their lower collision stress, CPS
beads can provide a gentler particle breakage, which, in turn, may reduce the amorphous
transformation rates for sensitive materials [71] and contamination from media wear.
In addition, they provided better control over temperature increase during milling [49],
making CPS a competitive alternative to YSZ. In order to address the differences in milling
rates via different bead materials, since zirconia is the most used material and density is
the most important feature of the materials in terms of particle breakage rate, the relative
bead density term ρb/ρYSZ was used in the model. Model B (Equation (5)) with N4 = 0.3
and N5 = 2 was fitted to the experimental reciprocal particle size data.

Figure S1 shows the fitted parameters and fitting statistics, where x50 and x90 fits were
statistically significant, and the exponents of ω and BL (N1 and N2) for x50 were found to
be 2.13 and 3.37, respectively, which compares well to all the exponents from other studies,
which led to the use of 2 and 3 in Model C. The scatter in 1/x10 resulted in an insignificant
model. Therefore, only the 1/x50 and 1/x90 fits were kept as the bases for N1, N2, and N3
exploration in Figure 5.
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For model consistency across different case studies, N1 and N2 were fixed at 2 and
3, and the model was recalibrated for x50 and x90 as shown in Figure 5, yielding N3 of
1.46 and 1.40, respectively. Therefore, an average value of N3 = 1.4 with two significant
figures was used in Model C (Equation (6)) as the power for the bead density (ρb/ρYSZ)
term. The final equation using these fixed parameters for N1, N2, and N3 was fitted to x10
data, and the model became significant despite the noise in the data, as can be seen in the



Pharmaceutics 2024, 16, 394 19 of 35

left side of Figure 5. The bead density term ρb/ρYSZ = 1 when YSZ beads are used, and
ρb/ρYSZ = 0.17 when CPS beads are used. Hence, with N3 = 1.4, the model would predict a
slower decrease in particle size during milling for polystyrene beads compared to zirconia
beads under otherwise identical conditions, which is in agreement with other findings in
the literature [72].

4.2.3. Impact of Bead Size, Bead Loading, and Rotor Speed (NJIT Study)

This experimental study was designed to have three different rotor speeds ω (3000,
3500, and 4000 rpm), three different bead loadings BL (56%, 68%, and 79%) and two different
YSZ bead sizes Db (0.2 and 0.4 mm) with a total of 10 runs. Milling was carried out for 3 h
using the same mill (Microcer 80 mL located at NJIT) and the same drug formulation (10%
GF, 7.5% HPC-L, and 0.05% SDS). Model B (Equation (5)) with N3 = 1.4 and N5 = 2 was
used to fit the reciprocal particle sizes, allowing for the estimation of N1, N2 and N4. The
impact of process parameters was assessed by fitting 1/xj data; however, since the scatter
in 1/x10 and 1/x90 data was usually higher compared to 1/x50 data, the significance of the
model fits was not as strong (see Figure S2 and Figure 6), similar to 1/x10 in Section 4.2.2.
This could be attributed to the low level of aggregation affecting the tails of the PSD at
the very high HPC-L loading. This high concentration of HPC-L was selected to increase
power consumption P so that accurate P values can be used in the microhydrodynamic
model in a previous study [49]. The 1/x10 model fails to have a significant rate term (A),
whereas the 1/x90 model fails to have a significant bead size exponent term (N4), as can
be seen in Figure S2 in the Supplementary Materials. Therefore, we focused on the 1/x50
model for the investigation of w, BL, and Db impacts. The positive exponents indicate that
the milling rate increased at higher ω and BL with the use of smaller beads. The exponents
of ω and BL were observed to be 1.99 and 2.84, respectively, which were again very close to
the exponents obtained in other studies; so, this informed the use of exponents of 2 and 3
in Model C. As can be seen in Figure 6, when the N1 and N2 values were set to 2 and 3 for

x50, N4 was found to be 0.3, which is the justification of the
(

Dbead
0.33 mm

)0.3
term in the Model

C. The relative impact of process parameters, i.e., BL > ω > DB, on the milling rate agreed
with previous studies [20,60].

Although the parameter ranges used in this dataset and those in Section 4.2.2 were the
same, the drugs were different; regardless, the impact of stirrer speed ω and bead loading
BL on the milling rate was found to be consistent.

4.2.4. Impact of Rotor Speed, Bead Size, and Scale from DV150-DV300 (DP3 Study)

In this dataset, there were six experiments in total, five of which were performed using
the DV300, and one was performed using the DV150. While the DV150 experiment was
carried out with 85% bead loading, 0.3 mm nominal sized YSZ beads, and 5.5 m/s tip
speed, the DV300 experiments were performed with two different bead loadings, which
were higher compared to previous case studies (85% and 99.8%), and with two different
bead sizes (0.3, 0.65 mm), where all smaller bead studies were loaded at 99.8% and larger
beads were loaded at 85%. Since the experimental design was not well suited for capturing
the impact of both bead size and bead loading at the same time, we used the previously

developed
(

Dbead
0.33mm

)0.3
term and fitted the bead loading exponent to understand the impact

of increasing bead loading in the high bead loading range close to packing. A version
of Equation (5), where N1 = 2, N3 = 1.4, N4 = 0.3 and N5 = N1, with the predicted xj,inf
values shown in Table 5, was fitted to 1/x10, 1/x50, and 1/x90 data, and the fit statistics
together with the parity plots are shown in Figure 7. The fitted N2 values were different
from previously observed values due to a possible efficiency loss at high bead loading close
to the packing limit. The average of the fitted N2 values was found to be 1.29, which was
used in the BLN2 analysis described in Section 4.2.1.
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4.3. Benefits of Model C: Underlying Trends in the Factors Governing Milling Other Than
Process Parameters

While fitting Model B would result in better fitting statistics since it has more degrees
of freedom, a consistent model fit to a group of studies, where different APIs, formulations,
and mills were used, would better elucidate whether there is any underlying behavior
governing the impact of drug, suspension, and mill properties, and process conditions on
apparent grinding limit, xj,inf, mill-scale efficiency factor, E, and milling rate, Aj. In this
section, Model C (Equation (6)) was fitted to multiple datasets so that the fitted parameters
on xj,inf, E, and Aj. could be compared across studies. Then, driving forces for the difference
in xj,inf, E, and Aj fits were explored considering drug, process, and mill properties.

4.3.1. The Apparent Grinding Limit

If the particle size does not approach the apparent grinding limit, xj,inf, within the
given milling time, the nonlinear fitting routine will yield a lack of parameter fit for xj,inf and
potentially lack of significance in the Nj and Aj fits, as these parameters are all somewhat
covariant. Equation (1) can always be used as the linearizing transform in these cases, but
it would be convenient to have a model to predict xj,inf in these cases, thus allowing for the
estimation of the entire sigmoidal curve. This then engables the use of the transform in
Equation (2). To estimate xj,inf, we sought a mathematical relation for the fitted xj,inf values
as a function of relevant process parameters and Young’s modulus of the APIs (YMAPI) and
arrived at Equation (8), which was previously discussed in Section 3.2.

To derive Equation (8), we first needed to obtain xj,inf by fitting Model C (Equation (6))
to datasets for four drug products where milling was run for long enough for the particle
size to approach the apparent grinding limit. We used data from multiple drug products to
derive our empirical xj,inf model to ensure that it can generalize across drug products. Since
the particle size approached xj,inf in all runs in the griseofulvin case study from Section 4.2.3,
Model C (Equation (6)) was fitted to experimental 1/x50 values for each individual run,
yielding fitted x50,inf values. For griseofulvin, since the x10 and x90 measurements were
noisy compared to x50 data, instead of having individual run fits, x10,inf and x90,inf were
found only by fitting Model C to the complete dataset. The other three drug products
where we could obtain a significant xj,inf fit to the data were DP1 in Section 4.2.1, fenofibrate
in Section 4.2.2 and DP3 in Section 4.2.4. The datasets are summarized in Table 5 with tip
speeds Utip, bead loadings BL, bead sizes Db, YMAPI, and fitted xj,inf values.

Table 5. Grinding limit x10,inf, x50,inf, and x90,inf fits.

Drug Tip Speed
(m/s)

Bead
Loading (%)

Bead Size
(mm)

Young’s
Modulus (GPa)

x10,inf
(µm)

x50,inf
(µm)

x90,inf
(µm)

Griseofulvin a 11 56 0.2 11.5 [73] N/A 0.160 N/A
Griseofulvin a 11 56 0.4 11.5 N/A 0.162 N/A
Griseofulvin a 11 79 0.2 11.5 N/A 0.136 N/A
Griseofulvin a 11 79 0.4 11.5 N/A 0.160 N/A
Griseofulvin a 14.7 56 0.2 11.5 N/A 0.159 N/A
Griseofulvin a 14.7 56 0.4 11.5 N/A 0.156 N/A
Griseofulvin a 14.7 79 0.2 11.5 N/A 0.124 N/A
Griseofulvin a 14.7 79 0.4 11.5 N/A 0.155 N/A
Griseofulvin b 12.8 67.5 0.3 11.5 0.121 0.158 0.209
Fenofibrate b 12.8 67.5 0.4 8.93 [74] 0.100 0.148 0.214

DP1 b 5.43 91.5 0.3 9.32 ± 1.2 0.068 0.138 N/A
DP3 b 5.38 89.8 0.47 4.74 ± 0.32 0.065 0.120 N/A

a Model C was fitted by individual run, b Model C was fitted to the complete dataset at once, and the average of
the process parameters was determined.

Following the Model C fits, we sought a power-law correlation between the fitted
x50,inf values and Utip, BL, Db, and YMAPI, but the Utip contribution was found to be
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insignificant. The resulting fitted power-law correlation for x50,inf is shown in Equation
(15), with the associated fitting statistics and parity plot in Figure 8.

x50,inf = C50BLb1Db2
b YMb3

API (15)
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The x10,inf and x90,inf values were highly correlated with x50,inf. Therefore, the models
for x10,inf and x90,inf were built by only fitting Cj, the coefficient of Equation (15), and fixing
the exponents b1, b2, and b3 to −0.25, 0.12 and 0.24, respectively. C10 was found to be 0.057
with R2 of 0.85, and C90 was found to be 0.125 with R2 of 1.0, since it was obtained with
only two data points. The resulting equation is captured as Equation (8) in Section 3.2.

Using Equation (8), we were able to predict the apparent grinding limit (xj,inf) for case
studies where milling time was relatively short, i.e., DP3, DP5, DP6 and DP4. When fitting
models, we estimated model parameters A, B, N and xinf using the complete dataset instead
of obtaining model parameters for each experiment. For the sake of consistency, when
estimating xinf with Equation (8), we took the average of BL and Db values if multiple bead
loadings and sizes were used in the dataset, in order to obtain a single xinf estimation that is
representative of the complete dataset. These grinding limit predictions thus enabled us to
use Model C (Equation (6)) with the transform in Equation (2) to perform further analysis.

A deeper examination of apparent grinding limits and Equation (8) shows that xj,inf
values for GF varied in a relatively narrow range as the process parameters were changed
(see Table 5), and the exponents in Equation (8) were rather small, signifying no impact
of Utip (or w) and a weak impact of BL and Db. This is unsurprising because the grinding
limit is mainly determined by material properties, not by the process parameters, provided
the milling time is sufficiently long. In fact, the true grinding limit of APIs is independent
of process parameters, depending solely on material properties such as YMAPI, hardness
H, and fracture toughness Kc, which collectively determine the brittleness of the APIs as
scored by the brittleness index BI = H/Kc, and the brittle–ductile transition size [57,58]. We
speculate that the relatively low exponent of YMAPI could be related to the fact that YMAPI
was used here as the sole descriptor of material properties due to a lack of data on other
API material properties such as H and Kc. Thus, to refine Equation (8), we would need to
study a broad range of material properties, which is outside the scope of this paper.

4.3.2. Mill-Scale efficiency Factor (E)

We found that most of the scaling between mills is reasonably well predicted by only
considering the batch size and mill volume available for beads. Just these two terms could
be used without any further consideration for mill-scale efficiency differences with average
errors of approximately 20% (but could be as high as 45%) when predicting the required
milling time to reach a specific particle size endpoint. In an effort to reduce this error when
scaling between mills, we introduced a mill-scale efficiency factor, E, to score the efficiency
of particular mills. The mill-scale efficiency factor is derived from parameter fitting and
scores mills relative to a reference mill, here DV150. Thus, the DV150 mill-scale efficiency
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factor is fixed to 100%, whereas the efficiency factor for other mills is determined as a
parameter fit that minimizes the sum of the squared errors between particle sizes from
model and data. We can determine mill efficiency scores for each particle size quantile and
drug product. We found that these efficiency scores are reasonably consistent across drug
products and particle size quantiles. Mill efficiency scores may also be affected by wear
and tear as the components in the mill become worn down over long time periods. We can
average mill efficiency for each mill over all drug products and particle size quantile, which
yields the overall mill-scale efficiency factor, E, for each mill. We used the E terms that were
obtained by averaging the individual efficiencies fitted to each drug product and size class.
Readers can follow the same procedure for their own mills, or they may use Equation (7) to
have a rough estimate of the efficiency of their mills. The mill-scale efficiency scores for
different mills and drug products are shown in Table 6. The parity plots for the efficiency
fits with Model C are shown for DP1, DP2, DP3, DP4, DP5 and DP6 in Figure S3, Figure S4,
Figure S5, Figure S6, Figure S7 and Figure S8, respectively.

Table 6. Summary of the fitted efficiencies.

Study Size
Class DP1 DP2 DP3 DP4 DP5 DP6 Average ± Std Mill-Scale Efficiency Factor, E

DV50
x10 N/A N/A N/A 0.85 0.68 0.50 0.68 ± 0.18

0.70x50 N/A N/A N/A 0.83 0.69 0.55 0.69 ± 0.14
x90 N/A N/A N/A 0.82 0.73 0.64 0.73 ± 0.09

DV150
x10 N/A 1 1 1 N/A 1 1

1.0x50 N/A 1 1 1 N/A 1 1
x90 N/A 1 1 1 N/A 1 1

DV300
x10 0.83 0.89 0.78 N/A 1.1 0.74 0.87 ± 0.14

0.83x50 0.83 0.79 0.68 N/A 1.2 0.82 0.86 ± 0.20
x90 0.83 0.75 0.30 N/A 1.1 0.80 0.76 ± 0.29

DV2000
x10 0.24 N/A N/A N/A N/A N/A 0.23

0.24x50 0.23 N/A N/A N/A N/A N/A 0.23
x90 0.25 N/A N/A N/A N/A N/A 0.25

DV4000
x10 0.16 N/A N/A N/A N/A N/A 0.15

0.19x50 0.19 N/A N/A N/A N/A N/A 0.17
x90 0.28 N/A N/A N/A N/A N/A 0.25

We explored how mill properties might affect the differences in the mill efficiencies and
developed an empirical correlation (see Equation (7) in Section 3.2) describing mill-scale
efficiency factor as a function of tip diameter and the length to diameter ratio of the agitator
(blade) length to mill chamber diameter. The model fit and parity plots for Equation (7) are
shown in Figure 9. If readers are interested in using the Model C with a mill with different
dimensions, Equation (7) (Section 3.2.3) can be used to estimate the mill efficiency. Though
the parameters have highly significant estimates in this model, we caution readers that this
may be only applicable to Netzsch mills, which have many of the mill dimensions scaled
to correlate with the agitator diameter. Since there are many mill dimensions that scale
similarly to agitator diameter and length to diameter ratio in our study, it is not unexpected
to find those parameters and their interaction to be significant predictors of mill efficiencies
that could be explained with a multiple linear regression model such as the following.
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4.3.3. Milling Rate (Aj)

In this section, we used Model C, with the mill-scale efficiency factors reported in
Table 6, to fit Aj, Bj, Nj, K2j, and xj,inf for each case study. To generalize when to fit the xj,inf
term and when to predict it via Equation (8), the decision criteria were selected as fit if
endpoint x10, x50, x90 < 0.1, 0.15, 0.3 µm, respectively, and predict via Equation (8) otherwise.
The model fits and parity plots can be seen for FNB, GF, DP1, DP2, DP3, DP4, DP5 and
DP6 in Figure S9, Figure S10, Figure S11, Figure S12, Figure S13, Figure S14, Figure S15 and
Figure S16, respectively. Table 7 summarizes all the fitted model parameters, where the

unit of Aj is kg0.4

m2.4s1.8 , Bj and Nj are dimensionless, xinf,j is in µm, and K2j is in ◦K.

Table 7. Model C fitted parameters for all drug products.

Drug Name GF FNB DP1 a DP2 DP3 a DP4 DP5 DP6

A10 −0.006 0.594 0.289 0.176 0.017 0.091 0.064 0.090
B10 1.00 1.98 × 10−3 0.122 0.011 0.570 0.026 0.038 0.063
N10 −0.014 1.52 0.350 0.192 0.207 1.08 0.852 0.812

x10,inf 0.121 0.100 0.068 N/A 0.065 N/A N/A N/A
K210 N/A N/A N/A N/A N/A N/A −3236 N/A

A50 0.260 0.180 0.180 0.061 0.017 0.047 0.057 0.084
B50 0.183 0.025 0.120 0.447 0.416 0.006 0.144 0.159
N50 0.632 0.927 0.330 0.211 0.262 1.22 0.486 0.450

x50,inf 0.158 0.148 0.138 N/A 0.119 N/A N/A N/A
K250 N/A N/A −1412 N/A N/A N/A −2160 N/A

A90 0.099 0.094 5.93 × 10−2 0.039 8.82 × 10−3 0.025 4.14 × 10−3 0.016
B90 0.340 0.140 1.63 × 10−3 0.350 0.344 0.001 0.001 0.004
N90 0.340 0.536 0.666 0.211 0.270 1.19 1.38 0.989

x90,inf 0.210 0.214 N/A N/A N/A N/A N/A N/A
K290 N/A N/A −5842 N/A N/A N/A −4175 N/A

a Equation (11) was used in the model.
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Similar to xj,inf, the parameters Aj, Bj, and Nj can be mathematically correlated with
drug material properties. We note that these parameters may also be impacted by formu-
lation properties, but since the formulation was kept constant in each case study, and the
measurements for suspension properties such as viscosity and density were not available
in most case studies, we did not investigate their relationship with the model parameters
in the scope of this paper. For such correlations to be accurate, the suspension must be
stable in terms of particle size growth and crystallinity. In addition, having fixed exponents
in Model C helps in identifying what factors impact the model parameters other than
process parameters in a dataset that consists of multiple drug products. As a first attempt
to correlate milling characteristics of drugs with drug properties, in Section 4.3.1, we sought
correlations for Aj, which had a significant fit in all studies. The correlations of the milling
rate term Aj with YMAPI are shown in Figure 10. This correlation for Aj was stronger for
the coarser quantiles, as shown by the higher R2 values. Additional predictors such as the
viscosity of the suspension and other material properties like H and Kc could strengthen the
correlation. The relationships observed in Figure 10 suggest that wet bead milling processes
of materials with a YMAPI of less than approximately 4 GPa may be impractical for drug
product development due to the predicted low milling rates of the x50 and x90. The milling
rate Aj parameter trends toward zero below a YMAPI of 3 GPa. This tends to manifest as
a bi-modal population where a large size class influencing the x90 is time consuming to
eliminate. Generally, low YM materials will require lower milling temperatures, higher
bead loading, and larger tip speeds to achieve desired size specifications within reasonable
manufacturing times at large scales. While YM correlates with milling rate, H and Kc may
improve this correlation and similar correlations can be sought for B and N parameters in
the future.
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5. Typical Model Use and Validation

Thus far, model development has been described without the mention of the order
in which the data were gathered or how the model is typically used during product
development. Once Model C was built on the first three drug products (DP1-3), the model
started to be used for a priori prediction of scale-up from small scale batches. Typically,
Model C uses DV50 and/or DV150 data on small volume batches to estimate the A, B and
N terms, thus allowing for the prediction of processing times for large batches produced
on the DV300. At times, the model has been used to prospectively predict both results of
scale changes, as well as tip speed changes to reduce processing times such that a large
batch can be milled in a single shift. The model has been used prospectively to predict
scale-up for DP4-6. This provides an ongoing validation that the model can be used to
predict milling operations in advance after being trained on very limited data, often only
one or two batches at a small scale.

An illustrative example for Drug Product 6 (DP6) is shown in Figure 11. These plots
show experimental and predicted particle sizes versus milling time for a run at a DV300
scale. The predictions in Figure 11A are for the model in Figure S16, which was trained by
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all available experiments. The model was trained on DV50 and DV150 data to predict the
DV300 run. The predictions in Figure 11B are for the model trained via only DV50 data.
The predictions in Figure 11C are for the model trained via only DV150 data. Finally, the
predictions in Figure 11D are for the model trained via DV50 and DV150 data. For these
cases, the model prediction fidelity was subsequently verified based on experimental data
at the DV300 scale. In all cases, the predictions are very well aligned with the experimental
observations, confirming the prediction fidelity of the model.
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6. Conclusions

In this work, we developed a semi-mechanistic modeling framework with elements
from microhydrodynamic theory to predict particle size evolution in pharmaceutical wet
bead milling over a wide range of process conditions and scales. Models A, B, and C,
with different levels of complexity and practical utility, offer pharmaceutical engineers a
wide range of capabilities to simulate, scale-up, and understand their processes. Model A,
derived directly from microhydrodynamic theory, is the most general model and entails
significant effort to parameterize. The full potential of Model A should be tested in a
future study. Being simple and computationally convenient, Model B is expected to reduce
the amount of experimentation needed to develop, optimize, scale-up, scale-down, and
scale-out the wet bead milling process. We demonstrated the wide applicability of Model B
in multiple case studies across drug products and mill scales. Model C, though developed
by fitting to data for the specific drug products and mills described here, requires even
fewer experiments to parametrize and deploy to future milling batches. We demonstrated
the power of such a drug-product- and mill-agnostic model to provide insights into the
most important mechanisms that govern milling rates outside of process parameters.

In the future, Model B can be further refined by considering formulations in a wider
range of viscosity and flow regimes. The impact of residence time distribution may be
incorporated through circuit Pe correlations as a function of tip speed, axial mean velocity
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of the suspensions, and number of turnovers. Future research should also consider the
dependence of apparent and true grinding limit on the hardness and fracture toughness
of APIs in addition to Young’s modulus. Overall, this comprehensive theoretical and
experimental study has provided a semi-mechanistic modeling framework that can be
adopted and adapted in a fit-for-purpose manner by pharmaceutical engineers to simulate,
optimize, and scale wet bead milling processes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics16030394/s1, Figure S1. Parity plots and model fits
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Nomenclature

Symbols used

Aj
Slope term of the Yt function in Model B and C for each particle size quantile
j (10, 50, 90), kg0.4/(m2.4s1.8)

Aj*, Aj**
Intermediately derived slope terms of Yt function for each particle size quantile
j (10, 50, 90)
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a The average frequency of drug particle compressions, 1/min
API Active pharmaceutical ingredient
Bj Intercept term of the Yt function for each particle size quantile j (10, 50, 90)
BI Brittleness index, m−1/2

BL Bead loading, % v/v
c Fractional volumetric bead loading in the drug suspension–beads mixture
C Rate constant
CPS Crosslinked polystyrene
D Diameter, m
e Restitution coefficient
E Mill-scale efficiency correction factor
g0 Radial distribution function at contact
h Thickness of the powder bed, m
H Hardness, Pa
k Apparent breakage rate constant, 1/min
Kc Fracture toughness, Pa.m1/2

Kt Arrhenius equation for the temperature impact
m Mass, kg
MHD Microhydrodynamic model
Nj Shape factor of the Yt transform for each particle size quantile j (10, 50, 90)
N1 Exponent for the stirrer speed effect
N2 Exponent for the bead loading effect
N3 Exponent for the bead density effect
N4 Exponent for the bead size effect
N5 Exponent for the tip diameter effect
N6 Exponent for the suspension viscosity effect
N7 Exponent for the suspension density effect
Nt Number of turnovers
P Power, W
Pax Axial pressure, Pa
Prad Radial pressure, Pa
Pv Power density, W/m3

Pe Peclet number
PR Poisson ratio
PSD Particle size distribution
Q Volumetric flow rate or pumping rate of the suspension, m3/s
R Radius, m
Rdiss Effective drag coefficient
Re Reynolds number
S Specific breakage rate, 1/min
t Milling time, min
T Temperature, ◦C
Utip Tip speed, m/s
V Volume, mL
xj Particle size for each particle size quantile j (10, 50, 90), m
YM Young’s modulus, Pa
Yt Transform of the dependent variable Y
YSZ Yttrium-stabilized zirconia
Greek letters
ε Powder compact out-of-die porosity
εcoll Energy dissipation rate due to partially inelastic bead–bead collisions, W/m3

εht
Power spent on shear of milled suspension of the slurry at the same shear rate
but calculated (measured) when no beads were present in the flow, W/m3

εm
Nondimensional bead–bead gap thickness at which the lubrication force stops
increasing and becomes a constant, –

εvisc
Energy dissipation rate due to both the liquid–beads viscous friction and
lubrication, W/m3

ε powder compact out-of-die porosity
γ Mass concentration, g/mL
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λ Lumped parameters of the microhydrodynamic model
θ Granular temperature, m2/s2

µ Viscosity, Pa.s
ρ Density, kg/m3

σax Axial stress, Pa
σrad Radial stress, Pa
τ Mean residence time for the single pass, min
ω Rotational speed of the rotor, 1/min
Indices
10 10% passing size of the cumulative PSD
50 Median particle size of the cumulative PSD
90 90% passing size of the cumulative PSD
a agitator
batch Batch
b Bead
c Out-of-die compacts
inf Infinity
j Index for particle size quantile
lim Grinding limit
m Mill chamber
p Particle
ref Reference values used to make variables nondimensional
s Suspension

Appendix A. A Theoretical Basis for Linearizing Data Transformations

In Section 3.1, we have described the particle size data transformation employed
for data linearization. We derived Equations (1) and (2) from a purely breakage kinetics
perspective, providing a theoretical basis for the statistical transforms. The timewise
evolution of particle size quantile xj is described by the following empirical nth-order
breakage kinetics model (see, e.g., Guner et al. [48] for the change in the median size x50
without the grinding limit):

dxj/dt = −Sjx
nj
j with t = 0 xj(0) = xj,ini (A1)

where Sj is the specific breakage rate function and xj,ini is the initial particle size at
t = 0. Here, Sj is particle size xj dependent. In view of the linear xp dependence of a
in Equation (3), we assumed a functional form Sj = Cjxj and integrated Equation (A1)
after separation of variables. Here, Cj is a breakage rate constant. After some algebraic
manipulations, this resulted in the following:(

1
xj

)nj

= njCjt +

(
1

xj,ini

)nj

(A2)

This can be re-written in the form of Equation (1), recognizing that Nj = nj, kj = njCj,

and
(

1
xj,ini

)nj
= Bj. Let us now consider milling with a grinding limit xj,inf. After inserting

Sj = Cj(xj–xj,inf) for xj ≥ xj,inf and Sj = 0 for xj < xj,inf into the following kinetic model by
Guner et al. [48]:

dxj/dt = −Sj
(
xj − xj,inf

)nj with t = 0 xj(0) = xj,ini (A3)

and integrating the resultant differential equation following separation of variables, we
obtained the following expression after some algebraic manipulations:(

1/xj

1/xj,in f − 1/xj

)nj

= njCjxj,in f
nj t +

(
xj,lim

xj,ini − xj,lim

)nj

(A4)
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This can be re-written in the form of Equation (2), recognizing that Nj = nj,

kj = njCjxj,inf
nj and

( xj,lim
xj,ini−xj,lim

)nj
= Bj. Equation (1) is supported by two different

mechanistic modeling approaches. First, an analytical solution of the PBM for batch
milling, which is identical to that for continuous plug-flow milling, can be used to pre-
dict the variation in the mean particle size xm = C/t1/N, for sufficiently long milling
times [54,75]. Here, the constant C depends on the parameters of the specific breakage rate
function S and self-similar breakage distribution function, and N is the power-law expo-
nent of the size-dependent S. This relation can be rearranged to give a linear relation in t:
(1/xm)N = C−Nt. As the self-similar solution gives xj = kj

*xm, we find linear relations in

time for xj, i.e., (1/xj)N = kjt, where k j =
(

k∗j C
)N

, and arrive at the theoretical origin of
Equation (1) with Nj = N. In a completely different avenue of theoretical development,
based on a microhydrodynamic model along with the Charles’ energy–average particle
size relationship [76], Eskin et al. [59] described the evolution of particle size as a function
of time t, which can also be reduced to the form (1/xj)N = kjt for long milling times.

Appendix B. Microhydrodynamic Theory for Wet Bead Milling

In Section 3.2.1, we described the microhydrodynamics-based wet bead milling model.
We presented the key equations of the microhydrodynamic theory for wet bead milling;
all assumptions and derivation steps can be found in [29]. The power (or its density Pv)
inside a wet stirred mill is spent via three energy dissipation mechanisms as mathematically
expressed as follows:

Pv = εvisc + εcoll + εht (A5)

Here, εvisc is the energy dissipation rate due to both the liquid–beads viscous friction
and lubrication; εcoll is the energy dissipation rate due to partially inelastic bead–bead
collisions; and εht accounts for the power spent on shearing the slurry at the same shear
rate without the beads. Inserting the respective expressions for εvisc and εcoll, Equation (A5)
turns into the following:

Pv =
54µscθRdiss

D2
b

+
12

Db
√
π

(
1 − e2

)
g0c2ρbθ3/2 + εht (A6)

where θ is the granular temperature defined as one third of the bead–milled suspension
relative mean-square velocity, Rdiss is the effective drag coefficient, e is the restitution
coefficient for the bead–bead collisions, and g0 is the radial distribution function at contact.
In a more comprehensive microhydrodynamic model developed by Guner et al. [29], the
following Lun model [77] was used for g0:

g0 =
[
1 − (c/clim)1/3

]−1
(A7)

as it exhibited a better predictive capability of the microhydrodynamics and breakage
kinetics. In Equation (A7), clim is the packing limit and equal to 0.63 [78]. Wylie et al. [79]
give Rdiss as follows:

Rdiss = Rdiss0 + KDbρsθ0.5/µs (A8)

where K is a coefficient given by an empirical correlation of bead concentration c:

K =
(

0.096 + 0.142c0.212
)

/(1 − c)4.454 (A9)

Rdiss0 in Equation (A8) is the dissipation coefficient considering squeezing of the milled
suspension film between two approaching beads, and it is expressed as follows:

Rdiss0 = k1 − k2log εm (A10)



Pharmaceutics 2024, 16, 394 31 of 35

In Equation (A10), εm is the nondimensional bead–bead gap thickness at which the
lubrication force stops increasing and becomes a constant. Parameters k1 and k2 were
computed using the following:

k1 = 1 + 3
√

c/2 + (135/64)clog c + 11.26c
(

1 − 5.1c + 16.57c2 − 21.77c3
)

(A11)

k2 = cg0 (A12)

All parameters and variables in Equation (A6) are either known or experimentally
measured except for the granular temperature, which can be easily solved by any nonlinear
equation solver. Next, granular temperature can be used to calculate the average frequency
of drug particle compressions between the beads a, which is the multiplication of the
probability of single drug particle to be caught by the beads p and the average oscillation
frequency of a single bead ν.

a = pν = 23.28
c2
(

1 −
(

c
clim

)0.33
)−1

√
π(1 − c)

ρb

(
1 − PR2

b

)
YMb

0.4
xp

D2
b

θ
0.9

(A13)

To derive a rough scaling approximation for ω and Da dependence of θ when only ω

or Da is varied to affect Pv, keeping all process–formulation–design parameters fixed, we
neglected εht, defined z2 = θ, and rewrote Equation (A6) as a cubic equation of the form,
Pv − λ1z2 − (λ2+λ3)z3 = 0, where λ1, λ2, and λ3 correspond to the constant positive-valued
factors obtained from plugging Equation (A8) into Equation (A6). Instead of finding the
only real, positive-valued root analytically, for which a numerical solution is much more
convenient as mentioned above and as implemented in previous microhydrodynamic
studies [29,60], we performed an asymptotic analysis: First, λ1 << λ2 + λ3 was assumed,
which corresponds to turbulent flow with negligible viscosity effects (formulations with
low viscosity) and yields an approximate solution: θ ∼= Pv

2/3/(λ2 + λ3)2/3. The other
asymptotic solution pertains to viscous formulations for which the viscous effects tend to
dominate (laminar flow), i.e., λ1 >> λ2 + λ3. In this case, we found θ ∼= Pv/λ1. The exponent
of Pv is theoretically bound between 2/3 and 1. Note that these two asymptotic solutions
were not intended to replace either a numerical solution or a full analytical solution; rather,
in the absence of any other information, it allowed us to estimate the w and Da dependence
of θ under the limiting condition of turbulent flow (see Section 3.2).

Appendix C. Derivation of Model B from Model A

In Section 3.2.2, we described the development of a semi-mechanistic model for wet
bead milling. The connectivity between Equations (3) and (5) is explained here. The particle
size term in Equation (A13) has been wrapped in the slope term in Equation (4). As the
time dependence of xp was already modeled by the transformation Yt in Equations (1)
and (2), for the sake of convenience and preservation of dimensional homogeneity, we set
xp = xj(0) = xj,ini. A similar approach was also adopted to assess the impacts of various
process parameters and bead properties in earlier microhydrodynamic studies (e.g., [29,48]).
Plugging Equation (A13) into Equation (3) and lumping all constants into a new parameter
A∗∗

j = 0.02328xj,ini A∗
j /

√
π, we obtained Equation (4) of the main text (Model A). To

formulate a microhydrodynamically inspired semi-mechanistic model capable of scale-up,
we assumed that θ could be described empirically as a power-law model as follows:

θ

θref
=

(
ω

ωref

)y1
(

c
cref

)y2
(

ρb
ρb,ref

)y3
(

Db
Db,ref

)y4
(

Da

Da,ref

)y5
(

µs

µs,ref

)y6
(

ρs

ρs,ref

)y7

Kty8
j Ey9 (A14)

where ref stands for reference mill and bead conditions and Da is the agitator’s tip (blade)
diameter. Here, E is a mill scale factor that accounts for the energy transfer efficiency of any
mill with respect to a reference mill, which captures the impact of mill design differences at
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different scales; it is constant for a given mill and independent of the API formulation. The
DV150 mill was chosen as the reference mill since it was the most commonly used mill in the
investigated studies. Kt is a factor that accounts for temperature change from a reference
temperature (15 ◦C), which is an Arrhenius function with a K2j parameter to be fitted

exp
[
−K2j

(
1

273.15+(T °C)
− 1

288.15

)]
. Thus, the µs and ρs terms account for the impact of any

formulation change on the viscosity and density at the reference temperature, whereas Kt
accounts for all temperature-induced changes to the viscosity for a given formulation.

Before substituting Equation (A14) into Equation (4), we made some simplifying
assumptions by setting y7 = y8 = 10/9, which resulted in Ytj changing linearly with E
and Ktj. The reference bead density ρb,ref was set to that of Yttrium-stabilized zirco-

nia (YSZ) beads ρYSZ. We also defined Aj = C∗A∗∗
j θref

0.9ρYSZ
0.4/

(
DN5

a,refc
0.9y2
lim D2

b.ref

)
and

BL = c/clim. After substituting Equation (A14) into Equation (4) and performing some
algebraic manipulations, we arrived at Equation (5) of the main text (Model B) with ex-
ponents N1–N7, the pre-factor Aj, and the intercept Bj. For a given drug formulation, the
viscosity and suspension density terms are set to 1. If temperature effects are neglected or
for nearly isothermal operation, Ktj is set to 1. The one-to-one relationships between the ex-
ponents of the Ytj model in Equation (5) and the θ model in Equation (A14) were as follows:
N1 = 0.9y1, N3 = 0.9y3 + 0.4, N4 = 2 − 0.9y4, N5 = 0.9y5, N6 = 0.9y6, and N7 = 0.9y7. N2

was approximated by simplifying c2+0.9∗y2/
[
1 − (c/clim)0.33

]
as C∗(c/clim)N2 = C∗BLN2 ,

where C* is a fitting constant.

References
1. Hobson, J.J.; Al-khouja, A.; Curley, P.; Meyers, D.; Flexner, C.; Siccardi, M.; Owen, A.; Meyers, C.F.; Rannard, S.P. Semi-solid

prodrug nanoparticles for long-acting delivery of water-soluble antiretroviral drugs within combination HIV therapies. Nat.
Commun. 2019, 10, 1413. [CrossRef] [PubMed]

2. Peltonen, L.; Hirvonen, J. Drug nanocrystals–versatile option for formulation of poorly soluble materials. Int. J. Pharm. 2018, 537,
73–83. [CrossRef] [PubMed]

3. Li, M.; Azad, M.; Davé, R.; Bilgili, E. Nanomilling of drugs for bioavailability enhancement: A holistic formulation-process
perspective. Pharmaceutics 2016, 8, 17. [CrossRef]

4. Peltonen, L. Design space and QbD approach for production of drug nanocrystals by wet media milling techniques. Pharmaceutics
2018, 10, 104. [CrossRef]

5. Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating
poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev 2011, 63, 427–440. [CrossRef]
[PubMed]

6. Kesisoglou, F.; Panmai, S.; Wu, Y. Nanosizing—Oral formulation development and biopharmaceutical evaluation. Adv. Drug
Deliv. Rev 2007, 59, 631–644. [CrossRef]

7. Malamatari, M.; Taylor, K.M.; Malamataris, S.; Douroumis, D.; Kachrimanis, K. Pharmaceutical nanocrystals: Production by wet
milling and applications. Drug Discov. Today 2018, 23, 534–547. [CrossRef]

8. Pınar, S.G.; Canpınar, H.; Tan, Ç.; Çelebi, N. A new nanosuspension prepared with wet milling method for oral delivery of highly
variable drug Cyclosporine A: Development, optimization and in vivo evaluation. Eur. J. Pharm. Sci. 2022, 171, 106123. [CrossRef]

9. Lynnerup, J.T.; Eriksen, J.B.; Bauer-Brandl, A.; Holsæter, A.M.; Brandl, M. Insight into the mechanism behind oral bioavailability-
enhancement by nanosuspensions through combined dissolution/permeation studies. Eur. J. Pharm. Sci. 2023, 184, 106417.
[CrossRef]

10. Bauer, A.; Berben, P.; Chakravarthi, S.S.; Chattorraj, S.; Garg, A.; Gourdon, B.; Heimbach, T.; Huang, Y.; Morrison, C.; Mundhra, D.
Current State and Opportunities with Long-acting Injectables: Industry Perspectives from the Innovation and Quality Consortium
“Long-Acting Injectables” Working Group. Pharm. Res. 2023, 40, 1601–1631. [CrossRef]

11. Rudd, N.D.; Helmy, R.; Dormer, P.G.; Williamson, R.T.; Wuelfing, W.P.; Walsh, P.L.; Reibarkh, M.; Forrest, W.P. Probing in
Vitro Release Kinetics of Long-Acting Injectable Nanosuspensions via Flow-NMR Spectroscopy. Mol. Pharm. 2020, 17, 530–540.
[CrossRef]

12. Qin, M.; Ye, G.; Xin, J.; Li, M.; Sui, X.; Sun, Y.; Fu, Q.; He, Z. Comparison of in vivo behaviors of intramuscularly long-acting
celecoxib nanosuspensions with different particle sizes for the postoperative pain treatment. Int. J. Pharm. 2023, 636, 122793.
[CrossRef] [PubMed]

13. Ho, M.J.; Jeong, M.Y.; Jeong, H.T.; Kim, M.S.; Park, H.J.; Kim, D.Y.; Lee, H.C.; Song, W.H.; Kim, C.H.; Lee, C.H.; et al. Effect of
particle size on in vivo performances of long-acting injectable drug suspension. J. Control. Release 2022, 341, 533–547. [CrossRef]

14. Applying ICH Q8(R2), Q9, and Q10 Principles to Chemistry, Manufacturing, and Controls Review; Center for Drug Evaluation and
Research: Silver Spring, MA, USA, 2016.

https://doi.org/10.1038/s41467-019-09354-z
https://www.ncbi.nlm.nih.gov/pubmed/30926773
https://doi.org/10.1016/j.ijpharm.2017.12.005
https://www.ncbi.nlm.nih.gov/pubmed/29262301
https://doi.org/10.3390/pharmaceutics8020017
https://doi.org/10.3390/pharmaceutics10030104
https://doi.org/10.1016/j.addr.2010.12.007
https://www.ncbi.nlm.nih.gov/pubmed/21223990
https://doi.org/10.1016/j.addr.2007.05.003
https://doi.org/10.1016/j.drudis.2018.01.016
https://doi.org/10.1016/j.ejps.2022.106123
https://doi.org/10.1016/j.ejps.2023.106417
https://doi.org/10.1007/s11095-022-03391-y
https://doi.org/10.1021/acs.molpharmaceut.9b00958
https://doi.org/10.1016/j.ijpharm.2023.122793
https://www.ncbi.nlm.nih.gov/pubmed/36870401
https://doi.org/10.1016/j.jconrel.2021.12.011


Pharmaceutics 2024, 16, 394 33 of 35

15. Cerdeira, A.M.; Mazzotti, M.; Gander, B. Miconazole nanosuspensions: Influence of formulation variables on particle size
reduction and physical stability. Int. J. Pharm 2010, 396, 210–218. [CrossRef] [PubMed]

16. Bilgili, E.; Afolabi, A. A combined microhydrodynamics–polymer adsorption analysis for elucidation of the roles of stabilizers in
wet stirred media milling. Int. J. Pharm 2012, 439, 193–206. [CrossRef]

17. Verma, S.; Kumar, S.; Gokhale, R.; Burgess, D.J. Physical stability of nanosuspensions: Investigation of the role of stabilizers on
Ostwald ripening. Int. J. Pharm. 2011, 406, 145–152. [CrossRef]

18. Peltonen, L.; Hirvonen, J. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and
stabilization methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. [CrossRef]

19. Kawatra, S.K. Advances in Comminution; SME: Englewood, CO, USA, 2006.
20. Li, M.; Yaragudi, N.; Afolabi, A.; Dave, R.; Bilgili, E. Sub-100 nm drug particle suspensions prepared via wet milling with low

bead contamination through novel process intensification. Chem. Eng. Sci. 2015, 130, 207–220. [CrossRef]
21. Hennart, S.L.A.; Domingues, M.C.; Wildeboer, W.J.; van Hee, P.; Meesters, G.M.H. Study of the process of stirred ball milling of

poorly water soluble organic products using factorial design. Powder Technol. 2010, 198, 56–60. [CrossRef]
22. Kumar, S.; Burgess, D.J. Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions. Int. J.

Pharm. 2014, 466, 223–232. [CrossRef]
23. Sharma, P.; Denny, W.A.; Garg, S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int. J. Pharm.

2009, 380, 40–48. [CrossRef] [PubMed]
24. Toneva, P.; Peukert, W. Modelling of mills and milling circuits. Handb. Powder Technol. 2007, 12, 873–911.
25. Bilgili, E.; Guner, G. Mechanistic Modeling of Wet Stirred Media Milling for Production of Drug Nanosuspensions. AAPS

PharmSciTech 2020, 22, 2. [CrossRef] [PubMed]
26. Kwade, A. Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and

stress number. Powder Technol. 1999, 105, 382–388. [CrossRef]
27. Kwade, A.; Schwedes, J. Breaking characteristics of different materials and their effect on stress intensity and stress number in

stirred media mills. Powder Technol. 2002, 122, 109–121. [CrossRef]
28. Eskin, D.; Zhupanska, O.; Hamey, R.; Moudgil, B.; Scarlett, B. Microhydrodynamics of stirred media milling. Powder Technol. 2005,

156, 95–102. [CrossRef]
29. Guner, G.; Yilmaz, D.; Eskin, D.; Bilgili, E. Effects of bead packing limit concentration on microhydrodynamics-based prediction

of breakage kinetics in wet stirred media milling. Powder Technol. 2022, 403, 117433. [CrossRef]
30. Gers, R.; Anne-Archard, D.; Climent, E.; Legendre, D.; Frances, C. Two colliding grinding beads: Experimental flow fields and

particle capture efficiency. Chem. Eng. Technol. 2010, 33, 1438–1446. [CrossRef]
31. Winardi, S.; Widiyastuti, W.; Septiani, E.; Nurtono, T. Simulation of solid-liquid flows in a stirred bead mill based on computational

fluid dynamics (CFD). Mater. Res. Express 2018, 5, 054002. [CrossRef]
32. Jayasundara, C.T.; Yang, R.; Yu, A.; Rubenstein, J. Effects of disc rotation speed and media loading on particle flow and grinding

performance in a horizontal stirred mill. Int. J. Miner. Process. 2010, 96, 27–35. [CrossRef]
33. Gudin, D.; Turczyn, R.; Mio, H.; Kano, J.; Saito, F. Simulation of the movement of beads by the DEM with respect to the wet

grinding process. AIChE J. 2006, 52, 3421–3426. [CrossRef]
34. Vocciantea, M.; Trofab, M.; D’Avinob, G.; Reverberia, A.P. Nanoparticles synthesis in wet-operating stirred media: Preliminary

investigation with DEM simulations. Chem. Eng. 2019, 73, 31–36.
35. Siewert, C.; Moog, R.; Alex, R.; Kretzer, P.; Rothenhäusler, B. Process and scaling parameters for wet media milling in early phase

drug development: A knowledge based approach. Eur. J. Pharm. Sci. 2018, 115, 126–131. [CrossRef]
36. Shah, S.R.; Parikh, R.H.; Chavda, J.R.; Sheth, N.R. Glibenclamide nanocrystals for bioavailability enhancement: Formulation

design, process optimization, and pharmacodynamic evaluation. J. Pharm. Innov. 2014, 9, 227–237. [CrossRef]
37. Singare, D.S.; Marella, S.; Gowthamrajan, K.; Kulkarni, G.T.; Vooturi, R.; Rao, P.S. Optimization of formulation and process

variable of nanosuspension: An industrial perspective. Int. J. Pharm. 2010, 402, 213–220. [CrossRef]
38. Mahesh, K.V.; Singh, S.K.; Gulati, M. A comparative study of top-down and bottom-up approaches for the preparation of

nanosuspensions of glipizide. Powder Technol. 2014, 256, 436–449. [CrossRef]
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