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Abstract: Understanding the features of compounds that determine their high serotonergic activity
and selectivity for specific receptor subtypes represents a pivotal challenge in drug discovery, directly
impacting the ability to minimize adverse events while maximizing therapeutic efficacy. Up to now,
this process has been a puzzle and limited to a few serotonergic targets. One approach represented in
the literature focuses on receptor structure whereas in this study, we followed another strategy by
creating AI-based models capable of predicting serotonergic activity and selectivity based on ligands’
representation by molecular descriptors. Predictive models were developed using Automated
Machine Learning provided by Mljar and later analyzed through the SHAP importance analysis,
which allowed us to clarify the relationship between descriptors and the effect on activity and
what features determine selective affinity for serotonin receptors. Through the experiments, it was
possible to highlight the most important features of ligands based on highly efficient models. These
features are discussed in this manuscript. The models are available in the additional modules of the
SerotoninAI application called “Serotonergic activity” and “Selectivity”.

Keywords: serotonin receptors; molecular descriptors; Mordred; machine learning; statistical analysis;
selectivity and activity

1. Introduction

Serotonin receptors are an important group of biological targets belonging mainly
to G protein-coupled receptors (GPCRs). Among them, we can distinguish as many as
13 subtypes of receptors, namely 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F, 5-HT2A,
5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT5B, 5-HT6, and 5-HT7. The only instance of a
receptor outside this group is the 5-HT3 receptor, which belongs to the group of ionotropic
receptors. Serotonin receptors play a key role in various physiological functions as they
are widely distributed in the nervous system and peripheral tissues. These receptors are
currently extensively explored as targets in the drug discovery process (against migraine,
depression, and schizophrenia or in treatment of nausea) [1].

Among the processes focusing on the discovery of new therapeutic molecules, there
are two main streams: Structure-Based Drug Design and Ligand-Based Drug Design. The
first approach includes molecular docking and virtual screening. One can find most of
the structures of serotonin receptors on the UniProt platform [2]. The literature includes
publications focusing on describing the structural and functional differences between
serotonin receptors, including their localization in different brain areas [3–7]. There have
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been studies focusing on describing the relationship between descriptors and affinity or
activity values for specific receptors. Bukhari et al. discussed the effect of PyDescriptors and
PaDEL on the pKi values of ligands relative to serotonin 5-HT6 receptors. They developed
QSAR (quantitative structure–activity relationship) models based on a database of more
than 1200 molecules and applied molecular docking to visualize the potential effect of
selected descriptors on ligand–receptor interactions [8]. In turn, the paper by Petković
et al. presented datasets of 50 molecules with observed serotonin transporter (pIC50)
inhibitory effects. They created QSAR models using Monte Carlo optimization on local
graph invariants and descriptors based on SMILES notation, a genetic algorithm based on
two-dimensional PaDEL descriptors [9].

This was based on a review of information by A. Sandri [10] in which the author
conducted a thorough analysis of different approaches to drug discovery together with
the number of approved molecules. According to this information, focusing solely on
biological targets may have limited chances of success. However, it is worth noting that this
opinion does not exclude the usefulness of methods based on biological targets and affinity.
On the contrary, it may represent one of many insights into a comprehensive research
process. At the outset, it can be emphasized that these methods are an important part of
successful drug discovery in the future, albeit while taking into account other approaches
such as those based on observable phenotypic effects.

In this article, the analysis concentrates on differences between active/inactive com-
pounds in the serotonin system and serotonin receptors based on ligand characteristics,
represented by molecular descriptors. Moreover, we want to obtain models of serotoner-
gic activity and selective binding to a chosen serotonin receptor. To our best knowledge,
this type of concept has not yet been developed for serotonin receptors. These research
objectives were based on statistical methods and machine learning with an emphasis on
Automated Machine Learning with SHapley Additive exPlanations analysis (SHAP analy-
sis). The results obtained provide a basis for the search for molecule features important
for active and selective interaction with serotonin receptors. Perhaps these descriptors
would be analogous to Lipinski’s features indicating ‘druglikeness’ and, in our case, will be
features indicating serotonergic activity and selectivity for selected serotonin receptors [11].
This selectivity may have a positive effect by knowingly reducing the occurrence of adverse
effects. In the case of the serotonergic system, adverse events are varied; for example, 5-
HT2A receptor activation can lead to psychedelic effects whereas 5-HT3 receptor activation
can lead to nausea.

2. Materials and Methods
2.1. Databases

The databases were prepared in September 2023 based on two leading repositories
of compounds—ZINC and ChEMBL [12,13]. Data regarding 5-HT1A, 5-HT1B, 5-HT1D, 5-
HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5A, 5-HT6, and 5-HT7 receptors were acquired
for which the pKi values (negative logarithm from the inhibition constant) were known,
indicating the affinity of the molecule to the selected receptor. In the data cleaning process,
the first step was to remove duplicate molecules in the ZINC and ChEMBL databases
separately. Later, the two databases were merged and then checked for duplicates once
again. If the difference in pKi values for the same molecule between the ZINC and ChEMBL
databases was greater than 0.1, that ligand was removed from the database. When the
difference was less than or equal to 0.1, ZINC molecule was selected, according to methods
described in previously published article [14].

The next step involved merging these databases. At the same time, compounds that
were present in more than one serotonin receptor’s database were removed from them. As
a result, molecules that were unique to only one subtype of serotonin receptor remained in
the database. This step was performed to avoid overlapping activities when one ligand
could interact with several serotonin receptors, i.e., 5-HT1B, 5-HT1D, and 5-HT6 subtypes.
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The purpose of this model created was to achieve selectivity of molecules rather than to
detect all available serotonin receptor affinity possibilities.

Our analysis was based on two classification models. The first was designed to predict
highly active compounds for serotonergic receptors/system without selectivity to the
specific subtypes. The cutoff point for active/inactive compounds was set at pKi = 7,
approximately 100 nM, considered an effective concentration. For the second model, which
aimed to identify compounds with selective affinity to serotonin receptors, only a fraction
of molecules that proved to be active compounds (pKi ≥ 7) were used. In each case, we
randomly divided datasets into training and test sets (80:20) [15].

2.2. Molecular Descriptors

Mordred [16] descriptors were used for all calculations. The input vector is composed
of over 1600 two dimensional descriptors. Mordred provides a variety of molecular features,
covering aspects such as 2D structure, chemical properties, topological indices, and number
of atoms and bonds and characterizing physicochemical features such as polarizability or
molecule size, which enables a comprehensive molecular analysis from the perspective
of various parameters. We obtained molecular 2D descriptors with Mordred (version
1.2.0) using Python script according to authors’ guidelines from GitHub platform [17]. The
database was pre-processed, involving the imputation of missing values with the average
value of the relevant column and eliminating constant columns.

2.3. Metrics

For binary and multiclass (eleven classes) classification tasks, the main metrics used
were average accuracy, precision, recall, Matthews correlation coefficient (MCC), and F1
score (Equations (1)–(5)). Moreover, experiment results are presented in confusion matrices.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

Here, TP = true positive, TN = true negative, FP = false positive, and FN = false negative.

F1 =
2 × precision × recall

precision + recall
(5)

2.4. Binary Classification for Serotonergic Activity

The first part of the computational experiment was the development and analysis of
binary classification model. We assigned active compounds to class 1 (pKi value greater
than or equal to 7) and inactive compounds to class 0. For model creation, Mljar tool was
used in mode ‘classification’ [18]. The model was built according to 10-fold cross-validation
executed on 80% of the dataset (train set), and its performance was evaluated on the
remaining 20%.

2.5. Multiclass Classification for Compounds with Selective Affinity to Serotonin Receptors

Further research was based on multiclass classification model. For this purpose, we
used Mljar automated machine learning tool [18]. It does not have a direct multiclass
classification mode, so in our case, we created a regression model with additional if–then
rules to assign predicted values to appropriate classes. All transformations are presented
in Table 1.
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Table 1. Serotonin receptors, their corresponding numbers, and the associated range of predictions
indicative of each receptor type.

Receptor Number Range of Predicted Values

5-HT1A 1 ≤1.5

5-HT1B 2 1.5–2.5

5-HT1D 3 2.5–3.5

5-HT2A 4 3.5–4.5

5-HT2B 5 4.5–5.5

5-HT2C 6 5.5–6.5

5-HT3 7 6.5–7.5

5-HT4 8 7.5–8.5

5-HT5A 9 8.5–9.5

5-HT6 10 9.5–10.5

5-HT7 11 ≥10.5

Serotonin receptors were assigned the following numbers: 5-HT1A—1, 5-HT1B—2,
5-HT1D—3, 5-HT2A—4. 5-HT2B—5, 5-HT2C—6, 5-HT3—7, 5-HT4—8, 5-HT5A—9, 5-
HT6—10, and 5-HT7—11. The MLjar-generated model was developed using 10-fold
cross-validation method on 80% of the dataset and tested on the remaining 20%.

2.6. Seeking Differentiating Descriptors

For databases of 11 serotonin receptors’ active molecules, we conducted analysis
while creating multiclass classification models to find descriptors that differentiated these
receptors with a ligand-based attitude. Moreover, for the best Mljar multiclass model,
we conducted SHAP analysis. Furthermore, SHAP values give us information on the
influence of particular descriptors on selective activity for serotonin receptors. On the other
hand, we applied a classical statistical approach to this challenge by looking for statistically
significant differences in descriptors representing ligands characterized by selectivity to
particular serotonin receptors.

2.6.1. SHAP Analysis

SHAP (SHapley Additive exPlanations) is a method for explaining complex AI/ML
models based on the Shapley value concept introduced by Lloyd Shapley in 1952 [19].
Shapley, a Nobel laureate in Economic Sciences in 2012 for his contributions to game theory,
focused on fairly distributing rewards among collaborating players in a cooperative game.
The Shapley value, ensuring fairness by allocating the reward based on each player’s
marginal contribution, provides a unique solution for dividing rewards among team
members. In predictive modeling, SHAP analysis assesses the incremental contribution of
each input variable to the model’s predicted outcome [20]. This research employed SHAP
analysis in Python, utilizing a framework developed by J. Szlęk [21], augmented with a
wrapper for the Mljar package to investigate the overall influence of each variable on the
final prediction, considering both magnitude and direction.

2.6.2. Statistical Methods

We conducted a comprehensive analysis to identify significant differences among sero-
tonin receptors, using standard statistical tests based on entire databases. The statistical
analysis was carried out using Python programming language and libraries containing rel-
evant statistical tests: scipy (version 1.7.3) [22], statsmodels (version 0.13.5) [23], and scikit-
posthocs (version 0.7.0) [24]. The script created and used is available on the GitHub platform
(https://github.com/nczub/Statistical_analysis, accessed on 1 January 2024). Our inference
was based on the significance level of α = 0.05. The steps of statistical analysis are presented

https://github.com/nczub/Statistical_analysis
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in Figure 1. First, among all serotonin receptor groups, we analyzed the distribution of the
variables, using the Shapiro–Wilk test to evaluate the normality of the distribution.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 5 of 16 
 

 

statistical analysis was carried out using Python programming language and libraries con-
taining relevant statistical tests: scipy (version 1.7.3) [22], statsmodels (version 0.13.5) [23], 
and scikit-posthocs (version 0.7.0) [24]. The script created and used is available on the 
GitHub platform (https://github.com/nczub/Statistical_analysis, accessed on 1 January 
2024). Our inference was based on the significance level of α = 0.05. The steps of statistical 
analysis are presented in Figure 1. First, among all serotonin receptor groups, we analyzed 
the distribution of the variables, using the Shapiro–Wilk test to evaluate the normality of 
the distribution.  

 

Figure 1. Scheme of ligands’ statistical analysis of serotonin receptors. 

If we found normality of distribution for a given descriptor in each serotonin receptor 
group, we conducted an analysis of variance (ANOVA). Once we were informed of statis-
tically significant differences, we checked the type of variance using the Levene test to 
adjust the analysis to the appropriate post hoc test. For homogeneous variances, we used 
Tukey’s test, while for heterogeneous variances, we used Dunnett’s test to locate signifi-
cant differences between serotonin receptors on selected descriptors.  

In the absence of normality in the distribution of variables, we used the Kruskal–
Wallis test. Analogous to the ANOVA test, it helped us identify descriptors that differen-
tiated selected serotonin receptors based on ligands’ descriptors. Dunn’s test was used as 

Figure 1. Scheme of ligands’ statistical analysis of serotonin receptors.

If we found normality of distribution for a given descriptor in each serotonin receptor
group, we conducted an analysis of variance (ANOVA). Once we were informed of sta-
tistically significant differences, we checked the type of variance using the Levene test to
adjust the analysis to the appropriate post hoc test. For homogeneous variances, we used
Tukey’s test, while for heterogeneous variances, we used Dunnett’s test to locate significant
differences between serotonin receptors on selected descriptors.

In the absence of normality in the distribution of variables, we used the Kruskal–Wallis
test. Analogous to the ANOVA test, it helped us identify descriptors that differentiated
selected serotonin receptors based on ligands’ descriptors. Dunn’s test was used as a post hoc
test to further locate significant differences between serotonin receptors. Our analysis was a
comprehensive approach to understanding the subtle differences between serotonin receptors,
which may be crucial to understanding their functions and interactions with ligands.

3. Results
3.1. Databases

The preliminary serotonin receptor databases contained molecules that appeared more
than once. In the Venn diagrams below (Figure 2), we have shown the degree of molecular
overlap using examples for 5-HT1 and 5-HT2 subfamilies.
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Figure 2. Venn diagrams for the subfamily of 5-HT1 and 5-HT2 serotonin receptors were constructed
using the entire preliminary database.

In the dataset preparation process, we obtained 40,542 records. Based on these data,
we removed ligands that occurred more than once in the database. In the end, there were
18,967 unique records in the database. Next, based on adopted methods, data collection was
divided into active (11,885) and inactive (7082) compounds towards serotonin receptors, and
this was the basis for the binary classification model. In the multiclass classification problem,
we used only active ligands; the distribution of serotonin receptors ligands is presented
in Table 2. The dataset includes a variety of record counts for different receptor subtypes,
ranging from 76 for 5-HT1B to 5422 for 5-HT1A. To accurately represent the analyzed problem,
we chose not to balance the classes when developing our multiclass classification model.
This method ensured that the development of our model and the results it produced were
true reflections of the data’s real-world distribution and complexity. It also helped avoid
additional biases that could have affected the model’s analysis later on. The distribution of
classes was preserved when dividing the dataset into training and test sets.

Table 2. Numbers of ligands for serotonin receptors that were used to develop a multiclass model.

Receptor Quantity

5-HT1A 5422

5-HT1B 76

5-HT1D 145

5-HT2A 1238

5-HT2B 129

5-HT2C 215

5-HT3 236

5-HT4 632

5-HT5A 83

5-HT6 2850

5-HT7 859

3.2. Statistical Approach

During statistical analysis, 1306 descriptors were assessed against 11 groups of data
describing unique serotonin receptor ligands. Ten descriptors (NddC, NssNH2, NsssNH,
SddC, SssNH2, SsssNH, n12HRing, n12AHRing, n7FHRing, n7FAHRing) had a constant
value for all groups. None of the descriptors satisfied the assumption of normal distribution;
therefore, the Kruskal–Wallis test was employed to assess statistically significant differences.
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As a result, 1268 ligand features exhibited statistically significant differences. In order to
identify the specific pairs of serotonin receptors between which these differences occurred,
a Dunn’s test (post hoc) was performed. The results indicated that no single descriptor was
differentiated among all 11 serotonin receptor types. The highest number of significantly
different descriptors was observed between the 5-HT2A and 5-HT6 receptors (1136) while
the lowest number was found between the 5-HT2C and 5-HT5A receptors (583). In the
Supplementary Materials, the results of Dunn’s tests for all pairs of serotonin receptors
(Supplementary S1), as well as graphs of the distribution of the values of 31 selected
descriptors (Supplementary S2) that exhibited the most substantial differences between
serotonin receptors, can be found. Figure 3 illustrates the distribution of values for serotonin
receptors using the ATS2v descriptor as an example. Notably, no statistically significant
differences were found between the 5-HT1A–5-HT1D, 5-HT1B–5-HT2A, 5-HT2C–5-HT3, 5-
HT2C–5-HT5A, and 5-HT4–5-HT7 receptors. These results indicate that there are significant
differences between certain pairs of serotonin receptors. However, the statistical analysis of
ligand descriptors alone may not suffice for identifying the selectivity of a given molecule
towards serotonin receptors.
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3.3. Binary Classification Model

From over 1600 models, we have selected the best classification ensemble model based
on the F1 score value (5 × Xgboost, 6 × LightGBM, 2 × Neural Networks, 2 × CatBoost).
The results are shown in Table 3 and confusion matrices (Figure 4). Based on the results,
almost 100% and 85% of the training and test sets, respectively were assigned correctly.
The model incorrectly predicted only 86 molecules, representing 0.57% of the data. Most
of these (68 molecules) were active molecules predicted to be inactive. For the test set, for
the binary classification, 281 active molecules and 272 inactive molecules were incorrectly
assigned to the observed class, representing, in total, 15% of the test data.

Table 3. Results of binary classification for active and inactive compounds of serotonergic activity.

Dataset Accuracy Precision Recall F1 MCC

Training set 0.994 0.998 0.993 0.995 0.988

Test 0.854 0.885 0.882 0.883 0.689
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Figure 4. Confusion matrices for training (A) and test (B) sets of active/inactive model.

SHAP analysis outlined 37 of the most important descriptors that, in total, represented
50% of the influence on the model assignment of each molecule to the active or inactive
class. They are presented in Table 4 with short descriptions. The Supplementary Materials
include information on descriptor value ranges for the entire set for active and inactive
molecules (value ranges—Supplementary S3 and radial plots—Supplementary S4).

Table 4. The most important Mordred descriptors for serotonergic activity, based on Mljar-SHAP
approach [24].

No. Descriptor Description av|SHAP Value|

1 nBase basic group count 0.017

2 MATS1v Moran coefficient of lag 1 weighted by vdw volume
(van der Waals volume) 0.016

3 PEOE_VSA7 MOE Charge VSA Descriptor 7 0.016

4 SlogP_VSA1 MOE logP VSA Descriptor 1 0.014

5 AXp-7dv Seven-ordered averaged Chi path weighted by
valence electrons 0.014

6 PEOE_VSA9 MOE Charge VSA Descriptor 9 0.013

7 Xch-7dv Seven-ordered Chi chain weighted by valence
electrons 0.013

8 AATSC2dv averaged and centered Moreau–Broto autocorrelation
of lag 2 weighted by valence electrons 0.011

9 VSA_EState2 VSA EState Descriptor 2 0.011

10 ATSC6v centered Moreau–Broto autocorrelation of lag 6
weighted by vdw volume 0.011

11 SLogP Wildman–Crippen LogP 0.011

12 Kier2 kappa shape index 2 0.010

13 ATSC5d centered Moreau–Broto autocorrelation of lag 5
weighted by sigma electrons 0.009

14 PEOE_VSA1 MOE Charge VSA Descriptor 1 0.009

15 JGI2 Two-ordered mean topological charge 0.009

16 SpMAD_Dzare spectral mean absolute deviation from Barysz matrix
weighted by Allred-Rochow EN 0.009
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Table 4. Cont.

No. Descriptor Description av|SHAP Value|

17 SaasC sum of aasC 0.009

18 MATS1se Moran coefficient of lag 1 weighted by sanderson EN 0.009

19 IC3 Three-ordered neighborhood information content 0.008

20 SaaaC sum of aaaC 0.008

21 VSA_EState7 VSA EState Descriptor 7 0.008

22 ATSC7Z centered Moreau–Broto autocorrelation of lag 7
weighted by atomic number 0.008

23 ZMIC3 Three-ordered Z-modified information content 0.007

24 JGI9 Nine-ordered mean topological charge 0.007

25 nFRing fused ring count 0.007

26 Kier3 kappa shape index 3 0.007

27 SsssN sum of sssN (>N-) 0.007

28 GATS4i Geary coefficient of lag 4 weighted by ionization
potential 0.007

29 PEOE_VSA6 MOE Charge VSA Descriptor 6 0.006

30 MAXaasC max of aasC 0.006

31 GGI9 Nine-ordered raw topological charge 0.006

32 GATS6v Geary coefficient of lag 6 weighted by vdw volume 0.006

33 GATS3i Geary coefficient of lag 3 weighted by ionization
potential 0.005

34 TopoShapeIndex topological shape index 0.005

35 SssO sum of ssO (-O-) 0.005

36 PEOE_VSA10 MOE Charge VSA Descriptor 10 0.005

37 GATS3v Geary coefficient of lag 3 weighted by vdw volume 0.005

3.4. Multiclass Classification Models

In the Mljar model, over 96% and 74% of the training and test sets, respectively were
assigned correctly. Mispredictions for the training set mainly involved the 5-HT1A receptor,
predicted as 5-HT1B (109 cases), and the 5-HT7 receptor, predicted as 5-HT6 (112 cases).
These instances of misclassification of neighboring classes might have been attributed to
the cutoff values. A closer look revealed that for only seventeen compounds, the predicted
difference was not related to a neighboring class. Among them, the most common were
5-HT7 receptor ligands predicted as 5-HT5A receptors (eight cases) and 5-HT1A receptor
ligands predicted as 5-HT1D (five cases). For the test set, the model assigned 608 ligands to
the incorrect receptor subtype. Sixty percent (60%) of the cases were related to a neighboring
class, and similarly to the training set; these errors mainly affected the 5-HT1A (predicted
as 5-HT1B) and 5-HT7 (predicted as 5-HT6) receptors. Below, we present classification
metrics of the best model selected based on the F1 score (Table 5) and confusion matrices
(Figures 5 and 6) for these sets.

Table 5. Metrics for multiclass classification model.

Dataset Accuracy Precision Recall F1 MCC

Training set 0.966 0.976 0.966 0.969 0.953

Test 0.744 0.881 0.744 0.788 0.675
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SHAP analysis proved 13 of the most important descriptors for selectivity towards
serotonin receptors. They are SddssS, Xch-5d, AATSC2s, MDEC-33, ETA_dPsi_B, AATS6s,
SpMAD_DzZ, ATSC3c, NsssCH, SaasN, BalabanJ, NddssS, and Xch-5dv. Their descriptions
are provided in Table 6. Figure 7 presents the range of normalized (Min–Max) values for all
serotonin receptors. The overlapping areas of values show, similar to the results of statistical
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tests, that there was no single descriptor whose values determined selective activity against
the serotonin receptor. In the case of the Mljar model, it is important to notice that simple
differences between serotonin receptors in the manner of specific descriptors are not easily
perceived. This is due to the fact that the model is more complex. For details on the ranges
of selected descriptors and the radial graph for individual serotonin receptors, see the
Supplementary Materials (Supplementary S5 and Supplementary S6).
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Table 6. The most important Mordred descriptors for selectivity towards serotonergic receptors,
based on Mljar-SHAP approach.

No. Descriptor Description av|SHAP Value|

1 SddssS sum of ddssS (≥S≤) 0.731

2 Xch-5d five-ordered Chi chain weighted by sigma electrons 0.341

3 AATSC2s averaged and centered Moreau–Broto autocorrelation
of lag 2 weighted by intrinsic state 0.272

4 MDEC-33 molecular distance edge between tertiary C and
tertiary C 0.239

5 ETA_dPsi_B ETA delta psi (type: B) 0.165

6 AATS6s averaged Moreau–Broto autocorrelation of lag 6
weighted by intrinsic state 0.138

7 SpMAD_DzZ spectral mean absolute deviation from Barysz matrix
weighted by atomic number 0.132

8 ATSC3c centered Moreau–Broto autocorrelation of lag 3
weighted by Gasteiger charge 0.095

9 NsssCH number of sssCH (>CH-) 0.084

10 SaasN sum of aasN 0.083
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Table 6. Cont.

No. Descriptor Description av|SHAP Value|

11 BalabanJ Balaban’s J index 0.083

12 NddssS number of ddssS (≥S≤) 0.081

13 Xch-5dv five-ordered Chi chain weighted by valence electrons 0.077

4. Discussion

The findings presented in this article indicate that a single descriptor alone may
not clearly differentiate the presence or absence of serotonergic activity or demonstrate
selectivity towards serotonin receptors. Despite this observation, the statistical analysis
results reveal a possibility to highlight a group of descriptors to collectively establish rules
for determining activity and selectivity. These insights provide a basis for the further
exploration and understanding of the relationships within serotonergic receptors.

The binary classification model highlights the substantial importance of the features
associated with both the descriptor groups (ATSC, GATS, JGI, GGI, Kier, MATS, PEOE_VSA,
SlogP, VSA_Estate) as well as structure elements (aasC, aaaC, ssO, sssN, FRing, nBase).
Moreover, the selectivity model for the 11 serotonin receptors shows the following groups of
descriptors, including ATS, BlabanJ, Xch; those related to the number of structure elements
(ddssS, sssCH, aasN); and those associated with the distance between atoms (MDEC-33).

In both models, ATS Mordred descriptors are present. The AATSC features represent
the average-centered autocorrelation of the topological structure (Moreau–Broto autocorre-
lation descriptor), defined as AATSk = ATSk/∆k, where ∆k is the number of vertex pairs at
an order equal to k. The ATSC descriptors represent a way of measuring the similarity or
correlation between different atoms in a molecule based on their properties and distances.
This involves calculating the average-centered autocorrelation of the molecule’s topological
structure, where the topological structure refers to the arrangement of atoms and bonds
in the molecule. This method helps capture important information about the molecular
structure for further analysis in a simpler form [25]. Moreover, both models use descriptors
representing spectral mean absolute deviation from the Barysz matrix (SpMAD_Dzare,
SpMAD_DzZ). Another group of descriptors present in the models related to seroton-
ergic activity and selectivity comprises those related to Chi descriptors. In the case of
the binary model, these are AXp-7dv (valence-electron-weighted Chi path) and Xch-7dv
(seven-ordered valence-electron-weighted Chi chain), and in the selectivity model they
are Xc-5dv (five-ordered valence electron-weighted Chi chain) and Xch-5d (five-ordered
sigma-electron-weighted Chi chain) [26].

For the binary classification of serotonergic activity, more descriptors were detected.
The first group, GATS, stands for the Geary coefficient descriptor. Those features represent a
set of molecular descriptors that describe the spatial distribution of atom or bond properties
in a molecule. Specifically, GATS descriptors are a type of autocorrelation descriptor calcu-
lated based on the Geary autocorrelation function. Autocorrelation involves measuring the
similarity or correlation of a property between different atoms or bonds at varying distances
within a molecule. Secondly, both JGI and GGI are descriptors that fall under the category of
topological charge descriptors. These descriptors capture information about the electronic
distribution and charge-related properties of atoms within a molecule. Another group of
descriptors present in the binary model is Kier. It stands for ‘Kappa Shape Index’ and
measures the molecular shape based on specific atom paths. Furthermore, MATS (Moran
autocorrelation descriptor) is presented by this equation: MATSk = AATSCk/(1/A·∑w2

c),
where W is the atomic property vector. An important group of descriptors appearing only
in the binary classification model is PEOE-VSA (partial equalization of orbital electroneg-
ativity of van der Waals surface area). PEOE is a method of calculating partial atomic
charges in which a charge is transferred between bound atoms until equilibrium is reached.
To ensure convergence, the quantity of charge transferred in each iteration is suppressed by
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an exponentially decreasing scale factor. PEOE charges depend only on the connectivity
of the input structures: elements, formal charges, and bond orders. Also associated with
the van der Waals area are the VSA_EState2 and VSA_Estate7 descriptors found in the
binary model. These are MOE-type descriptors using EState and surface share indices. In
the serotonergic activity model, there are single descriptors discussing the neighborhoods
of the atoms (IC1—number of edges of the subgraph, ZMIC3—three-ordered Z-modified
information content) or the shape of the molecule TopoShapeIndex (topological shape
index). Specific types of atoms and surroundings are also distinguished—aasC, aaaC, ssO,
sssN—and shown in Figure 8. Moreover, SHAP analysis distinguished the number of base
groups (nBase) or the fused ring count (nFRing). In drug design, an important feature
of molecules is the logP value, which is one of Lipinski’s rules for the lipophilicity of a
molecule. For the binary model, there are two derivatives of the logP descriptor, namely the
SLogP value—the Wildman–Crippen LogP and SlogP_VSA1—and MOE-type descriptors
using the Wildman–Crippen LogP and surface contribution [25–27].
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In the selectivity model, the descriptors describing the structure are BalabanJ and
the Extended Topochemical Atom descriptor (ETA_dPsi_B). The first one is a graph index
used to describe the structural features of a graph. It takes into account the number of
nodes, edges, and connected components in the graph. The calculation involves the graph’s
distance matrix and the circuit rank, providing a numerical value that characterizes the
graph’s complexity [28]. The serotonin receptor prediction model focuses on individual
atom types in a specific environment (descriptors ddssS, sssCH, aasN—shown in Figure 8).
Additionally, it considers the edge of the molecular distance between two tertiary carbon
atoms, represented by MDEC-33 [25–27].

Simultaneously examining these two models reveals the essential role of descriptors
such as ATS, SpMAD, and Xch in predicting both serotonergic activity and selectivity.
A comparative analysis underscores that for selectivity, information pertaining to the
presence of sulfur in a specific arrangement within the molecular structure assumes greater
importance. In contrast, in the serotonergic activity model, these elements do not emerge
as descriptors responsible for 50% of the influence on predicting this feature. Descriptors
NddssS and SddssS characterize the number and sum of electron states. The sum of SHAP
values for those features constitutes almost 17% of the influence on selectivity towards
serotonin receptors. In Figure 9, we present a modification of these two descriptors,
which represents the remainder obtained by dividing the ‘NddssS’ variable by the ‘SddssS’
variable. This derivative differentiates over half of the serotonin receptors.

All the descriptors discussed above are the results of extensive modeling experiments
carried out in this work. However, they were chosen from the predefined set of descriptors
falling into the category of “2D” descriptors from the Mordred package [16]. Thus, our initial
choice to limit the descriptor search space to 2D descriptors only was based on our previous
experience with the numerical instability of 3D structure optimization methods resulting in
the variability of 3D descriptors. In this view, we deny the added value of the descriptors’
sophistication [29] and trade it for the robustness and stability of a whole system.
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Models of serotonergic activity, as well as the selectivity model, have become new
extensions of SerotoninAI, a new web application related to serotonergic QSAR models [30]
described in the article [31]. Applicability domain information was implemented in a
form unified with other SerotoninAI modules. The ‘Serotonergic activity’ and ‘Selectivity’
sections provide radial charts of the ten most important descriptors. If their values for a
tested compound are within the range for at least seven descriptors, the compound is in
the applicability domain and predictions have a high probability of success.

Considerations related to the sulfur atom in relation to the pIC50 value for the 5-HT6
receptor appear in a study by Bukhari S.N.A. et al. Based on the QSAR model created,
followed by a docking step to confirm the results obtained, among other things, a sulfur
atom was determined that should be taken into account when optimizing the molecule for
its effect on the 5-HT6 receptor [8].

In summary, this study demonstrated the importance of a comprehensive set of descrip-
tors for understanding both serotonergic activity and receptor selectivity. The significant
differences in the importance of the descriptors between the two models highlight the
complex nature of predicting these pharmacological features.
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mdpi.com/article/10.3390/pharmaceutics16030349/s1, Supplementary S1: Results of Dunn test—p
values for serotonin receptor pairs; Supplementary S2: Statistical approach summary—distribution of
values of 31 selected descriptors; Supplementary S3: Value range of the most important descriptors for
serotonergic activity model based on entire database; Supplementary S4: Values of molecular descriptors
for serotonergic active and inactive molecules; Supplementary S5: Value range of the most important
descriptors for selectivity model of serotonin receptors based on entire database; Supplementary S6:
Radial plots for 13 most important descriptors for selectivity model of all serotonin receptors.
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