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Abstract: Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and
inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may
resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different
drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery
of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review
aims to present an overview of their composition, the most common formulation techniques, as well
as of recent utilizations as delivery systems in cancer therapy.
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1. Introduction

Nanotechnology is one of the most promising technologies of the 21st century and
offers opportunities in all areas of scientific research, such as medicine, pharmaceutical
and cosmetic sciences, medical chemistry, bioengineering, genetic engineering, and food
technology [1,2]. Engineering, life sciences, and technology of designing, fabricating, and
applying systems at the nanoscale (range between 1 and 100 nm), known as nanotechnology,
are emerging topics worldwide in this multidisciplinary research field [3,4].

Currently, the aim is to integrate biotechnology and nanotechnology, thus offering a
technology based on green chemistry, being ecological for the production, characterization,
and application of nanomaterials [5]. Typical examples include gold and silver nanoparti-
cles, nano-vesicle systems, solid lipid nanoparticles, nanostructured lipid carriers, nano-
micelles, dendrimers, polymeric nanoparticles, mesoporous silica nanoparticles, etc. [6–8].
In addition, using interdisciplinary approaches, the results of biotechnology, nanomaterials,
pharmaceutical science, artificial intelligence, and genetic engineering can be applied in the
field of healthcare systems, known as nanomedicine [4,9,10].

Researchers are focusing their attention on the development of new nano-systems that
control the release of various molecules with biological activity, in addition to the devel-
opment of nanomaterials [11]. Nanocarriers and innovative pharmaceutical formulations
play a significant role in improving the bioavailability of drugs or natural molecules, with
a particular enrichment at the target site [11]. Delivering payloads to specific sites and
improving outcomes can be achieved through the use of vesicular systems.

Niosomes, the most recently developed vesicular system with an extraordinary range
of applications, are bilayer structures formed by amphiphilic non-ionic surfactants and
lipidic components (mostly cholesterol) [12–15]. They are more stable than liposomes and

Pharmaceutics 2024, 16, 223. https://doi.org/10.3390/pharmaceutics16020223 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics16020223
https://doi.org/10.3390/pharmaceutics16020223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-4866-934X
https://orcid.org/0000-0001-5570-8418
https://orcid.org/0000-0002-2631-7028
https://orcid.org/0000-0001-7248-2641
https://doi.org/10.3390/pharmaceutics16020223
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics16020223?type=check_update&version=1


Pharmaceutics 2024, 16, 223 2 of 28

have the ability to encapsulate hydrophilic and lipophilic molecules with biological activity
(Figure 1).
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Figure 1. Schematic representation of niosomes.

The first niosome formulations were patented in 1975 by researchers from L’Oréal
(France) for cosmetic applications. Since that, numerous scientific articles have been
published due to the extensive investigation of niosomes in various fields, including
pharmaceutical, cosmetic, and food science industries [16,17]. Given the immense potential
in delivery systems, there is a growing interest in comparing the benefits of niosomes
entrapment with those of liposomes. However, only a few studies have moved toward
pre-clinical and clinical trials, most being focused on topical delivery in the cosmetic
field because, compared to liposomes, niosome formulations have showed superior skin
permeation potential and higher stability [18–20].

Liposomes and niosomes are distinct in that liposomes have a concentric bilayer of
phospholipids, while niosomes have non-ionic surfactants with or without cholesterol
incorporation [21,22]. Liposomes are advantageous in terms of protecting drugs and
natural molecules, controlling the release of active molecules and targeting delivery [23–25].
They are widely used for drug delivery, but there are also significant problems with their
use. Degradation through hydrolysis or oxidation, sedimentation, drug leaching, and
aggregation or fusion during storage are among their major disadvantages [21,22,24,26,27].
The clinical use of liposomes faces several difficulties, like the challenge of sterilization,
the need for large-scale production to ensure sufficient physico-chemical stability, and the
cost and variability of phospholipid purity [21,22,24]. The stability problems and other
disadvantages of liposomes are largely avoided by niosomes, making them suitable for
industrial manufacturing, also due to their lower production costs. Alongside a variety of
advantages, niosomes also have some disadvantages related to their physical and physico-
chemical characteristics (Figure 2).
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Although our review is more focused on conventional niosomes, multifunctionality
must be mentioned as another important advantage. Such multifunctional niosomes can be
designed by inserting specific structural elements, e.g., functional groups, segments, and
nanoparticles, employing several modification strategies, as was reviewed in an excellent
recent review by Momekova et al. Multifunctional niosomes can allow for the targeted
delivery and co-delivery of both hydrophilic and hydrophobic drugs, as well as therapeutic
macromolecules (proteins and genes) [30].

As a result of this emerging interest, numerous drug and natural molecules-loaded
niosomes delivery applications in cancer therapy have been developed, benefiting from the
essential advantages of niosomes (e.g., biodegradable, biocompatible, non-immunogenic,
greater bioavailability, controlled size, stability, higher drug/natural molecule encapsu-
lation efficacy, higher rate of release), but also intending to resolve the minor disadvan-
tages (e.g., possibility of vesicle aggregation, hydrolysis of the encapsulated drug/natural
molecule). This up-to-date review covers the composition, formulation techniques, and
recent applications of niosomes as delivery systems in cancer therapy.

2. Composition of Niosomes

The composition of niosomes is a decisive factor in the formulation, pharmacokinetic
behavior, and application of drug-/natural molecule-loaded niosomes in cancer therapy.
Niosomes tend to contain as main components non-ionic surfactants, cholesterol, and
charge-inducing agents, which are generally biocompatible and without toxicity.

Non-ionic surfactants are the primary ingredients in niosomes formulation due to their
amphiphilic structure with a polar head and a non-polar tail [31]. Non-ionic surfactants
are preferred over other surfactant compounds (positive/negative/amphoteric) due to
their higher stability, biocompatibility, low toxicity, and non-special conditions for handling
and storage [28,29,32–34]. According to sources in the literature, the main characteristics
of non-ionic surfactants that influence the preparation of niosomes are (i) the value of
hydrophilic–lipophilic balance (HLB); (ii) the critical packing parameter value; (iii) the
chemical structure; and (iv) the phase transition temperature [29,33,34].

Cholesterol is a white waxy solid steroid, an amphiphilic molecule, responsible for the
rigidity, fluidity, permeability, and efficacy of encapsulation in niosome compositions [29,34].
Niosome vesicles’ structure can be affected by cholesterol because the stability of bilayers
can be enhanced through the formation of hydrogen bonds between hydroxyl groups and
the alkyl chains of the surfactant molecules. These resulting interactions lead to increased
membrane cohesion and a limitation of bilayer acyl chain movement. The transition
temperature of vesicles is improved by influencing the fluidity of chains within bilayers,
which increases their stability [34,35].

The inclusion of charged molecules in the formulation of niosomes enhances the
stability of the obtained vesicles due to the increase in surface charge density, which
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prevents vesicle aggregation or fusion [16,36]. The most common charged molecules used
in niosome formulation are dicetyl phosphate, phosphatidic acid, and stearyl amine [16,37].

Niosome formulation also requires a hydration medium, and phosphate buffer is
frequently utilized due to its ability to facilitate both niosome formulation and the loading of
drugs or natural molecules. The size, distribution, entrapment efficiency, and drug/natural
molecule release profile are influenced by the composition of the medium and hydration
conditions (e.g., pH, temperature, time) [16,38].

Together with these main constituents, there are several other chemical materials used
in the formulation of niosomes, as shown in Table 1.

Table 1. Types and typical examples of chemicals used in formulation of niosomes.

Non-Ionic Surfactants

Alkyl ethers

Alkyl glycerol ethers (e.g., hexadecyl diglycerol ether)
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3. Classification and Formulation Techniques of Niosomes

Niosomes are non-ionic surfactant vesicles with a bilayer structure, (i) a hydrophilic
part opposite to aqueous solutions, and (ii) a hydrophobic part opposite to organic solutions.
Depending on which method is used for the formulation of niosomes, the structure can be
classified based on the number of bilayers and based on the size [29,32,34].

Thus, the niosomes types are: (i) small unilamellar vesicles (one bilayer, between 10
and 100 nm); (ii) large unilamellar vesicles (one bilayer, 100–3000 nm); and (iii) multilamellar
vesicles (more than one bilayer, ≥10 µm) [12,13,36,39].

Different approaches are necessary for the formulation of niosomes, which must be
optimized according to the requirements. The desired size and distribution of vesicles,
the value of the hydrophilic–lipophilic balance, the number of bilayers, drug or natural
molecule entrapment, and critical packaging parameters are some of the criteria that can be
used for the formulation of niosomes [29,36].

Hydrophilic–lipophilic balance (HLB) is a measure of the relationship between the
hydrophilic and hydrophobic groups of surfactants. The HLB value has a direct impact
on both the size of niosomes and the encapsulation efficacy of drugs or natural molecules.
Surfactants with an HLB value between four and eight have been proven to produce
niosomes (e.g., Span 40, Span 60, Span 80), while surfactants with an HLB value of eight or
higher (e.g., Span 20, Tweens) need the addition of cholesterol to form niosomes. Increasing
the HLB number above eight will lead to an increase in hydrophilicity, which will decrease
the stability of the niosome vesicles [34]. The type of the formed micellar structure can
be determined by using the critical packing parameter (CPP) value. A CPP value below
0.5 is an indicator of spherical micelles, and a CPP between 0.5 and 1 is an indicator of
bilayer micelles [34]. The number of drug or natural molecules that have been successfully
entrapped within the niosomes is known as entrapment efficiency (EE (%)), which can
be expressed as EE = (amount of drug/natural molecule entrapped ÷ total amount of
drug/natural molecule added) × 100% [34,40,41]. Membrane permeability, bilayer rigidity,
vesicle stability, entrapment efficiency, and fluidity of the formed vesicles are all influenced
by surfactants’ phase transition temperature behavior. The phase transition temperature is
affected by the length of the alkyl chain of the surfactant [39].

Characteristics such as morphology, size, polydispersity index, number of lamellae,
zeta potential, encapsulation efficiency, membrane rigidity, stability, and in vitro release
also have significant effects on the performance of niosomes [29,36,42]. The physical
properties and stability of the formulation are characterized by particle size and zeta
potential, which are the fundamental parameters [34,42]. The size distribution is indicated
by the polydispersity index (PDI), and a sample with a PDI value of less than 0.5 means that
it is monodispersed [34]. The niosome vesicles system’s stability in vivo and in vitro is a
fundamental parameter that involves both physical and chemical stability, as well as biological
stability. Usually, stability is determined by monitoring particle size and zeta potential over
time, with changes in these two parameters indicating potential instability [34,42].
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The most relevant formulation techniques of niosomes, based on the number of
bilayers and based on size, are described and discussed below.

3.1. Preparation Methods for Small Unilamellar Vesicles
3.1.1. Micro-Fluidization Technique

This technique follows the principle of submerged jet to obtain small and uniform
unilamellar niosomes. The two streams (aqueous phase and lipid dispersed phase) are
forced to go to the membrane + pressurized vessel at very high pressure and high velocity
through pneumatic pumps, where they collide. The membrane + pressurized vessel is a
continuous micro-channel that is responsible for turbulent mixing, creating a homogeneous
pressure profile under very high pressure, which is necessary to achieve a narrow size
and distribution of niosomes. The advantages of this technique include greater uniformity,
smaller size, highest aqueous phase encapsulation, and high production rates. Degradation
of the lipid phase is a potential negative effect of the high pressure in the interaction
chamber [13,32,43–49] (Figure 3).
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Figure 3. Schematic representation of the ether injection technique. This image was created using
BioRender (BioRender.com, accessed on 11 October 2023) and Servier Medical Art elements, which
are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com,
accessed on 11 October 2023.

3.1.2. Sonication Technique

In this technique, cholesterol and a non-ionic surfactant are dispersed in a buffer
solution containing the dissolved drug or natural compound. This mixture is further
subjected to a bath sonicator to yield niosomes. Rapid size reduction and accurate tem-
perature regulation are both advantages, but heat generation could be the main disadvan-
tage [13,32,43,44,50] (Figure 4).

3.1.3. Multiple Membrane Extrusion Technique

This technique allows for the size of niosomes to be controlled. Surfactant, cholesterol,
and diacetyl phosphate are dissolved in an organic solvent (e.g., chloroform), and then
the solvent is removed by rotary evaporation to form a thin-film which is subsequently
hydrated by using an aqueous solution containing the drug or natural molecule. The sus-
pension is extruded through polycarbonate membranes to obtain the niosomes. Improved
control of the niosomes size and the resulting reduction in the polydispersity are important
advantages. However, there are also disadvantages, such as increased product loss and
extended formulation time [13,32,43,44] (Figure 5).

BioRender.com
https://smart.servier.com


Pharmaceutics 2024, 16, 223 8 of 28Pharmaceutics 2024, 16, x FOR PEER REVIEW 8 of 26 
 

 

 
Figure 4. Illustrative scheme for the formulation of niosomes with the micro-fluidization technique. 
This image was created using BioRender (BioRender.com, accessed on 11 October 2023) and Servier 
Medical Art elements, which are licensed under a Creative Commons Attribution 3.0 Unported Li-
cense; https://smart.servier.com, accessed on 11 October 2023. 

3.1.3. Multiple Membrane Extrusion Technique 
This technique allows for the size of niosomes to be controlled. Surfactant, choles-

terol, and diacetyl phosphate are dissolved in an organic solvent (e.g., chloroform), and 
then the solvent is removed by rotary evaporation to form a thin-film which is subse-
quently hydrated by using an aqueous solution containing the drug or natural molecule. 
The suspension is extruded through polycarbonate membranes to obtain the niosomes. 
Improved control of the niosomes size and the resulting reduction in the polydispersity 
are important advantages. However, there are also disadvantages, such as increased prod-
uct loss and extended formulation time [13,32,43,44] (Figure 5). 

 
Figure 5. Illustrative scheme for the formulation of niosomes with the multiple membrane extrusion 
technique. This image was created using BioRender (BioRender.com, accessed on 11 October 2023). 

3.2. Preparation Methods for Large Unilamellar Vesicle Niosomes 
3.2.1. Ether Injection Technique 

In this method, the lipidic component (cholesterol) and non-ionic surfactant are dis-
solved in ether and slowly injected through a needle into the aqueous phase containing a 
drug or natural molecule under stirring at a temperature above 60 °C in a heated water 

Figure 4. Illustrative scheme for the formulation of niosomes with the micro-fluidization technique.
This image was created using BioRender (BioRender.com, accessed on 11 October 2023) and Servier
Medical Art elements, which are licensed under a Creative Commons Attribution 3.0 Unported
License; https://smart.servier.com, accessed on 11 October 2023.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 8 of 26 
 

 

 
Figure 4. Illustrative scheme for the formulation of niosomes with the micro-fluidization technique. 
This image was created using BioRender (BioRender.com, accessed on 11 October 2023) and Servier 
Medical Art elements, which are licensed under a Creative Commons Attribution 3.0 Unported Li-
cense; https://smart.servier.com, accessed on 11 October 2023. 

3.1.3. Multiple Membrane Extrusion Technique 
This technique allows for the size of niosomes to be controlled. Surfactant, choles-

terol, and diacetyl phosphate are dissolved in an organic solvent (e.g., chloroform), and 
then the solvent is removed by rotary evaporation to form a thin-film which is subse-
quently hydrated by using an aqueous solution containing the drug or natural molecule. 
The suspension is extruded through polycarbonate membranes to obtain the niosomes. 
Improved control of the niosomes size and the resulting reduction in the polydispersity 
are important advantages. However, there are also disadvantages, such as increased prod-
uct loss and extended formulation time [13,32,43,44] (Figure 5). 

 
Figure 5. Illustrative scheme for the formulation of niosomes with the multiple membrane extrusion 
technique. This image was created using BioRender (BioRender.com, accessed on 11 October 2023). 

3.2. Preparation Methods for Large Unilamellar Vesicle Niosomes 
3.2.1. Ether Injection Technique 

In this method, the lipidic component (cholesterol) and non-ionic surfactant are dis-
solved in ether and slowly injected through a needle into the aqueous phase containing a 
drug or natural molecule under stirring at a temperature above 60 °C in a heated water 

Figure 5. Illustrative scheme for the formulation of niosomes with the multiple membrane extrusion
technique. This image was created using BioRender (BioRender.com, accessed on 11 October 2023).

3.2. Preparation Methods for Large Unilamellar Vesicle Niosomes
3.2.1. Ether Injection Technique

In this method, the lipidic component (cholesterol) and non-ionic surfactant are dis-
solved in ether and slowly injected through a needle into the aqueous phase containing a
drug or natural molecule under stirring at a temperature above 60 ◦C in a heated water
bath. The disadvantages include the extremely slow process and the presence of a limited
amount of ether in the vesicle suspension [13,32,43,44] (Figure 6).

BioRender.com
https://smart.servier.com
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3.2.2. Lipid Injection Technique

There are no organic solvents involved in this technique. Molten surfactant and
cholesterol are quickly injected into a heated aqueous phase containing the dissolved drug
or natural molecules, resulting in the formation of niosomes [13,32,43,44] (Figure 7).
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3.2.3. Bubble Technique

This is a unique single-step process used to prepare niosomes, especially to develop
large unilamellar vesicles, without using any organic solvent. Cholesterol, buffer solution,
and non-ionic surfactant are mixed and placed in a three-neck round bottom flask. The

BioRender.com
https://smart.servier.com
BioRender.com
https://smart.servier.com
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temperature is controlled using a thermometer and water-cooled reflux, while nitrogen is
supplied from the third neck (Figure 8). The dispersion is introduced into a water bath at
70 ◦C to yield niosomes [13,32,43,44].
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3.2.4. Reverse-Phase Evaporation Technique

Surfactant and cholesterol are dissolved in suitable organic solvent (e.g., chloroform,
ethyl ether). An aqueous phase that contains the drug or natural molecule is added, and
then the two immiscible phases are homogenized and sonicated. The organic solvent is
removed from the formed emulsion by rotary evaporation to obtain niosomes [13,32,43,44]
(Figure 9).
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3.3. Preparation Methods for Multilamellar Vesicle Niosomes
3.3.1. Trans-Membrane pH Gradient Technique

This approach is suitable for ionizable hydrophobic compounds. The hydrophobic
compound, surfactant, and cholesterol are dissolved in an appropriate solvent (e.g., chloro-
form). The solvent is then removed by rotary evaporation to produce a thin film on the
wall of a round bottom flask and the residue is hydrated with citric acid at pH 3.0 or 4.0
in a beaker. The obtained suspension is subsequently frozen and thawed, followed by
sonication. An aqueous solution containing the drug or natural molecule is then added to

BioRender.com
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the suspension and mixed using a vortex mixer. The pH is raised to pH 7.0 with disodium
phosphate solution, and then the mixture is heated at 60 ◦C to yield niosomes [13,32,42–44]
(Figure 10).
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nique. This image was created using BioRender (BioRender.com, accessed on 11 October 2023).

3.3.2. Thin-Film/Thin-Layer Hydration Technique

This technique is widespread in the formulation of niosomes. The surfactant and
cholesterol are dissolved in a suitable organic solvent (e.g., ether, ethanol, chloroform).
A dried thin-film layer forms inside the flask after the organic solvent is removed by
vacuum/rotary evaporation. The drug is dissolved in an aqueous solution and then
applied to the obtained film to hydrate it. To produce niosomes, the hydrated film must be
incubated in a water bath above the transition temperature of the surfactants [13,32,43,44].
The thin-film hydration technique is represented in Figure 11.
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4. Recent Progress in Niosomes as Delivery Systems in Cancer Therapy

Surgery, chemotherapy, radiotherapy, immunotherapy, gene therapy, magnetic hy-
perthermia, and others are available in the current clinical treatments for cancer, which
is one of the deadliest diseases in the world [51–53]. Surgery is indispensable in many
cancer therapies, but achieving safe, timely, and efficient cancer surgery is a challenging
task. Other therapeutic clinical treatments rely on molecules with antineoplastic activities,
but they are usually limited by multiple issues such as poor solubility and biodistribution,
adverse reactions, reduced therapeutic efficacy, or even treatment failure.

Advanced techniques, strategies, and materials to fight cancer have been the subject
of tremendous research efforts over the past decades [5,8,54]. Nanotechnologies have
become widely investigated for cancer treatment, in line with advances in biotechnology, to
enhance safety, accuracy, and effectiveness by utilizing the unique properties of designed
nanomaterials [54,55]. Until now, targeted cancer therapy has been engineered using a
variety of organic (e.g., polymeric micelles, liposomes, niosomes, dendrimers) and inorganic
nanoparticles (e.g., gold nanoparticles, silver nanoparticles, iron-oxide nanoparticles), some
of them being currently studied or approved in preclinical or clinical trials [54–58].

Our review focused on recent relevant studies aimed at enhancing the targeted delivery
of different chemotherapeutic molecules (drugs or natural compounds) using nanotechnol-
ogy, specifically on niosomes nanoparticles, exploring their use in the most common types
of cancers found worldwide (Figure 12).
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4.1. Recent Progress in the Development of Niosomal Formulations for Drug/Natural Molecules
Delivery in Different Types of Cancer

Breast cancer is the most prevalent type of cancer. Early detection and extensive
treatment techniques have reduced breast cancer mortality in the last two decades, which
has improved the prognosis of patients [59,60]. Although screening, diagnosis, and treat-
ment options have improved significantly, there are still various issues like recurrence
and relapse. Resistance to chemotherapeutic drugs remains the reason for recurrence
and relapse, even though significant research breakthroughs have been made in breast
cancer therapy [61,62]. The investigation of numerous techniques is necessary to overcome
drug resistance, and the application of nanotechnology in preparing nanoformulations of

BioRender.com
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existing anticancer molecules has received much attention among these techniques, leading
to significant advancements in this field [63,64].

Lung cancer is currently the second most commonly diagnosed cancer in the world.
Lung cancer is classified into two broad categories, non-small-cell lung cancer and small-cell
lung cancer, and different treatment strategies are available for stages and subtypes of each
type, including local treatment methods (e.g., surgical therapy, radiotherapy, chemotherapy)
as well as combined methods with targeted therapy or immunotherapy [65–68]. The use of
chemotherapy, targeted therapy, and immune therapy remains inevitable due to systemic
toxicity, drug resistance, and immunosuppression. Due to their biocompatibility and high
specific surface area, nanomaterials can be used to encapsulate antineoplastic molecules
and transport them directly to lung cancer cells, preventing the destruction of normal
tissues, minimizing side effects. They can also avoid drug resistance [66,69].

Colorectal cancer is the third most common cancer in the world, and standard con-
ventional treatments are surgery, chemotherapy, and radiotherapy [70,71]. Other more
recent treatment modalities, such as immunotherapy and targeted therapy, achieved high
degree of success [72,73]. Targeted therapies, such as liposomes, niosomes, polymeric
nanoparticles, micelles, gold nanoparticles, and other colloidal carriers, can be used as drug
delivery systems for colorectal cancer [74–76].

Among men, prostate cancer is the second most common neoplasm in the world [51,52].
Surgery, radiotherapy, hormone therapy, chemotherapy, and immunotherapy are some of
the main treatment modalities, but prostate cancer resistance to conventional therapies
remains a significant problem despite the availability of these treatment options [77–79].
Numerous studies in recent years have revealed ways to improve the effectiveness of
antineoplastic therapy, including the incorporation of drugs or natural compounds with
multi-functional nanoparticles, aiming to increase the immune system’s ability to identify
and attack malignant cells [79–81].

Skin cancer is the fifth most prevalent cancer in the world and can be classified into
two categories, (i) melanoma and (ii) non-melanoma, which include basal cell carcinoma
and squamous cell carcinoma [82,83]. The risk factors are UV radiation, age, gender,
inherited disease, immunosuppression, and a family history of skin cancer [84]. Until now,
treatment has been a combination of surgery, chemotherapy, and radiation therapy, but,
despite their effectiveness, such treatments are painful for patients and have many negative
side effects [82,85]. Phototherapies, such as photodynamic therapy and photothermal
therapy, are beneficial in clinical skin cancer therapy because they are tumor-ablating and
function-reserving oncologic treatments [82,86,87].

The use of nanotechnology has been developed as a modality of overcoming the
negative side effects of modern treatments, and the cosmetic industry is one of its main
areas of application [88]. The remarkable treatment of skin cancer can be significantly
improved by using nanomedicine, especially nanoparticles as therapeutic agents and drug
carriers [18,89–93]. In addition, these cutting-edge nanotechnologies help to establish
anticancer drugs, which enhance their bioavailability and controlled release [94]. The
therapeutic effectiveness and delivery of functionalized nanoparticles have several benefits,
such as increased drug solubility, encapsulation efficiency, and improved pharmacokinetic
profile of bioactive molecules [93,94]. By using niosomes and other nanoparticles, a variety
of bioactive molecules can be loaded, leading to efficient targeted medication administration
and improved physico-chemical stability of cosmeceutical and pharmaceutical products
(Table 2) [19,95].
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Table 2. Various niosome formulations functionalized with specific agents/ligands in different types of cancer: composition, formulation method, type of drug or
natural molecule encapsulated, and the main results obtained.

Type of
Cancer

Formulation
Method

Drug/Natural
Molecules Composition Niosomal Formulation Results References

Breast
cancer

Thin-film
hydration

Tamoxifen Spans (20, 40, 60, 80),
cholesterol

Inhibitory effects on cancerous lines: MDA-MB-231, SKBR3 cells;
Less IC50 values;

Significant downregulation of cyclin D, cyclin E, VEGFR-1, MMP-2, MMP-9 genes
and upregulation of caspase-3, caspase-9 genes;

Increase caspase activity and apoptosis induction in cancerous cells.

[96]

Docetaxel Span 40, PF108

AD = 244.9 nm; EE (%) = 97.43 ± 1.2%; PDI = 0.75; ZP = −10 mV;
Niosomal formulation improved the Docetaxel stability;
Sustainable release during an in vitro drug release study;

MCF-7 cells significantly affected;

[97]

Metformin,
Celecoxib

Span 60, cholesterol/
Span 60, cholesterol,

Tween 80

Metformin-loaded niosomes: AD = 110.6 ± 0.6 nm; EE (%) = 68.94 ± 1.28%;
RD (%) = 89.2%; PDI = 0.139 ± 0.017; ZP = −44.42 ± 1.990 mV;

Celecoxib-loaded niosomes: AD = 96.7 ± 0.7 nm; EE (%) = 94.44 ± 2.09%;
RD (%) = 77.80%; PDI = 0.278 ± 0.003;

ZP = −53.89 ± 5.680 mV;
Metformin-loaded niosomes (62.44% viability) outperformed free Metformin (80.37%

viability), showing significantly lower cell viability; free Celecoxib exhibited a
viability of 3.18%, while Celecoxib-loaded niosomes showed 1.59% viability;

In MDA-MB-231 cells, both Metformin-loaded niosomes and Celecoxib-loaded
niosomes showed lower IC10 and IC20 values than their respective free drugs,

non-lethal doses;
Penetration rate of Metformin-loaded niosomes (85.26%) surpassing free Metformin
(61.50%), and the penetration rate of Celecoxib-loaded niosomes (71.08%) compared

to free
Celecoxib (31.29%).

[98]

Gemcitabine Cholesterol, Span 60,
Tween 60

AD = 205 nm; EE (%) = 89.9 ± 1.27%; PDI = 0.19 ± 0.03;
RD (%) = 49.7 ± 1.3% after 48 h, while about RD (%) = 87% free

Gemcitabine after 4 h;
Anticancer activity is superior to free Gemcitabine in treating SH-SY5Y and MCF7

cells during the same incubation period (14.0 and 19.7 ng/mL, respectively);

[99]
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Table 2. Cont.

Type of
Cancer

Formulation
Method

Drug/Natural
Molecules Composition Niosomal Formulation Results References

Breast
cancer

Thin-film
hydration

Ascorbic acid,
Geranium oil

Cholesterol, Span 60,
Tween 60

AD = 219.4 ± 44.5 nm; EE (%) = 98.3 ± 4.2% (ascorbic acid), 98.7 ± 3.1% (geranium
oil); PDI = 0.23 ± 0.20; ZP = −11.1 ± 1.39;

IC50 (µg/mL) = 7.69 ± 8;
Significantly higher increase apoptotic effect on MCF-7 cells;

Antioxidative activity.

[100]

Curcumin

Span 80, diacetyl
phosphate,
Cholesterol,

Calcium alginate

AD = 167.1 nm; EE (%) = 94.949%; RD (%) = 61.7 ± 1.23%;
Greater biocompatibility in cytotoxicity tests than particles without free Curcumin;

Enhanced chemotherapy effect due to the alginate.
[101]

Cisplatin,
Epirubicin

Spans, cholesterol,
PEG

AD = 192.5 ± 8.9 nm; EE (%) = 91.24 ± 1.32 (Cisplatin),
71.93 ± 1.11% (Epirubicin);

RD (%) = 36.78% (Cisplatin), 56.30% (Epirubicin);
PDI = 0.142 ± 0.012;

Improved stability for two months and continued release in
physiological pH;

Antitumor activity toward SKBR3 and 4T1 cancer cells;
Exhibit lower cytotoxicity toward healthy cells;

Significant inhibition of cancer cells’ migration and division than with free drugs.

[102]

Curcumin,
Folic acid

Spans, diacetyl
phosphate,
cholesterol

AD = 187.13 ± 7.55 nm; EE (%) = 98.2517 ± 0.7851%;
PDI = 0.160 ± 0.033; ZP = −8.1 mV;

Exhibit higher cellular uptake efficiency in vitro;
Induce high apoptosis rate in breast cancer cells (MCF7 and 4T1).

[103]

Letrozole,
Cyclophosphamide,

Folic Acid
Span 60, cholesterol

AD = 213.9 ± 3.2 nm; EE (%) = 94.10 ± 1.85% (Cyclophosphamide),
98.50 ± 1.88% (Letrozole);

PDI = 0.143 ± 0.007;
IC50 values (µg/mL) for MDA-MB-231 = 31.13 ± 1.35 (48 h) and

23.18 ± 1.07 (72 h);
IC50 values (µg/mL) for SKBR3 cell = 24.92 ± 1.35 (48 h) and

20.94 ± 1.07 (72 h);
Treatment led to a significantly higher increase in Caspase-3, Caspase-9 levels, and a

more significant decrease in cyclin-D, Cyclin-E, MMP-2, and MMP-9
expression levels;

Increase total apoptosis in treated cancer cell lines.

[104]
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Table 2. Cont.

Type of
Cancer

Formulation
Method

Drug/Natural
Molecules Composition Niosomal Formulation Results References

Breast
cancer

Thin-film
hydration

Farnesol,
Gingerol

Tween 60, Span 60,
cholesterol

AD = 224 ± 14.60 nm; EE (%) = 67.29 ± 1.46% (Gingerol), 92.63 ± 2.57% (Farnesol);
PDI = 0.171;

Controlled drug release at pH = 7.4;
Excellent improved biocompatibility in comparison to free

Farnesol and Gingerol;
Show significant cytotoxicity toward MCF7, and SKBR3 breast cancer cells;
Synergistic inhibitory effect of combined drugs improved chemotherapy;

Induce apoptosis in both MCF7 and SKBR3 cell lines.

[105]

Doxorubicin Span 60, cholesterol,
gelatine, alginate

AD = 226.4 ± 7.95 nm; EE (%) = 73.69 ± 1.68%;
PDI = 0.189 ± 0.011; ZP = −13.74 ± 1.49 mV;

Excellent biocompatibility with non-tumorigenic breast cells (MCF-10A);
High cytotoxicity against breast cancer cells (MCF-7).

[106]

Cisplatin,
Doxorubicin Span 60, cholesterol

AD = 313.0 ± 9.22 nm; EE (%) = 80.65 ± 1.80% (Doxorubicin),
65.54 ± 1.25% (Cisplatin);

PDI = 0.261 ± 0.01; ZP = −30.65 ± 0.64 mV;
Higher synergetic inhibitory effect of combined drugs;

The caspase activity assay indicated that the cancer cells treated had significantly
higher Caspase 3/7 activities compared to uncoated niosomes and free drugs;
Higher effective apoptosis induction rate, and cell cycle arrest in cancer cells;

[107]

Epirubicin,
Hyaluronic acid Span 60, cholesterol

AD = 225.9 nm; EE (%) = 82.1%;
PDI = 0.160;

CD44-mediated internationalization into breast cancer cells;
Improve Epirubicin impact on breast cancer cells, including an

increase in cytotoxicity and apoptosis, as well as inhibition of metastasis.

[108]

Morusin Span 60, cholesterol

AD = 479 nm; EE (%) = 97 ± 1.25%;
PDI = 0.29; ZP = −19.8 mV;

Inhibit the survival of MDA-MB-453;
Cause considerable toxicity in the cells treated, leading to a decrease in the number of

alive cells and an increase in dead cells.

[109]
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Table 2. Cont.

Type of
Cancer

Formulation
Method

Drug/Natural
Molecules Composition Niosomal Formulation Results References

Breast
cancer

Thin-film
hydration

Melittin Span 60, Tween 60,
cholesterol

Affects gene expression by downregulating the expression of Bcl2, MMP2, MMP9
genes while upregulating the expression of Bax, Caspase3, Caspase9;

Enhanced the apoptosis rate and inhibited cell migration.
[110]

Paclitaxel
Tween 60, Span 60,

ergosterol,
cholesterol hemisuccinate

AD = 240 nm; EE (%) = 77.0 ± 2.3%;
Show high efficacy against human cancers derived from cervix and breast tumors. [111]

Paclitaxel Span 60, cholesterol
AD = 192.73 ± 5.50 nm; EE (%) = 94.71 ± 1.56%;

Significant cytotoxicity on breast cancer cell lines including MCF-7, T-47D, SkBr3,
MDA-MB-231 in a time- and dose-dependent manner.

[112]

Curcumin Tween 60, Tween 80,
cholesterol

AD = 110 ± 0.45 nm; EE (%) = 78.34%; RD (24 h, 37 ◦C) = 19 ± 0.67%;
PDI = 0.21 ± 0.16; ZP = −24 ± 0.34 mV;

The presence of both positive charge and niosome promote cellular uptake via
changing the penetration mechanism to endocytosis;

Reduce the expression of NF-κB and improve the p53 better than their free states.

[113]

2,5-
Diketopiperazine

Span 60, Tween 60,
cholesterol;

Tween 40, Span 40,
cholesterol

AD = 149.43 ± 3.2 nm; EE (%) = 70.22 ± 0.13%; PDI = 0.171 ± 0.025;
Inhibit proliferation and invasion of MCF-7, MDA- MB-231, AU-565 malignant cells

in vitro;
Breast cancer cells’ proliferation is directly influenced by the

presence of niosome-encapsulated BHPPD.

[114]

Carnosine,
Melittin Span 60, cholesterol

AD = 58 ± 0.50 nm (Carnosine), 163 ± 1.3 nm (Melittin);
PDI = 0.16441 ± 0.04 (Carnosine), 0.0424 ± 0.1 (Melittin);

ZP = −20 ± 0.3 mV (Carnosine), −86.6 ± 0.9 mV (Melittin);
Melittin-loaded niosomes showed significantly greater anticancer activity on breast

cancer cells compared to Carnosine-loaded niosomes;
Carnosine-loaded niosomes inhibit the cells at the G2/M phase transition in MCF-7

cells and S phase at MDA-MB- 231 cells;
Melittin-loaded niosomes inhibit both cells at the G0/1 phase

transition and occur inhibition of cells at S phase.

[115]
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Table 2. Cont.

Type of
Cancer

Formulation
Method

Drug/Natural
Molecules Composition Niosomal Formulation Results References

Breast
cancer

Thin-film
hydration

Ascorbic acid,
Curcumin

Tween 60, Span 60,
cholesterol

AD = 224.30 ± 6.52 nm; EE (%) = 74.75 ± 1.35% (Ascorbic acid), 93.19 ± 1.88%
(Curcumin); PDI = 0.084 ± 0.012; ZP = −23.7 ± 1.03 mV;

Exhibit a higher apoptotic rate and enhance anticancer effects against breast cancer
MCF-7 cells.

[116]

Doxorubicin,
Curcumin

Tween 60, Span 60,
cholesterol, PEG

AD = 273.1 ± 3.2 nm; PDI = 0.39 ± 0.08;
EE (%) = 62.90 ± 1.1% (Doxorubicin), 96.50 ± 3.7% (Curcumin);

ZP = −43.2 ± 1.0 mV;
IC50 value (µg/mL) on the MCF-7 cell line = 20.7 ± 2.3;

Show a more controllable release manner and enhance cytotoxicity on cancer cells
after PEGylation.

[117]

Trastuzumab,
Mcl-1 Nioplex

Span 20,
cholesterol-based cationic

lipids

Exhibit cell-growth inhibition in both HER2-positive and HER2-negative breast
cancer cells;

Decrease cell survival and promote apoptosis compared to single treatment in
HER2-overexpression breast cancer cells.

[118]

Lung
cancer

Thin-film
hydration

Nintedanib

Span 60, cholesterol,
1,2-dioleoyl-3-

trimethylammonium-
propane
(DOTAP)

AD = 246.2 ± 2.3 nm; EE (%) = 73.1 ± 2.7%; PDI = 0.19 ± 0.08;
ZP = −20.5 ± 1.9 mV;

IC50 values in different human non-small-cell lung cancer cell lines: 1.5 ± 0.8 (A549),
1.8 ± 0.3 (H2122), 2.1 ± 0.8 (H1299), 1.1 ± 0.4 (H358), 1.3 ± 0.5 (H460);

Incorporation of cationically charged lipid increased drug
encapsulation in niosomes along with optimum vesicle size and size distribution;

Possess appropriate aerosolization properties for efficient pulmonary delivery;
Significant inhibitory action on the metastatic property of NSCLC cells.

[119]

Artemisin,
Metformin Span 60, cholesterol

AD = 256 nm; EE (%) = 95%; PDI = 0.202;
Increase Bax levels in a dose-dependent manner;

Anticancer effect against A549 cancer cells.
[120]

Metformin,
Silibinin Span 60, cholesterol, PEG

AD = 162.5 ± 1.8 nm; EE (%) = 95%; PDI = 0.424;
ZP = −17.7 ± 7 mV;

Induce apoptosis and cell cycle arrest in the A549 lung cancer cell line;
Significant reduction in expression of hTERT and BCL-2 genes.

[121]

Sunitinib Span 60, cholesterol

Triggered apoptosis in in vitro experiments of lung cancer cell
lines (A549);

Caused downregulation or upregulation of genes associated
with apoptosis;

[122]
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Table 2. Cont.

Type of
Cancer

Formulation
Method

Drug/Natural
Molecules Composition Niosomal Formulation Results References

Colorectal
cancer

Various techniques
formulation

(thin-film hydration,
reverse-phase
evaporation,
sonication,

ethanol injection)

5-fluorouracil Span 60, Tween 60,
cholesterol

5-Flurouracil-loaded niosomes displayed a slight decrease in cell viability (reduced
cell index) compared to the pure drug. [123]

Thin-film
hydration

Oxaliplatin,
Paclitaxel Span 60, Tween 80, TPGS

AD = 285.8 ± 23.5 nm (Oxaliplatin), 258.6 ± 13.3 nm (Paclitaxel);
EE (%) = 91.03 ± 2.80% (Oxaliplatin), 93.31 ± 3.31% (Paclitaxel);

PDI = 0.295 ± 0.07 (Oxaliplatin), 0.287 ± 0.09 (Paclitaxel);
ZP = −33.25 ± 1.41 mV (Oxaliplatin), −32.99 ± 1.08 mV (Paclitaxel);

Using vesicular niosomes to administer both drugs altered their release rate in
comparison to their free counterparts, as they demonstrated extended drug release;
Oxaliplatin and Paclitaxel’s cytotoxicity and apoptosis efficacy were significantly

improved by encapsulation into niosome particles compared to the free drugs.

[124]

Curcumin,
Saccharomyces

cerevisiae
Span 60, cholesterol, PEG

AD = 201 ± 9.94 nm; EE (%) = 88%; PDI = 0.193;
ZP = − 17.14 ± 4.8 mV;

Show favorable results compared to free curcumin in gene expression, cytotoxicity,
apoptosis induction, cell cycle arrest, and invasion rate reduction tests.

[125]

Silibinin Span 60, Tween 80,
cholesterol

AD = 70 nm; PDI = 0.52; ZP = −19.0 mV;
Cytotoxic effects on HT-29 colon cancer cells in a dose- and

time- dependent manner;
Show accelerated release rate in acidic pH in cancer cells

compared to the neutral condition.

[126]

Prostate
cancer

Thin-film hydration
followed by bath

sonication
Lycopene Tween 60/Span 60,

cholesterol

AD = 136.00 ± 8.83 nm; PDI = 0.460 ± 0.02; ZP = −36.0 ± 3.45 mV;
Significantly reduce cell viability for PC-3 and LNCaP cells;

Increase antiproliferative and apoptotic effects on
PSMA + LNCaP cell;

Increase cellular uptake.

[127]
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Table 2. Cont.

Type of
Cancer

Formulation
Method

Drug/Natural
Molecules Composition Niosomal Formulation Results References

Skin cancer

Microfluidic
mixing Hippadine Span 60, cholesterol

AD = 138.40 ± 1.40 nm; EE (%) = 35.98 ± 0.99%; PDI = 0.15 ± 0.01;
ZP = −32.80 ± 2.50 mV;

Significantly improve the characteristics of hippadine by
increasing its cytotoxic properties;

Improve molecule solubility and enhance drug uptake by the cells at a higher rate.

[49]

Solvent injection
method

Gamma-
oryzanol

Span 60, dicetyl
phosphate, Carbopol 940

AD = 196.6 ± 0.9 nm; EE (%) = 78.31%; PDI = 0.268 ± 0.02;
ZP = − 41.6 mV; pH niosomal gel = 7.3 ± 0.1;
Reduce the frequency of drug administration.

[128]

Thin-film
hydration

Amygdalin Cholesterol, Tween 60,
DDP, Carbopol 934

Show significant antitumor activity compared with oral Tamoxifen;
Enhance permeation into deep skin layers. [129]

Ozonated olive oil Cholesterol, Span 60,
Tween 60

AD = 125.34 ± 13.29 nm; EE (%) = 87.30 ± 4.95%;
PDI = 0.24 ± 0.04; ZP = −11.34 ± 4.71 mV;

Ensure sustained release behavior and improve skin permeation;
Exert anticancer activity on A375 cells.

[130]

AD = average diameter; EE (%) = encapsulation efficacy; RD (%) = released drug; ZP = zeta potential; PDI = polydispersity index.
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4.2. Recent Approaches for Elaboration of Specialized Niosomes as Delivery Systems

The previous section focused on the elaboration of niosome formulations that can
be used to deliver hydrophobic and hydrophilic drugs or natural molecules to various
cancer types with sustained and controlled effects. The incorporation of additional func-
tionalities in niosomes makes it possible to overcome therapeutic challenges during cancer
treatment. To improve performance and enhance therapeutic effects in cancer therapy,
niosome properties have been modified through various approaches.

Nanotechnologies have brought about a revolution in drug delivery, especially for
cancer therapy. The customization of physicochemical properties can lead to the creation of
smart or intelligent systems that can deliver therapeutic molecules on demand. The most
attention has been directed towards stimuli-responsive lipid-based drug delivery systems,
as they can enhance the ability of drug delivery to accelerate drug release at the target site,
enhance selectivity, and increase biocompatibility [131,132].

These delivery systems undergo physical or chemical changes in response to different
external stimuli (e.g., temperature, pH, light, magnetic field, ultrasound, electric field, redox
species, enzymes, genes) and can be classified as physical-stimuli responsive, chemical-
stimuli responsive, and biochemical-stimuli responsive (Figure 13) [131,133–138].
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Abtahi et al. developed a smart-stimuli niosomal targeted system that employs Cur-
cumin to block MCF10-A cells and the ovarian cancer cells A270s and A270cp-1 through
biofunctionalization. Surface modification was used to introduce lysine and reduce the
volume of cholesterol and surfactants, while also enhancing bio/cytocompatibility in the
niosomal formulations. These niosomes, loaded with the anticancer natural molecule
Curcumin, diminished several drawbacks, such as niosome instability, aggregation, drug
leakage, and fusion. Modified nanocarriers, according to an in vitro cytotoxicity study,
reduced tumor cell viability at lower dosages. In vivo evaluation showed that niosomal
encapsulation could enhance the tumor inhibition potential and offer advanced therapeu-
tic influence more compared to the cationic lipid DOTAP-mediated niosomal Curcumin
and free Curcumin [139]. Sargazi et al. have designed a niosomal targeted system using
Cisplatin to target MCF7 breast cancer cells. The systems were also rendered pH-sensitive
via introducing cholesteryl hemisuccinate and ergosterol in the niosomal membranes to
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allow for optimized Cisplatin delivery. Niosomes containing Cisplatin were prepared by a
thin-film hydration technique, using Span 60 and Tween 60. Tween 60 and ergosterol do not
expand the tightly packed niosome bilayer with high-order orientation upon insertion. This
Cisplatin-loaded niosomal formulation demonstrated acidity-triggered release patterns
(at pH = 5.4). The interaction between drugs and niosome components is mainly through
platinum and chlorine atoms bound to Tween 60 and Span 60 headgroups, as resulted from
MD simulation results. In vitro evaluation showed that Cisplatin-loaded niosomes exhib-
ited a better cytotoxic and remarkable antimetastatic effect than standard Cisplatin against
breast cancer cells [140]. In another study, Taboada et al. developed pH-sensitive niosomes
composed of Doxorubicin, Span 60, Tween 60, cholesterol, and ergosterol conjugated with
cholesteryl–hemisuccinate. Their cytotoxic examinations showed that Doxorubicin-loaded
niosomal formulation exerted a higher cytotoxicity effect than free-administered Doxoru-
bicin on breast cancer cells. Doxorubicin-loaded niosomes released the drug more quickly
at pH = 5.4 than at pH = 7.4, indicating a sustainable release. This effect is attributed to
the existence of cholesteryl–hemisuccinate constituents in niosome bilayers that provide a
pH-dependent release [141].

Nasri et al. developed a thermo- and pH-responsive targeted lipid-coated mesoporous
nanosilica platform for the dual specific co-delivery of Paclitaxel and Gemcitabine to over-
come HER2-positive breast cancer, preventing their side effects during the treatment process.
The lipid-coated mesoporous nanosilica platform was also made thermo-sensitive by intro-
ducing dipalmitoylphosphatidylcholine and pH-sensitive by introducing 1,2-distearoyl-
sn-glycerol-3-phosphoethanolamine in the niosomal membranes. Also, Trastuzumab, a
monoclonal antibody, was conjugated to the lipid-coated mesoporous platform. Their
results revealed a pH- and thermo-dependent mechanism that resulted in the release of
Paclitaxel and Gemcitabine at a rate of 89% and 95% from the co-loaded platform (pH = 5,
T = 42 ◦C), much higher compared to the values obtained at pH = 7.4 and T = 37 ◦C (31.1%
and 32.2%, respectively). Their formulation successfully enhanced the therapeutic effect of
the combined form of the drugs based on the active targeting of them to HER2-positive
cells and the synergic effect of the co-administration of trastuzumab monoclonal antibodies
with Paclitaxel and Gemcitabine on HER2-positive cancer cells, also protecting the normal
cells from the side effects of the drugs [142].

5. Future Perspectives

Nanotechnology has provided a new perspective in the medical field to overcome
several barriers associated with traditional cancer treatments. In the last few years, nio-
somes, a noble lipid-based nanoparticle, have attracted increasing attention because they
can deliver drugs or natural compounds with high safety, easy production, storage, and
minimal negative effects. Niosomes are expected to have a significant impact on new cancer
therapies in the near future as ideal candidates due to their ability to act as drug carriers
and tumor-targeting molecules.

Cancer therapy can benefit from the use of various niosomal formulations that con-
tain a wide range of drugs and natural compounds, which will ensure their continued
popularity for the next decade. Numerous studies have demonstrated that niosomes-
based therapeutic approaches have significantly facilitated cancer therapy compared to
conventional treatment methods. Sustainable concepts are being increasingly considered
worldwide, and niosomes technology could have a prosperous future in cancer therapy
through the combination of sustainability and nanotechnology.
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