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Abstract: The role of type 2 inflammation has been progressively associated with many diseases, in-
cluding severe asthma, atopic dermatitis, nasal polyposis, eosinophilic granulomatosis with polyangi-
itis, and, recently, eosinophilic esophagitis. Despite this, the association between asthma and esophagi-
tis is still poorly known, and this is probably because of the low prevalence of each disease and the
even lower association between them. Nonetheless, observations in clinical trials and, subsequently,
in real life, have allowed researchers to observe how drugs acting on type 2 inflammation, initially
developed and marketed for severe asthma, could be effective also in treating eosinophilic esophagitis.
For this reason, clinical trials specifically designed for the use of drugs targeted to type 2 inflammation
were also developed for eosinophilic esophagitis. The results of clinical trials are presently promising
and envisage the use of biologicals that are also likely to be employed in the field of gastroenterology
in the near future. This review focuses on the use of biologicals for type 2 inflammation in cases of
combined severe asthma and eosinophilic esophagitis.

Keywords: severe asthma; eosinophils; eosinophilic esophagitis; biologics; T2 inflammation;
allarmins; TSLP; cytokines

1. Introduction

Type 2 (T2) inflammation was identified as a pathogenic phenomenon underlying
various diseases, such as asthma, nasal polyposis, and atopic dermatitis. The eosinophilic
inflammatory infiltrate, which is typical of T2 inflammation, has been demonstrated to be
present in other diseases, including eosinophilic esophagitis (EoE). Asthma is a well-known
disease, characterized by chronic airway inflammation and bronchial hyperresponsiveness,
resulting in airflow limitation and respiratory symptoms. In the pathogenesis of asthma,
interactions between genetic predisposition, environmental factors, and immune dysreg-
ulation play a role in the genesis of disease. The hallmark of asthma is chronic airway
inflammation, primarily driven by type 2 (T2) immune responses. This immune activation
results in the recruitment of eosinophils, mast cells, IgE, and other inflammatory cells to
the airways, leading to structural changes and remodeling, increased mucus production,
and bronchospasm. Several cytokines, including interleukin (IL)-4, IL-5, IL-13, IL-25, and
IL-33, thymic stromal lymphopoietin (TSLP), and cells such as innate lymphoid cells type 2
(ILC2s), play crucial roles in orchestrating the inflammatory response in asthma. Among
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the cells responsible for inflammation that are regulated by the inflammatory pathway
related to the cytokines earlier mentioned, are eosinophils. These cells are increased in
both the blood and airway tissues of asthma patients and have become direct or indirect
targets of many drugs developed to be controllers of asthma. With the development of
knowledge regarding the pathophysiological mechanisms of T2-defined inflammation,
it has been possible to associate some diseases with asthma, not only epidemiologically,
but also using the inflammation pathway. These certainly include chronic rhinosinusitis
with nasal polyposis (CRSwNP) and atopic dermatitis, which have a rather high incidence
of coexistence with asthma. In contrast, diseases that are less frequently associated with
asthma include eosinophilic esophagitis (EoE), despite it being proven that the presence of
type 2 inflammatory diseases significantly increases the risk of EoE [1]. It is estimated that
patients with EoE are commonly affected by asthma in about 45.4% of cases [2]. On the
other hand, a prevalence of 16.5% of EoE has been reported in allergic patients [3].

EoE is an emerging chronic immune-mediated disorder that primarily affects the
esophagus, leading to esophageal dysfunction and associated symptoms. EoE is char-
acterized by eosinophilic infiltration and inflammation of the esophagus. Patients with
EoE often present with symptoms such as dysphagia, food impaction, chest pain, and
heartburn, mimicking gastroesophageal reflux disease (GERD). However, unlike GERD,
EoE usually does not respond to acid-suppressive therapy. As previously described in
asthma, the pathogenesis of EoE also involves a combination of genetic predisposition,
environmental triggers, and dysregulated immune responses. Similar to asthma, the T2
immune response is also a key driver of the inflammatory process in EoE. Eosinophils and
other inflammatory cells infiltrate the esophageal tissue, leading to mucosal damage, fibro-
sis, and impaired esophageal motility. Cytokines such as IL-4, IL-5, and IL-13, as well as
eotaxins—chemokines involved in eosinophil recruitment—contribute to the pathogenesis
of EoE. Although both conditions involve inflammation and share some similarities, they
affect different anatomical sites and exhibit distinct clinical manifestations.

Despite the evident common inflammatory pathway, there are not many studies
linking these two diseases. About 10 years ago, Virchow defined EoE as “asthma of
the esophagus” due to the similarities between diseases to emphasize the similarities of
two diseases too often regarded as two entities that are distinctly separate from each
other [4].

Understanding the shared and distinct mechanisms of inflammation in asthma and
EoE is essential for developing targeted therapies. Current treatments for both conditions
focus on controlling symptoms and reducing inflammation. In asthma, inhaled corti-
costeroids, long-acting beta-agonists, leukotriene modifiers, and monoclonal antibodies
targeting specific cytokines have revolutionized management. Similarly, in EoE, dietary
management, proton pump inhibitors, and topical corticosteroids are the mainstay of
current treatments. However, there is still an unmet need for more effective and person-
alized therapies that can address the underlying inflammatory processes and provide
long-term remission.

The development of biological drugs (specifically, those directed toward components
of T2 inflammation) and several sub-analyses of clinical trials have made it possible to
evaluate the effect of biologicals initially developed for asthma on eosinophilic esophagitis.
The results obtained so far are encouraging and contribute to the knowledge of this type of
inflammation; moreover, they provide useful suggestions when both diseases are present
to orient a clinician’s therapeutic choices.

The research of both pathologies is crucial, both to know the real prevalence of asthma
in EoE patients and vice versa and to confirm that the same drug can affect both patholo-
gies, allowing the clinician to choose one molecule, rather than another, in the case of
comorbid patients.

This manuscript provides an overview of the inflammatory mechanisms underly-
ing asthma and eosinophilic esophagitis, highlighting their etiology, pathogenesis, and
potential therapeutic strategies.
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2. Type 2 Inflammation

The type 2 immune response encompasses both the innate and adaptive arms of the
immune system and represents the common inflammatory pathway within a broad range
of inflammatory and infectious diseases [5]. Historically, atopic diseases have mainly
been the paradigm of the T2 immune response; however, in recent years, insights into the
pathophysiology of other eosinophilic inflammatory diseases have expanded the spectrum
of diseases characterized by type 2-driven inflammation [6]. Accordingly, scientific efforts
are currently being made to translate the immunological knowledge from the “classic” dis-
eases studied for decades (i.e., asthma, CRSwNP, and atopic dermatitis) to other emerging
diseases such as eosinophilic esophagitis. Besides the characteristic tissue eosinophilic
inflammation, one main characteristic is the high prevalence of atopy in these patients.
Atopy certainly contributes to the epithelial barrier dysfunction that characterizes these con-
ditions; however, multiple other factors can intervene, such as genetic predisposition and
epigenetics, both external (protease, irritants, particulate matter, injury, and viruses) and
internal (hormones, growth factors, diet, and changes in the commensal microbiome). Type
2 immune-mediated inflammation is orchestrated by a complex interaction between Th2
cells and group 2 innate lymphoid cells (ILC2), which produce type 2 cytokines, including
interleukin IL-4, IL-5, and IL-13, as well as other inflammatory mediators [7,8]. Th2 cells are
a subset of T helper CD4 that are characterized by the production of Th2 cytokines. They are
often observed in the tissue of allergic patients but are also involved in the pathogenesis of
other inflammatory diseases and the defense against helminthic infection. Pathogenic Th2
cells are a subgroup of Th2 that are capable of producing high amounts of IL-5 and IL-13 in
response to epithelial cell damage, which leads to an amplification of eosinophilic tissue
inflammation. Tpath2 also plays an important role in fibrogenesis, particularly through
amphiregulin, a member of the epidermal growth factor family produced by epithelial cells
undergoing tissue injury [9]. IL-4 upregulates Th2 cells and promotes the differentiation
of B lymphocytes into plasma cells, producing IgE. IL-5 plays a central role in stimulating
the differentiation and maturation of eosinophil progenitors in bone marrow, as well as
their trafficking and survival [10,11]. IL-13 is a pivotal regulator of IgE synthesis, mucus
hypersecretion, and fibrosis. It promotes eosinophils survival, activation, and recruitment;
IL-13 is also related to epithelial barrier disruption via the downregulation of epithelial
junction molecules [12]. Innate lymphoid cells type 2 (ILC2) are the innate counterpart
of the adaptive Th2 cells [13]. These lymphocyte-like cells were recently identified as a
major component of mucosal immunity, as they are mainly activated by epithelium-derived
cytokines, including the alarmins IL-33, IL-25, and thymic stromal lymphopoietin (TSLP).
Indeed, ILC2 cells are also a main source of type 2 cytokines during allergic inflammation
and helminth infection. ILC2 cells also produce IL-9, which promotes self-survival and,
therefore, amplifies type 2 cytokine production [14,15]. IL-25, IL-33, and TSLP are epithelial
cytokines, also known as alarmins, that are released by epithelial cells in response to allergic
and non-allergic triggers such as viruses, cigarette smoke, and pollution. IL-9 upregulates
the expression of IL-5 and IL-13 by ILC2 in positive autocrine feedback and promotes
mast cell survival and activation [16]. The crosstalk between innate ILC2 and Th2 cells
leads, under certain conditions, to T2-high inflammatory diseases, such as atopic dermati-
tis, asthma, allergic rhinitis, CRSwNP, or eosinophilic esophagitis. The pathogenesis of
these conditions can follow the well-known allergic pathways (IgE-mediated mast cells
and basophils degranulation); however, more often, more complex immune-mediated
mechanisms are derived from the interactions between the genetic background and the
environmental exposure [17]. Type 2 inflammation mechanisms, which are common in
asthma and esophagitis, are summarized in Figure 1.
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Figure 1. Main mechanisms of common inflammation, both in asthma and eosinophilic esophagitis,
and the action of monoclonal antibodies.

3. T2 Targeted Therapies in Asthma

The identification of the phenotype first [18], and the endotype later [19,20], in asth-
matic subjects, is crucial when choosing the more appropriate therapy (Table 1). The
GINA document suggests that, after adequately checking for the correct diagnosis, control
of comorbidities, and monitoring adherence to prescribed inhaled therapy, an attempt
to endotype patients according to certain markers related to T2 inflammation should
be made [21]. The characteristics of this inflammation have been previously described.
Specifically, in clinical practice, eosinophils, exhaled nitric oxide, allergy, or an eosinophil
count in sputum greater than 2% are currently used as markers [21]. The first therapeutic
target in asthma in patients with T2 inflammation was, for historical reasons, IgE [22],
which was initially antagonized with the monoclonal antibody omalizumab [23,24]. Sub-
sequent targets were IL-5 [25], with the direct cytokine antagonist mepolizumab [26–31]
and reslizumab [32–35], IL-5 receptor (IL-5r) with benralizumab [36–40], and IL-4 receptor
(IL-4r) with dupilumab [41–43]. To both these targets and drugs, tezepelumab [44,45], an
antibody directed at TSLP [46–51], is currently being marketed.

Table 1. Biologicals used and ongoing trials for severe asthma.

Molecule Mechanism Administration Other Indications
Approved

Benralizumab Anti IL-5 receptor
s.c. 30 mg 4 weeks first 3

doses, 8 weeks other
administrations

-

Dupilumab Anti IL-4α
receptor

400–600 mg s.c. first dose
than 200–300 mg s.c.

2 weeks

Atopic dermatitis, nasal
polyposis, prurigo

nodularis, EoE *

Mepolizumab Anti IL-5
s.c. 100 mg 4 weeks
s.c. 300 mg 4 weeks

in EGPA

Nasal polyposis, EGPA,
hypereosinophilic

syndrome
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Table 1. Cont.

Molecule Mechanism Administration Other Indications
Approved

Reslizumab Anti IL-5 e.v. 3 mg/Kg Asthma

Omalizumab Anti IgE s.c. according to total IgE
and weight

Nasal polyposis, chronic
idiopathic urticaria

Tezepelumab Anti TSLP s.c. 210 mg 4 weeks -

Clinical trials

Astegolimab Anti IL-33
receptor - -

CSJ117 Anti TSLP - -

Melrilimab Anti IL-33 - -

Etokimab Anti IL-33 - -

Itepekimab Anti IL-33 - -

Lebrikizumab Anti IL-13 - Atopic dermatitis

Tralokinumab Anti IL-13 - Atopic dermatitis
s.c. = subcutaneous; EGPA = eosinophilic granulomatosis with polyangiitis; * approved by EMA.

In cases of severe asthma, the use of several biological drugs has achieved a significant
reduction in exacerbations, the need for systemic corticosteroid use, and, in some cases,
an improvement in respiratory function [24,52,53]. The aforementioned goals are the
main parameters, which were evaluated in clinical trials to assess the effect of biologics
on severely asthmatic patients. The first results were obtained in the early 2000s using
omalizumab in allergic asthma, showing a reduction in exacerbations in patients treated
with the drug. Despite other marketed therapies using eosinophils as predictive markers of
efficacy, none were observed for omalizumab, and trials have demonstrated that the efficacy
of the drug was found regardless of the presence or not of these cells [54]. Furthermore,
regarding observations on the safety of the drug, data on reports related to carcinogenesis
were analyzed, leading to the conclusion that the drug is safe and does not increase
neoplastic risk [55].

Subsequently, other biological drugs targeting IL-5 were developed, namely, mepolizumab
and reslizumab. Regarding the former, data from clinical and real-life trials showed its
efficacy in reducing disease exacerbations in patients with an eosinophil count above
150 cells/mcl, allowing, in addition, a significant reduction in daily dosing and, in most
cases, the discontinuation of systemic steroid therapy [29,56]. Other real-life data demon-
strated that the efficacy of mepolizumab is independent of the blood eosinophil count, as
long as they comprise at least 150 cells/mcl [31,57]. Similar evidence came from reslizumab,
although a smaller amount of data is available since the marketing of this drug has not
been commercialized in all countries [58].

Real-life data has also suggested that mepolizumab is equally effective in patients
with and without certain comorbidities such as nasal polyposis [59–65], also indicating that
patients with this condition have a better response to the drug [66].

Again, observations in real life have shown the efficacy of the drug in other diseases
such as eosinophilic esophagitis [67–69]. Mepolizumab was approved for two orphan
diseases, namely, EGPA [70–72] and HES [73–75]. Concerning benralizumab, the effect on
the reduction in exacerbations and the need for systemic corticosteroids was confirmed in
randomized clinical trials [76]. Despite different mechanisms of action, this time directed
against the alpha receptor of IL-5, benralizumab demonstrated its efficacy in severely
asthmatic patients with similar characteristics to the one treated with anti IL-5 drugs. In
this case, the effect of the drug on eosinophils is not caused by the modulation of cytokine,
but through the intervention of natural killer (NK) cells that are able to send eosinophils in
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apoptosis and thereby inhibit their bronchial and tissue inflammatory action. In addition
to its effectiveness, benralizumab also demonstrated reassuring safety in patients treated in
both real-life and clinical trials.

As with mepolizumab, although there is no primary indication for this condition,
in real life, it has been shown to be effective on nasal polyposis, and this comorbidity
has again been associated with improved therapeutic response in patients treated for
asthma [40,77–81].

Similarly, against IL-5, reslizumab was able to reduce asthma exacerbations and OCS
intake in treated patients; unlike other drugs, it was administered intravenously, which
is a method that is yet to be approved in several countries [32–35,82]. As for other drugs,
reslizumab was evaluated both in naïve patients and in the switcher group, ensuring results
in both groups [83].

Dupilumab, another drug directed on T2 inflammation mechanisms, was precisely
directed to the IL-4 receptor, which is a molecule that can interact both with IL-4 and IL-13
(currently used in atopic dermatitis, nasal polyposis, and asthma). The administration
of dupilumab has been demonstrated to be able to reduce exacerbations and systemic
corticosteroid use, and, regarding nasal polyposis, it showed efficacy in reducing the polyp
volume [81,84–86]. Dupilumab, in addition to what has been described above, is very
effective in improving respiratory function in treated patients, providing an important
result regarding disease control. The more ubiquitous mechanism of action of dupilumab
also allows it to interact, albeit indirectly, with the action of IgE and, thus, on some of those
mechanisms that may be most characteristic of patients with an allergic form of asthma,
allowing clinicians to consider it for this type of patient as well as for their therapy [83].

Lastly, tezepelumab, an anti-TSLP antibody, is the first drug to interfere with the
alarmin chain. One of the most interesting aspects of the molecule is precisely its action
on a chain of inflammation beyond that of specifically type 2 cytokines (IL-5, IL4, IL-13),
acting on what is produced as a result of epithelial damage.

Current available data demonstrate a significant efficacy in patients with T2 inflamma-
tion, as well as partial efficacy in those with T2-low characteristics [44,45,87–92]. Clinical
trial data show the efficacy of tezepelumab, principally in patients with high levels of
eosinophils; however, for the first time in severe asthmatic therapies, interesting results
have been obtained on patients with less than 150 eosinophils/mcl, despite having a
slightly lower efficacy score, if compared to the sample with a range higher than the above-
mentioned eosinophils range. Stimulating results appear also in the trial regarding the
effect of the molecule on bronchial hyperactivity (AHR) and local inflammation, demon-
strating that the reduction in eosinophilic inflammation was greater in patients treated with
tezepelumab than in the one randomized in the placebo arm, from which analog results
were obtained regarding AHR.

The results about hyperactivity include differentiators from other drugs available
for asthma at this time; in fact, omalizumab was able to reduce AHR only in several
studies using methacholine, acetylcholine, or adenosine monophosphate; mepolizumab
did not achieve this result as no results were obtained with benralizumab, lebrikizumab,
tocilizumab, efalizumab, and tralokinumab. The only other drug, which is currently not
marketed for asthma, that achieved the result of reducing AHR was etanercept in one study.
In the end, the only two drugs that are currently available for asthma and able to reduce
AHR are tezepelumab and omalizumab [93].

Regarding efficacy on OCS-dependent patients, however, in clinical trials, tezepelumab
did not meet the endpoint of the reduction in exacerbations in this category of patients. Sub-
analyses of the dedicated study, however, showed that the administration of the biologic
drug was able reduce exacerbations and OCS use in dependent patients, with results being
proportionally related to the eosinophilic count at baseline. A new clinical trial with this
aim is ongoing [94]. The long-term effects on tezepelumab safety were evaluated in the
Navigator trial, a 104-week extension of short-term trials, and no difference between the
active and placebo arm groups was described.
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Currently, a new anti IL-5 biological, depemokimab, is under investigation. Its dis-
tinguishing characteristic is its long-life capability, which allows for administration every
6 months [95].

Two molecules targeting IL-13 have been under study for several years, with contro-
versial results. Certainly, the addition of the effect on IL-4r and not only IL-13 demonstrates
a more effective result. Lebrikizumab (anti IL-13) was demonstrated to be effective on
adolescents (12–17 years) in reducing the exacerbation rate after 52 weeks, despite the fact
that the study was prematurely terminated (sponsor’s decision), potentially limiting our
interpretation of the results [96]. Lebrikizumab was also able to reduce baseline blood
eosinophilia or FeNO, which were usually used as biomarkers in the Lavolta study [97].
Regarding other therapies directed at IL-13, the results of clinical trials on the use of
tralokinumab show poor efficacy in terms of exacerbation reduction; however, in another
instance, as previously described for lebrikizumab, a reduction in biomarker levels could
be described [98]. As for exacerbations, the OCS-sparing effect was also not achieved in
trials [99].

Other therapeutic targets under study, at this time, are being directed toward mediators
of type 2 inflammation, as well as TSLP, with CSJ117 [100], and IL-33 with itepekimab [101],
which are being studied in moderate–severe patients undergoing ICS-LABA therapy, in
addition to etokimab (ANB020) and melrilimab (GSK3772847) against IL-33, both in first
experimental phase [100], astegolimab [102] and anti ST-2 (ILC2 receptor for IL-33), which
can reduce asthma exacerbations in phase 2 trials.

4. T2 Target Therapy in Eosinophilic Esophagitis

Eosinophilic esophagitis (EoE) is an emerging disease that is defined by symptoms of
esophageal dysfunction and abnormal eosinophilic inflammation within the esophagus.
The diagnosis is histological and depends on the number of eosinophils detected (at
least 15 eosinophils per high-power field in the absence of other causes of esophageal
eosinophilia) [103–105].

The mechanism of inflammation is Th2-mediated, and aeroallergens/food antigens
are the most important triggers. The migration to the esophageal wall and the activation
of eosinophils and mast cells promote the release of proinflammatory cytokines, such as
interleukin (IL)-4, IL-5, IL-13, and transforming growth factor (TGF) β, causing epithelial
barrier disruption, smooth muscle impairment, and tissue remodeling [106–109]. The
chronic inflammation in EoE patients causes esophageal fibrous remodeling with strictures
that affect the patient’s quality of life. Therefore, EoE requires treatments to induce and
maintain histological remission to stop the progression from inflammation to esophageal
strictures [110]. Topical corticosteroids (STCs), proton-pump inhibitors (PPIs), and dietary
changes are recommended by current guidelines to obtain this aim [103,104].

Nowadays, several new targeted therapies that can arrest the inflammation cascade
are being investigated for EoE. Some drugs are imported from bronchial asthma and atopic
dermatitis since these diseases have the same mechanism of inflammation [110] (Table 2).

Dupilumab, a monoclonal antibody that inhibits the action of IL-4 and IL-13 by
blocking the shared IL-4 receptor α subunit has been approved by the FDA for moderate–
severe atopic dermatitis, asthma, and rhinosinusitis with nasal polyposis treatment. It
suppresses most Th2 inflammatory biomarkers, representing an optimal target drug for
Th2-mediated diseases; moreover, for this reason, it was also studied in the context of
EoE [111]. In May 2022, dupilumab was also approved in the treatment of EoE in phase 2
and 3 trials [112]. In particular, in a phase 2 trial versus placebo, adult patients with active
EoE after 12 weeks of weekly subcutaneous dupilumab injections showed a significant
improvement in dysphagia, histologic, and endoscopic features, as well as esophageal
function, with an acceptable safety profile. A significant reduction in eosinophil counts
was obtained, with 83% of patients achieving less than 15 eosinophils per high-power
field [110]. Considering the small and short duration of the study, a subsequent study was
conducted to evaluate the long-term efficacy and safety of this drug in this class of patients.
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Preliminary data from a phase 3 study confirmed its effectiveness in adolescent and adult
patients after 52 weeks of weekly treatment [113,114].

Table 2. Therapeutical approaches proposed for eosinophilic esophagitis.

Molecule Mechanism Administration Phase of Trials

Benralizumab Anti IL-5 receptor 30 mg SC every
4 weeks

Phase 3 trials recently
stopped in

October 2022

Cendakimab Anti IL-13
receptor

180 or 360 mg once weekly for
16 weeks via subcutaneous

injections

Phase 2 trial, long-term
extension study

Dupilumab Anti IL-4α
receptor 300 mg subcutaneous weekly Phase 3

Vedolizumab Anti integrin
α4β7/αE/β7

300 mg intravenously at 0, 2,
and 6 weeks, then every

8 weeks
_

Natalizumab Anti-α4-integrin 300 mg intravenously monthly -

Lirentelimab

Monoclonal
antibody to sialic

acid-binding
immunoglobulin-

like
lectin 8

Patients were randomized 1:1:1
to receive: 1.0 mg/kg of

lirentelimab for the first month
followed by five doses of

3.0 mg/kg given monthly (b)
monthly 1.0 mg/kg of

lirentelimab (c) a
monthly placebo

Phase 2/3

Mepolizumab Anti IL-5 s.c. 100/300 mg 4 weeks Phase 2

Tezepelumab Anti TSLP subcutaneously using an
accessorized pre-filled syringe Phase 3

Losartan
Antigotensin-1

receptor
antagonist

0.7–0.9 mg/kg
(titration)/1.0–1.4 mg/kg
(maintenance) daily for

16 weeks

Phase 2 trial

Another monoclonal antibody that acts on IL-13 is cendakimab (previously RPC4046).
It inhibits binding at the IL-513 receptor and is administered weekly via subcutaneous
injections. It demonstrated a histological and endoscopic improvement in a 16-week phase
2 study in adults with active EoE but not a clinical remission, although an improving trend
was shown [115]. An endoscopic and histologic improvement continues with an increase
in the duration of treatment, as shown in the data from the open-label, long-term extension
(LTE), wherein the percent of clinical and histological responders grows progressively
both in placebo–cendakimab patients (14% at LTE entry to 67% at LTE week 52) and in
cendakimab–cendakimab patients (30% at LTE entry to 54% at LTE week 52 [116].

IL-5, which is produced by T helper 2 cells, is involved in the differentiation, matura-
tion, and migration process from the bone marrow of eosinophils favoring their adhesion to
the esophageal wall. Eosinophils are directly involved in tissue remodeling as shown in an
experimental model [117]. Therefore, strategies to reduce esophageal eosinophilic inflam-
mation in patients with EoE were evaluated as a possible therapeutic strategy. Mepolizumab
is a fully humanized anti IL-5 monoclonal antibody. It is currently approved by the FDA for
the treatment of severe asthma in patients from the age of 6, hypereosinophilic syndrome
in patients that are 12 years and older, and chronic rhinosinusitis with nasal polyps and
eosinophilic granulomatosis with polyangiitis. In a randomized placebo-controlled, double-
blind trial, mepolizumab showed a significant reduction in esophageal eosinophilia but an
inconsistent symptom improvement [118]. Benralizumab is another monoclonal antibody
directed against the membrane-bound IL-5 receptor α chain present in eosinophils. It is
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currently approved by the FDA for the treatment of severe asthma in patients 12 years
and older. A phase 3 trial of benralizumab in EoE was recently stopped (in October 2022)
because it did not meet one of the two dual-primary endpoints: it did not achieve clinical
remission in the study population; rather, only a statistically significant improvement in
histological disease compared to placebo.

Lymphocyte-trafficking modulation is currently being explored as a possible target for
therapy in refractory eosinophilic gastro-intestinal disorders including EoE. Vedolizumab,
a monoclonal integrin α4β7 antibody, mainly blocks CD4+T lymphocytes from binding
to MAd CAM1 on intestinal endothelial cells, ensuring gut-selective, anti-inflammatory
activity; for this reason, it has been approved to treat inflammatory bowel disease. In
addition, it also blocks αE/β7 integrin, which has been found in Th2 lymphocyte cells
in EoE patients, and this effect could lead to hypotheses regarding its role in the context
of EoE patients [119,120]. Vedolizumab and natalizumab, two recombinant humanized
anti-α4-integrin antibodies, have provided some benefit to EoE patients, albeit only case
reports have been reported [121–124].

Lirentelimab (or antolimab) is a monoclonal antibody to sialic acid-binding immunoglo-
bulin-like lectin 8 (Siglec-8), a CD33 receptor located on the surface of eosinophils and
mast cells. It induces eosinophilic apoptosis and inhibits mast cell activation. In a small
clinical trial, histologic remission (≤6 eos/hpf) was achieved, but there was no statistical
significance for the patient-reported symptomatic coprimary endpoints; however, the
results of these trials have not yet been published [125].

The ENIGMA trial, a randomized, phase 2, placebo-controlled study aiming to assess
the efficacy of the anti Siglec-8 antibody (AK002) in adult patients with eosinophilic gas-
tritis and gastroenteritis, has recently demonstrated histologic remission in patients with
concomitant EoE [126]. For this reason, lirentelimab has also been evaluated in the context
of EoE (KRIPTOS trial), with unfortunately similar evidence (histologic remission without
clinical benefit) [127].

Tezepelumab, a TSLP antagonist used for asthma and atopic dermatitis, has a mecha-
nism of action that targets the top of the inflammatory cascade, and a recent clinical trial
has started to evaluate its role in improving outcomes for EoE patients [128,129].

Moreover, chronic inflammation leads to progressive esophageal remodeling, and
TGF-β plays a relevant role in this process. Losartan, an antigotensin-1 receptor antagonist
approved to treat high blood pressure, has been proposed due to its ability to reduce the
signaling of TGF-β as a therapy in EoE patients. An ongoing phase 2 trial with increasing
doses of losartan is ongoing [130].

Finally, the JAK–STAT pathway has been identified as a potential target in the treat-
ment of EoE. There are no studies on the JAK inhibitor tofacitinib in EoE patients, but it has
been reported that it was able to reduce esophageal eosinophilic infiltration in a patient
with EoE [131].

The long-term efficacy of these drugs will be determined by further studies, but they
seem to be promising in modifying the course of the disease.

5. Unmet Needs

Although the effect of biologicals both in asthma and eosinophilic esophagitis was
demonstrated, some points remain unclear and require further investigation (Figure 2). In
the field of asthma, for example, the definition of the severity of a disease is not unique, and
the classification criteria according to ATS/ERS [132], WHO [133], and NICE [134] differ.
This means that a patient may or may not be diagnosed with severe asthma depending on
the definition used [135]. This aspect could be overcome using the definition suggested by
GINA in the last drafts, which almost completely overlaps with the ATS/ERS criteria [136].
The first point, which is common in asthma and esophagitis, concerns treatment adher-
ence [137–141]. Currently, it is not possible to have clear and objective information on how
many patients are taking the drugs prescribed to them, and this may inevitably lead to an
increase in the prescription of biologic drugs to patients who are not truly severe, but only
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poorly adherent. Regarding asthma, some companies are studying add-on devices that
can be connected to the inhaled medication to count the actual doses taken by the patient;
however, the technology of these comma objects and their distribution still needs some
time [142]. Regarding the treatment of esophagitis with drugs, developing this kind of tech-
nology for oral intake is still quite complicated. Another point in the field of severe asthma
is the choice of biological drug, having several molecules with similar targets available. The
choice of drugs currently falls on the presence or absence of markers such as eosinophilia,
IgE, OCS dependence, and, empirically, by the simultaneous presence of comorbidities
that can be attacked by the same molecule. In the field of esophagitis, a critical point that
remains unresolved is the lack of real-life data, which are increasingly important in the
management of a drug, as well as in understanding its potential. A further point of insight
concerns the self-administration of biologic drugs that are now required to be increasingly
produced in a way that makes home administration possible. With the patients’ ability
to take the drug without physician supervision, adherence to this treatment may decline,
thus becoming a problem from both a clinical and pharmacoeconomic perspective. At
present, and for the foreseeable future, the common pathophysiological mechanisms of
these two pathologies necessitate an investigation, that is at least in clinical history, of
patients with respiratory comorbidities and esophagitis and patients with digestive co-
morbidities and asthma. In fact, the possibility of treating two diseases with a single drug
makes it possible to carry out true precision medicine, targeting the pathophysiological
process underlying both diseases.
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6. Conclusions

In conclusion, the effect of eosinophils and T2 inflammation has been proven to be
present both in asthma and eosinophilic esophagitis. In the field of asthma, the role of
monoclonal antibodies is pivotal in the treatment of the severe form of this disease, which is
currently not responding adequately to traditional therapy, to reduce OCS use; the real-life
analysis and sub-analysis of randomized trials of patients treated for asthma and their
pathology have demonstrated the effect of antibodies also in esophagitis. The develop-
ment of trials dedicated to esophagitis provides interesting results and different targets
which are also directed to T2 cytokines and mediators. Further studies will be needed to
evaluate the relationship between asthma and eosinophilic esophagitis, with a search for
common inflammatory pathways and interactions between the diseases, as has already
been evaluated in rhinosinusitis with nasal polyposis, to better understand the role of type
2 inflammation and the possible causes of the imbalance of inflammatory mechanisms.

The evidence of a common inflammatory pathway in these two diseases dictates
increased attention to the management of these patients. As the search for polyposis
comorbidity has become more routinary over time in asthmatic patients, any pathology
related to a similar mechanism, but located in a different district than the airway, must be
considered. This review aimed to focus on raising awareness of one of the diseases related
to T2 inflammation, that is generally seldom considered as a possible comorbidity of asthma,
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aiming to inform gastroenterologists and pulmonary-allergologists of the importance of
the search for these two diseases.
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CRSwNP Chronic rhinosinusitis with nasal polyps
EGPA Eosinophilic granulomatosis with polyangiitis
EOE Eosinophilic esophagitis
IL Interleukin
ILC2 Innate Lymphoid Cells Type 2
T2 Type 2
TSLP Thymic stromal lymphopoietin
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