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Abstract: As the most abundant white blood cells in humans, neutrophils play a key role in acute
and chronic inflammation, suggesting that these cells are a key component of targeted therapies
for various inflammation-related diseases. Specific enzyme-responsive or specific ligand-modified
polymer nanoparticles are beneficial for improving drug efficacy, reducing toxicity, and enhancing
focal site retention. However, there remain significant challenges in biomedical applications of these
synthetic polymer nanoparticles, mainly due to their rapid clearance by the reticuloendothelial system.
In recent years, biomimetic drug delivery systems such as neutrophils acting directly as drug carriers
or neutrophil-membrane-coated nanoparticles have received increasing attention due to the natural
advantages of neutrophils. Thus, neutrophil-targeted, neutrophil-assisted, or neutrophil-coated
nanoparticles exhibit a prolonged blood circulation time and improved accumulation at the site of
inflammation. Despite recent advancements, further clinical research must be performed to evaluate
neutrophil-based delivery systems for future biomedical application in the diagnosis and treatment of
related inflammatory diseases. In this review, we have summarized new exciting developments and
challenges in neutrophil-mediated drug delivery strategies for treating inflammation-related diseases.

Keywords: neutrophil; inflammation; targeted drug delivery; biomedical application

1. Introduction

Nanomedicine has emerged as an important strategy for targeted drug delivery, which
ensures the targeted and precise delivery of drugs to specific cells or tissues [1,2]. Nanopar-
ticles composed of biodegradable polymers, a type of advanced drug delivery system, can
significantly improve the pharmacological effects and reduce the potential side effects of
drugs [3,4]. The most commonly used polymers in this system include poly(lactic acid),
poly(ε-caprolactone), poly(lactide-coglycolide) (PLGA), and poly(alkylcyanoacrylates) [5].
Polymer nanoparticles with a particle size of 10–1000 nm possess some beneficial prop-
erties, such as low toxicity, good biocompatibility, and biodegradation. Unfortunately,
these synthetic polymer nanoparticles have some limitations, such as short circulation time,
low targeting efficiency, and low biological stability. Further, the physical and chemical
properties of nanoparticles, including size, shape, charge, and surface chemical properties,
affect their cell uptake, tissue accumulation, and adhesion; this facilitates their clearance by
the reticuloendothelial system (RES), thereby leading to poor efficiency of targeted deliv-
ery [6]. Traditionally, poly(ethylene glycol) (PEG) and polysialic acid have been utilized
for the surface functionalization of nanoparticles as the hydration layer which can reduce
phagocytosis by RES and significantly extend the blood circulation time [7–9]. However,
recent studies have suggested that the presence of anti-PEG antibodies enables the rapid
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clearance of PEG-coated nanoparticles by the liver, thus rendering PEGylation unsuit-
able for long-term application [10,11]. In addition, bottom-up modification strategies are
unfavorable for large-scale production on account of the need for more functional ligands.

Surprisingly, biomimetic nanoparticles with the advantages of source cells and syn-
thetic nanoparticles have gained increasing attention [12–14]. As one of the most fundamen-
tal units in biology, cells have the natural ability to perform complex functions in dynamic
environments. Living cells, including erythrocytes, monocytes, macrophages, lymphocytes,
neutrophils, and platelets, can be used as naturally biocompatible and degradable drug
delivery vehicles that exhibit an inherent capacity to target tissues and cross biological
barriers [15]. Furthermore, coating nanoparticles with cell membrane is another biomimetic
strategy. Cell-membrane-coated nanoparticles have several advantages, such as extended
circulation time and disease-relevant targeting, owing to the inherent properties of the
host cell membrane (Figure 1). To date, the membranes of leukocytes, platelets, red blood
cells, and cancer cells have been employed for the construction of cell-membrane-coated
nanoparticles [16].
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Activated neutrophils play a crucial role in inflammatory diseases. The migration
of neutrophils is a highly specific and natural response to inflammation; moreover, neu-
trophils are often the first immune cells to reach the site of inflammation, making them
ideal vectors and targets for drug delivery strategies. As far as we know, the various
reviews on neutrophil-mediated targeted delivery systems for nanotherapeutics have
been already published [18–21]. However, so far, there is still a lack of reviews on how
to develop neutrophil-targeted, neutrophil-assisted, or neutrophil-coated nanoparticles
strategies based on the characteristics of neutrophil-mediated disease. In this review, we
summarize the role of neutrophils in inflammation as well as notable findings regarding
the use of neutrophil-mediated nanocarriers for targeted drug delivery in different disease
models. A search of the literature was performed by examining the PubMed database, and
the search terms included “neutrophils”, “target”, and “inflammation”, thus this review
is focused on recent progress and promising outcomes of neutrophil-targeted delivery
strategies for future biomedical application within the last 10 years from present foreign
and domestic research in the English literature, which is important to help researchers
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understand the opportunities and challenges of neutrophil-based drug delivery systems.
For example, we explored specific enzyme-responsive nanoparticles, the surface modifi-
cation of polymeric nanoparticles with specific ligands (to enhance their ability to target
neutrophils), neutrophils as carriers directly, and the latest progress in the biomimetic
modification of nanocarriers with neutrophil membranes (summarized in Figure 2 and
Table 1). Finally, we discuss the advantages and challenges of neutrophil-mediated drug
delivery systems for the diagnosis and treatment of inflammation-related diseases in the
future clinical transformation.
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Table 1. Summary of the neutrophil-mediated drug delivery strategies for treatment of inflammation-
related disease.

Targeting Strategies Mechanisms Applications Ref.

Specific enzyme-responsive
drug delivery system

MPO and NE are specific enzymes abundantly
expressed in neutrophils and mediate inflammation

Acute liver injury, lung
metastasis, venous thrombosis [22–25]

Specific ligand-modified drug
delivery system

Specific molecular recognition ligands (antibodies,
aptamers, and peptides) can be bound to neutrophils Cerebral ischemia, COPD [26,27]

Neutrophils act directly as
drug carriers

Neutrophils can cross biological barriers and be
recruited to inflammatory tissues Atherosclerosis, gliomas [28,29]

Neutrophil-membrane-coated
drug delivery system

Neutrophil membranes are capable of mimicking the
source cells and transporting to the inflamed focus

Traumatic spinal cord injury,
pneumonia, rheumatoid
arthritis

[30–32]

2. Role of Neutrophils in Diseases

Inflammation is a defensive process in which the immune system is activated in
response to foreign invaders. In general, inflammation is required to protect the host
cell from exogenous pathogens and repair damaged tissues. Unfortunately, dysregulated

www.figdraw.com
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inflammation has been implicated in the pathogenesis of various diseases [33]. In this
process, white blood cells infiltrate the tissue and release proinflammatory cytokines,
which can cause tissue injury [34]. Neutrophils are the most abundant circulating white
blood cells and are considered as the first immune cells to be recruited to an inflamed
tissue; as shown in Figure 3, they are generated from hematopoietic stem cells in the
bone marrow and granulocyte colony-stimulating factor (G-CSF) drives the granulopoiesis
toward neutrophils via the G-CSF receptor [35]. Neutrophil recruitment involves a complex
cascade that includes tethering, rolling, adhesion, crawling, and transmigration. This
process is specific and highly dependent on the membrane proteins and chemokines [36].
On sensing inflammatory stimuli, they are capable of eliminating the invading pathogens
through phagocytosis, degranulation, and the release of neutrophil extracellular traps
(NETs) [37]. However, abnormal activation of neutrophils has traditionally been considered
to play key roles in acute inflammatory diseases, such as acute peritonitis, acute respiratory
distress syndrome, and acute liver injury [22,38]. In recent years, accumulated evidence
confirmed that neutrophils are also involved in numerous chronic inflammatory diseases,
including chronic respiratory disease, inflammatory bowel disease, rheumatoid arthritis,
diabetes, atherosclerosis, and cancer [39–43].
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In particular, infiltrated neutrophils and their products, including myeloperoxidase
(MPO), reactive oxygen species (ROS), and NETs, initiate inflammatory cascades by modu-
lating the innate and adaptive immune responses (Figure 4) [45]. NETs are composed of
double-stranded DNA, histones, and granule proteins, including neutrophil elastase (NE),
cathepsin G, and MPO. The histones and granule proteins of NETs induce cell apoptosis
and promote inflammation. In addition, NETs can activate dendritic cells and T cells
to initiate autoimmune responses. Furthermore, NETs activate NLRP3 inflammasome,
leading to the maturation and secretion of inflammatory cytokines (IL-1β and IL-18) in
macrophages [46]. Consequently, neutrophils play an important role in the initiation of
early inflammatory responses and promote the development of inflammatory diseases.
For instance, neutrophils and NETs are of crucial importance in acute respiratory distress
syndrome. Krishnamoorthy et al. reported that neutrophilic asthma induces neutrophil
recruitment and NET formation in the lungs [47]. Soehnlein et al. suggested that neu-
trophils play a vital role in atherosclerosis [41]. Moreover, a large amount of neutrophils
are found in human atherosclerotic plaques, and neutrophil depletion has been shown
to reduce early atherosclerosis in mice [48,49]. Further studies have indicated that NETs
accelerate the destabilization of atherosclerotic plaques [50]. Additionally, Khandpur et al.
demonstrated that neutrophil activation and neutrophil-derived NETs are critically linked
to rheumatoid arthritis [51]. Neutrophils also promote both tumor growth and metastasis
in cancer [42]. Finally, Albrengues et al. reported that the protumoral effect of neutrophils
may be mediated by the release of NETs and suppression of T cell responses [52].
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Taken together, these findings demonstrate that neutrophils are vital in various dis-
eases, making them a potential target for therapeutic intervention. There is great potential
for the application of the biological characteristics of neutrophils to achieve targeted drug
delivery, which should be urgently investigated [54,55].

3. Neutrophil-Mediated Drug Delivery Strategies

The current strategies for neutrophil-mediated targeted delivery are summarized
based on the following four aspects.

3.1. Specific Enzyme-Responsive Drug Delivery System Targeting Neutrophils

MPO is a heme-containing peroxidase abundantly expressed in neutrophils and me-
diates a strong oxidative burst through the formation of reactive intermediates. In the
presence of H2O2 and chloride, MPO catalyzes the formation of hypochlorous acid (HClO)
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and causes significant tissue damage [53]. There is increasing evidence that neutrophil-
specific MPO is closely and positively correlated with the risk of progression of many in-
flammatory diseases [56]. Consequently, an MPO-responsive and biodegradable nanoprobe
was designed and constructed, which is utilized for the detection of activated neutrophils
during inflammation [38]. For example, luminol is often used to specifically detect MPO
activity in neutrophils [57]. It is also used as an effective and biocompatible polymer lumi-
nescence nanoprobe (LaCD NP) based on α-cyclodextrin modified with luminol (LaCD),
which can be used for in vivo dynamic diagnosis during the development of neutrophil-
mediated acute liver injury (Figure 5) [22]. The luminescence of LaCD NP depends on the
level of MPO, and the luminescent intensity is positively associated with the number of
neutrophils in vitro. Furthermore, in mouse models of acute liver injury, LaCD NP can
serve as a luminescent nanoplatform for the noninvasive and real-time detection of neu-
trophils infiltrated in the liver [22]. This nanoprobe is promising for the diagnosis of other
neutrophil-associated diseases and can be utilized as a neutrophil-specific nanocarrier for
the targeted delivery of drugs to treat inflammation. MPO-catalyzed HClO is an important
ROS in neutrophils, which can promote cell or tissue damage and even cause inflammatory
diseases and disorders. Therefore, effective detection of HClO is of great significance for
disease research. Hilderbrand et al. developed a MPO-mediated nanoprobe labeled with
Alexa Fluor 488 for HClO imaging in a mouse model of myocardial infarction and enabled
high-throughput screening of anti-inflammatory molecules [58].
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Metastasis is the leading cause of death in patients with cancer. This is attributed to
the fact that effective treatment is limited once tumors have metastasized from the primary
site. However, the current knowledge and development of the cellular and molecular
mechanisms involved in tumor metastasis remains incomplete [59]. Recently, numerous
studies have elucidated the critical roles of neutrophils in tumor growth and progres-
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sion. Neutrophils, along with cytokines and chemokines, have a significant impact on the
tumor microenvironment, leading to tumor cell proliferation, angiogenesis, and metas-
tasis [60,61]. For example, neutrophils promote the development of lung metastases by
releasing proteases and leukotrienes. In addition, tumor-associated neutrophils are ca-
pable of suppressing antitumor T cell immunity and assisting tumor cells to escape [62].
Therefore, targeting neutrophils may be an attractive new strategy for metastasis therapy.
Notably, Taxiezhung et al. first designed and synthesized neutrophil-targeted nanoparticles
via the self-assembly of 5-hydroxytryptamine (5-HT)-conjugated PLGA–PEG–COOH (5HT
NP). Subsequently, the photosensitizers 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide
and 5-lipoxygenase inhibitor (zileuton) were loaded onto 5HT NP to obtain the multifunc-
tional nanoparticles HZ-5 NPs (Figure 6) [23]. HZ-5 NPs can specifically target neutrophils
through MPO-catalyzed aggregation in tumor tissues, ensuring that drugs loaded onto
HZ-5 NPs could be concentrated, retained, and released in a sustained manner at the tumor
site, thus achieving effective tumor suppression and resistance against neutrophil-mediated
lung metastasis. For an anti-metastatic effect, it is essential to enhance drug accumulation
and delivery efficiency at the tumor site. This study developed a new strategy to target
neutrophils and enhance the efficacy in tumor treatment, which may provide novel ideas
for designing polymer nanoparticles by exploiting the tumor microenvironment.
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NE is a proteolytic enzyme that is exclusively present on neutrophils, but not on
other leucocyte subsets. NE can induce cell proliferation and activate several cytokine and
chemokine signaling pathways. The level of NE reportedly correlates with the progression
of inflammation [63]. Therefore, NE is considered as a therapeutic target for inflammatory
diseases. NE is highly involved in lung inflammatory diseases and lung cancer; accordingly,
Liu et al. constructed a nanoprobe based on the fluorescence resonance energy transfer
system by incorporating the NE-specific peptide substrate, quantum dots, and organic
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dyes, providing an applicable tool for in vivo NE detection in mouse models of lung
cancer and acute lung injury, thus demonstrating its potential application in the clinical
diagnosis of NE-related diseases (Figure 7A) [24]. In addition, Cruz et al. constructed a
nanomedicine platform that uniquely utilizes an NE-binding peptide for specific binding
to activated neutrophils, which led to a significant reduction in neutrophil activities in vitro
and induced the therapeutic effect on murine venous thrombosis in vivo. Thus, it may be a
safe and highly efficient approach to neutralize the harmful pathological effects driven by
neutrophils, promote healing, and preserve innate immunity or hemostasis (Figure 7B) [25].
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Therefore, specific enzyme-responsive nanomaterials play a significant role in neutrophil
targeting by taking advantage of the overexpression and increased activity of MPO and
NE, which provides a new strategy for treating neutrophil-mediated inflammatory diseases.
Nevertheless, there are some challenges associated with the use of these materials. The
concentrations of enzymes in the extra- and intracellular milieu should be considered because
some materials are extremely sensitive, whereas others require a higher concentration.

3.2. Specific Ligand-Modified Drug Delivery System Targeting Neutrophils

In general, by modifying the surface of nanocarriers with specific molecular recog-
nition ligands, the cargo can be delivered to specific cells. This is considered as the most
commonly used active targeted delivery strategy. In particular, nanocarriers with con-
trollable and targetable properties can be developed using molecular recognition ligands
(antibodies, aptamers, and peptides). Bisso et al. revealed that human serum albumin
can modify the surface chemistry of PLGA nanoparticles, thus affecting their uptake by
neutrophils [64]. For example, taking advantage of the fact that CD11b is highly expressed
in activated neutrophils, nanoparticles modified with an anti-CD11b antibody can be
readily ingested by neutrophils in vivo through the recognition of CD11b by anti-CD11b
antibody [65].

Moreover, Zhang et al. constructed cross-linked dendrigraft poly-L-lysine (DGL)
nanoparticles containing cis-aconitic anhydride-modified catalase and modified them with
the neutrophil-targeting peptide Ac-PGP (cl PGP-PEG-DGL/CAT-Aco NPs); this nanoparti-
cle system delivered drugs to cerebral ischemic areas via neutrophil-mediated mechanisms
(Figure 8) [26]. In addition, macromolecular drugs have been shown to be promising thera-
peutics for neurological diseases. However, their instability and poor penetration through
the blood–brain barrier (BBB) hinder further application of these agents [66]. Compared
with monocytes, an increased number of neutrophils were detected in patients with stroke,
which migrate to cerebral ischemic areas in cases of experimental stroke [67,68]. In these
studies, neutrophil-targeting NPs exhibited an excellent brain-targeting effect because of the
specific phagocytosis induced by endogenous circulating neutrophils, followed by migration
across the BBB, which significantly reduced the infarct volume and enhanced the therapeutic
outcome of cerebral ischemia [26]. Therefore, this strategy may serve as an effective approach
for treating various brain diseases related to neutrophil-mediated inflammation.

Chronic obstructive pulmonary disease (COPD) is a major cause of mortality and
morbidity worldwide [69]. In COPD, the levels of neutrophils are elevated, which is
associated with the activation of the inflammatory response [70]. Unfortunately, due to
the mucus barrier and airway defense, the efficient delivery of therapeutic agents to neu-
trophils in vivo remains a major challenge. As shown in Figure 9, to avoid rapid clearance
and allow access to airway inflammatory cells, Neeraj et al. developed biocompatible
and biodegradable neutrophil-targeted polymer nanoparticles consisting of PLGA–PEG
nanoparticles conjugated with anti-NIMP-R14 antibodies (PINPNIMP) [27]. PINPNIMP can
cross the airway barrier and selectively deliver drugs to neutrophils, thus resulting in
the alleviation of neutrophilic inflammation in obstructive airway lung diseases. Further
preclinical evaluation and standardization are required before employing this strategy for
the clinical treatment of pulmonary diseases.

Therefore, surface modification of polymer nanoparticles with specific ligands can
effectively target neutrophils to significantly enhance the efficacy of drug delivery and
improve therapeutic effects, providing a new avenue for the treatment of various neutrophil-
mediated inflammatory diseases. However, these exogenous biofunctionalized polymer
nanoparticles cannot mimic the complex intercellular interactions in the human body,
resulting in relatively short circulation times and unsatisfactory biodistribution. Thus, new
strategies are required to overcome these limitations.
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3.3. Neutrophils Act Directly as Drug Carriers That Target Diseases

Neutrophils can cross biological barriers and be recruited to inflammatory tissues,
making them attractive targeted delivery carriers with excellent movability and biocompat-
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ibility [21]. Neutrophils are phagocytes that can uptake different nanoparticles. Nanoparticles
can interact with components of the plasma membrane and enter the neutrophils mainly de-
pending on natural endocytosis [71]. Thus, drug carriers based on neutrophils are constructed
by incubating nanoparticles with neutrophils, and fluorescence-labeled nanoparticles can
be monitored by the live cell imaging system. Consequently, several studies have recently
explored the use of neutrophils as vehicles to deliver polymer nanoparticles.

Atherosclerosis (AS), which is the underlying cause of most cardiovascular diseases,
is a chronic inflammatory disease induced by disordered lipid metabolism and imbalanced
inflammatory responses and remains the leading cause of morbidity and mortality world-
wide [72]. The inflammatory microenvironment of AS plaques consists of various immune
cells, such as neutrophils and T lymphocytes; in addition, the important role of neutrophils
in the development of AS has been well documented [41,73]. Many studies have suggested
that adhesion molecules, including E-selectin, P-selectin, ICAM-1, and CXCL1/KC, which
are overexpressed in the activated vascular endothelium, can recruit neutrophils to the
atherosclerotic lesions [74,75]. Therefore, as shown in Figure 10, neutrophils may be used as
cellular carriers to target AS plaques, which can effectively avoid phagocytosis in the liver
and spleen and further overcome the challenges of the traditional nanomedicine therapy
for AS.
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In this context, Xue et al. exploited neutrophils as cellular vehicles to load a cationic
lipid polymer of 1,5-dioctadecyl-N-histidyl-L-glutamate (HG2C18)-based nanoparticles,
thereby targeting atherosclerotic sites (Figure 10) [28]. Neutrophils were first collected from
the bone marrow and then utilized to load fluorescent-labeled nanoparticles as cargos,
which can specifically target foam cells in vitro (Figure 11A,B). In an animal model of
AS, the use of neutrophils as cellular carriers allowed the effective and specific delivery
of nanoparticles to the site of atherosclerotic plaques (Figure 11C). In this strategy, the
property of natural chemotaxis of neutrophils in AS plaques was exploited, ensuring that
the nanoparticles loaded in the neutrophils can be recruited to atherosclerotic lesion sites.
In addition, this strategy has been applied in targeted therapy for cancer [76]. Accordingly,
we believe that cellular vehicles based on neutrophils are promising and excellent carriers that
can be used to load agents or nanoparticles for treating other neutrophil-mediated diseases.
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Gliomas, which are the most common primary tumors of the central nervous system,
have a poor prognosis and high mortality. Nevertheless, because of the highly aggressive
and infiltrative nature of glioma cells, the therapeutic effect of surgical resection is limited.
In addition, the effect of chemotherapy is hindered by the limited penetration of drugs
across the blood–brain barrier and blood–tumor barrier [77–79]. Even though the blood–
brain barrier can be overcome using a polymer nanoparticle-based drug delivery system
with an active targeting function, its therapeutic effect remains unsatisfactory owing to
a poor blood circulation lifespan and insufficient intertumoral drug accumulation [80].
Gratifyingly, immune-cell-based drug delivery vehicles can assist drugs in crossing the
vascular barrier and migrating to the tumor sites, thereby reducing immune clearance and
extending the biological half-life of the drugs [81,82]. Neutrophils play a critical role during
cancer progression and metastasis, and they possess the natural ability to traverse the
blood–brain barrier and infiltrate tumor tissues; thus, they can serve as “living” vehicles to
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carry cargos to the brain. Recently, Wu et al. reported a strategy for the targeted delivery of
doxorubicin-loaded magnetic mesoporous silica nanoparticles using neutrophils as cellular
carriers (ND-MMSNs) for glioma theranostics (Figure 12) [29].
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MMSNs were synthesized by encapsulating magnetic Fe3O4 nanoparticles in meso-
porous silica using polymer cetyltrimethylammonium bromide as the surfactant. Similarly,
MMSNs loaded with the near-infrared dye indocyanine green (ICG) were prepared (I-
MMSNs) and then co-incubated with neutrophils to form NI-MMSNs. In the incomplete
resection glioma model, NI-MMSNs exhibited a significantly higher targeted accumula-
tion in the brain than free ICG and I-MMSNs after injection (Figure 13A). Consequently,
ND-MMSNs exhibited the best inhibitory effect on tumor regeneration and significantly
prolonged the postoperative survival time in C6 glioma-bearing mice, indicating that dox-
orubicin was increasingly accumulated at the glioma sites via neutrophils (Figure 13B).
Therefore, their research offers a new approach for targeted cancer therapy by combining
the advantages of neutrophils and polymer nanoparticles.
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Unlike the traditional nanoparticles that target accumulation at the inflammatory site
based on responsive targeting, known as enzyme stimulation, or active targeting via ligand–
receptor interactions, cellular vehicles based on neutrophils can overcome the challenges
of nanomedicines. Neutrophils in the blood can effectively avoid phagocytosis in the
liver and spleen. Thus, neutrophils as drug carriers provide new strategies for treating
neutrophil-mediated inflammatory diseases. Conversely, the recruitment of neutrophils is
a natural process, which could result in their enrichment at the inflammatory site. Further
research needs to be performed to evaluate the application of neutrophil hitchhiking in
inflammatory diseases.

3.4. Neutrophil-Membrane-Coated Drug Delivery System for Disease Targeting

The use of natural living neutrophils as drug delivery carriers is limited by their poor
viability after isolation. The cell membrane coating technology was first reported in 2011,
in which the whole cell membrane was modified onto the surface of nanoparticles. The
resulting membrane-coated nanoparticles are capable of mimicking the source cells, thereby
extending their circulation time, alleviating immune recognition, and transporting thera-
peutics to the inflamed focus [83]. Currently, neutrophil-membrane-coated nanoparticles
are gaining considerable interest for the treatment of diverse neutrophil-associated acute
and chronic inflammatory diseases.

Traumatic spinal cord injury (SCI) represents a significant cause of neuron death,
spinal cord damage, and even permanent paralysis. During SCI, neutrophils infiltrate the
injured spinal cord and release various inflammatory mediators, which further induce
a secondary injury [84,85]. However, the previously reported single receptor targeted
therapy for SCI remains unsatisfactory for inhibiting the proinflammatory function of
neutrophils [86–88]. Bi et al. constructed a type of neutrophil decoy (ND) by coating
polydopamine nanoparticles with neutrophil membranes, which can inhibit neutrophil



Pharmaceutics 2023, 15, 1881 15 of 22

activity and significantly promote neural regeneration and functional recovery after SCI
(Figure 14) [30].
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Multiple receptors derived from source neutrophils on the surface of NDs can help
them migrate to the injured spinal cord and neutralize neutrophil-associated chemokines
and cytokines. Moreover, Feng et al. constructed a neutrophil-like cell-membrane-coated
mesoporous Prussian blue nanozyme using potassium ferricyanide and polyvinylpyrroli-
done, which can accumulate in the injured brain, to treat ischemic stroke based on the
specific interaction between neutrophils and inflamed brain microvascular endothelial cells
after stroke [89]. To improve the treatment effect on pneumonia, Wang et al. designed
neutrophil-membrane-coated sparfloxacin-loaded polymer nanoparticles (denoted as NM-
NP-SPX) that can imitate activated neutrophils and precisely accumulate in the inflamma-
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tory lungs (Figure 15) [31]. Compared with traditional polymer nanoparticles, NM-NP-SPX
prolonged the circulation time and reduced cytotoxicity. Furthermore, NM-NP-SPX could
efficiently alleviate lung inflammation in the mouse pneumonia model. Taken together,
their results lay the foundation for further effective promotion of functional recovery in pa-
tients with acute inflammatory diseases using neutrophil-based biomimetic nanoplatforms.
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Rheumatoid arthritis, a common chronic disease characterized by systemic inflam-
mation, is a major cause of disability. The current treatments are primarily directed at
inflammatory responses using biologics that interfere with the production and functions of
various cytokines [90–92]. However, there remains a pressing need for better therapies for
rheumatoid arthritis, considering its adverse effects and safety concerns. Several studies
have suggested that neutrophil infiltration and activation in the joints of patients with
rheumatoid arthritis contribute directly to bone destruction [93]. Therefore, Zhang et al.
constructed neutrophil-like nanoparticles by modifying the surface of PLGA nanoparticles
with neutrophil membranes, which can deplete immunoregulatory molecules to dampen
the inflammation, thus providing a novel anti-inflammatory strategy for managing rheuma-
toid arthritis (Figure 16) [32]. Similarly, Kang et al. developed a neutrophil-mimicking
drug delivery system loaded with carfilzomib that enabled the accumulation of carfilzomib
at lesion sites and further inhibited tumor metastasis [94]. The biomimetic drug delivery
system will provide an advanced strategy to alleviate inflammation in patients with chronic
inflammatory diseases.
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Figure 16. Schematic representation of neutrophil-like nanoparticles for the targeted treatment of
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In the abovementioned studies, neutrophil membranes were derived from human or
mouse whole blood, which hinders the large-scale production and clinical application of
the corresponding nanoparticles in the future. Encouragingly, significant advances have
been reported in the generation of immunocompatible cells, which overcome the limitation
of the large-scale production of neutrophils and enable clinical research [95,96]. Therefore,
we believe that the biomimetic strategy using neutrophil membrane-coating technology
can improve the in vivo specific distribution and targeted therapeutic effect of polymer
nanoparticles, which may be applicable to the treatment of various inflammatory diseases.

4. Conclusions and Perspectives

We summarized the recent progress in the field of neutrophil-based polymer nanocarri-
ers and revealed that compared with traditional treatments, novel biomimetic technologies
can dramatically enhance the therapeutic efficacy in the context of various inflammatory
disorders and diseases by taking advantage of neutrophils or neutrophil membranes as
carriers. A comparison of different neutrophil-mediated nanodrug delivery systems is
shown in Table 2.

Table 2. A comparison of different neutrophil-mediated nanodrug delivery systems.

Nanodrug Delivery Strategies Targeting Challenges Ref.

HZ-5 NPs
Specific

enzyme-responsive
drug delivery system

Specifically target neutrophils
through MPO-catalyzed

aggregation

The concentrations of enzymes should
be considered [23]

PINPNIMP
Specific

ligand-modified drug
delivery system

Anti-NIMP-R14 antibodies can
effectively target neutrophils

Cannot mimic the complex intercellular
interactions [27]

ND-MMSNs Neutrophils act directly
as drug carriers

Neutrophils can cross biological
barriers and be recruited to

inflammatory tissues

Living neutrophils as drug delivery
carriers are limited by their poor

viability after isolation
[29]

NM-NP-SPX
Neutrophil-membrane-
coated drug delivery

system

The resulting membrane-coated
nanoparticles are capable of
mimicking the source cells

Complicated, careful manufacturing
processes and should be stored for a

prolonged time with excellent stability
[31]
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Neutrophils are key effector cells in the inflammatory response and accumulate at sites
of inflammation, making them represent a new therapeutic approach for the treatment of in-
flammatory disorders. Polymer nanoparticles serve as excellent vehicles for the site-specific
delivery of drugs to the target cells or tissues by modifying the polymer through physical or
chemical means. However, few neutrophil-targeting strategies are available at present. The
rationally designed nanocarriers with suitable surface ligands conjugated to the molecules
expressed on neutrophils to increase their internalization should be explored in future
studies. In addition, versatile and reliable visualization of neutrophils under different
inflammatory conditions is necessary for the precise treatment of diseases. Multifunctional
theranostic polymer nanoparticles should be designed for site-specific delivery of drugs
and contrast agents for multimodality molecular imaging of the processes involved in
neutrophil-based combination therapy. Unfortunately, synthetic polymer nanoparticles
are inherently foreign and fail to imitate the complex functions of biological systems. To
overcome these limitations, neutrophil-based biomimetic nanoparticles represent more
favorable drug delivery systems with excellent targeting capabilities, enhanced stability,
and lower toxicity. Regarding the design and application of neutrophil-based biomimetic
nanoparticles, several caveats should be addressed to ensure effective treatments. First,
synthetic polymer nanoparticles can be readily ingested by neutrophils in vitro. The size,
shape, and charge of polymer nanoparticles have a strong effect on the capacity of neu-
trophils to ingest them. Secondly, smaller nanoparticles can reduce their impact on the
migration ability, survival ability, and biological function of neutrophils extracted in vitro.
This is crucial for effectively delivering cargoes to the target site in the body. Third, it
should be ensured that synthetic polymer nanoparticles are not degraded significantly until
they reach the target sites, implying that the biomimetic nanoplatform should be stored
for a prolonged time with excellent stability. Moreover, ideal manufacturing processes are
required to ensure that the final product is free of chemical and biological contaminants
and to enable large-scale production.

The non-specific distribution of small-molecule drugs causes significant off-target
toxicity at therapeutic doses and they are easily cleared. Compared to small molecules,
nanoparticles can improve the stability and solubility of drugs and display unique phar-
macokinetics (PK) and biodistribution (BD), which can increase blood circulation and
safety [97]. Biodegradable polymers and some natural polymers are widely used to reduce
toxicity and increase biocompatibility in the development of nanoparticles. Targeting
nanoparticles may allow an active accumulation at desired sites and enhance local drug
concentration, thus avoiding systemic side effects and increasing retention time by conju-
gation with specific ligands or stimuli-responsive linkers [98]. Immune cells exhibit high
biocompatibility, longer circulation times, inherent biodegradability, and a natural ability
to target cells/tissues due to their unique structure and surface function [15]. Therefore,
coating the neutrophil membrane on the surface of nanoparticles or neutrophils as carri-
ers enables biomimetic nanoparticle to have both the physicochemical properties of the
nanoparticle and the biological functions of the neutrophils, which shows prolonged blood
circulation and low toxicity.

Although neutrophils-mediated drug delivery strategies have shown promise in pre-
clinical models for improving the treatment effect of various diseases as mentioned above,
whether the neutrophil-based delivery system is safe and effective in clinical application
remains controversial. Furthermore, large-scale production and reproducibility are obsta-
cles to clinical transformation. Consequently, further clinical research must be performed
to evaluate the application of neutrophil-based delivery systems in various inflammatory
diseases. Despite current challenges, neutrophil-mediated polymer nanoparticles emerge
as promising therapeutics for diverse acute and chronic inflammatory diseases. Advances
in polymer nanomaterials and biomimetic nanotechnology may facilitate the construction
of neutrophil-based multifunctional nanoplatforms for biomedical research and applica-
tions in the future. Taken together, neutrophil-based drug delivery systems will have a
significant impact on nanomedicine.
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