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Abstract: Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer
treatment have recently garnered significant attention, owing to their effective ablation of cancer
cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we
designed and developed calcium ion-doped magnesium ferrite nanoparticles (Ca2+-doped MgFe2O4

NPs) as novel and effective PT therapeutic materials for cancer treatment, owing to their good
biocompatibility, biosafety, high near-infrared (NIR) absorption, easy localization, short treatment
period, remote controllability, high efficiency, and high specificity. The studied Ca2+-doped MgFe2O4

NPs exhibited a uniform spherical morphology with particle sizes of 14.24 ± 1.32 nm and a strong
PT conversion efficiency (30.12%), making them promising for cancer photothermal therapy (PTT).
In vitro experiments showed that Ca2+-doped MgFe2O4 NPs had no significant cytotoxic effects on
non-laser-irradiated MDA-MB-231 cells, confirming that Ca2+-doped MgFe2O4 NPs exhibited high
biocompatibility. More interestingly, Ca2+-doped MgFe2O4 NPs exhibited superior cytotoxicity to
laser-irradiated MDA-MB-231 cells, inducing significant cell death. Our study proposes novel, safe,
high-efficiency, and biocompatible PT therapeutics for treating cancers, opening new vistas for the
future development of cancer PTT.

Keywords: ferrite nanoparticles; NIR laser; biocompatibility; photothermal therapy; cancer

1. Introduction

Cancer remains one of the most challenging life- and health-threatening diseases
worldwide [1,2]. Existing conventional cancer strategies, including chemotherapy, surgery,
and radiotherapy, have strong side effects and suffer from cumulative radiation doses,
high recurrence rates, complications, and low patient satisfaction [3]. Consequently, novel
and patient-friendly therapeutic strategies are urgently needed to effectively treat cancers
with high specificity [4]. Recently, owing to the rapid advancement of nanotechnology
and nanoscience, many novel and emerging nanoparticle-based treatment strategies have
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been developed, such as photothermal therapy (PTT), radiation therapy, photocatalytic
therapy, and ultrasound therapy [5–9]. PTT is a potential alternative to conventional cancer
strategies, owing to its minimal invasiveness, short treatment period, easy localization, low
cost, remote controllability, high efficiency, and high specificity [10]. During photothermal
(PT) experiments, PT-conversion nanoparticles can absorb and convert near-infrared (NIR)
light energy into heat energy to kill cancer cells [11]. Consequently, PTT is regarded
as one of the most promising therapeutic strategies for treating cancers with minimal
invasiveness [12–14].

To date, various nanoparticles, such as magnetic iron oxide nanomaterials [15,16],
gold nanostructured materials [17,18], carbon nanomaterials [19], molybdenum sulfide [20],
copper sulfide [21], and organic dye-based nanocarriers [22], have been developed as PT
conversion materials for cancer treatment. Among these, magnetic iron oxide nanoma-
terials have recently attracted much interest in studies of drug delivery, hyperthermia,
phototherapy, chemodynamic therapy, and magnetic resonance imaging (MRI) in various
biomedical applications, owing to their excellent magnetic properties, low toxicity, and high
stability [23,24]. Compared with magnetic iron oxide nanomaterials, superparamagnetic
iron oxide nanoparticles such as calcium ion-doped magnesium ferrite nanoparticles (Ca2+-
doped MgFe2O4 NPs), have an average particle size smaller than 20 nm, which is more
suitable for clinical diagnosis and therapy [25,26]. Ca2+-doped MgFe2O4 NPs have been
reported to exhibit excellent biocompatibility, stability, high heating efficiency, and good
saturation magnetization, making them excellent candidates for hyperthermia, PTT, and
chemodynamic therapy [27]. Ca2+-doped MgFe2O4 NPs have been widely demonstrated
for more efficient and safe cancer treatment approaches, such as PTT [12]. In this study, we
report novel biocompatible Ca2+-doped MgFe2O4 NPs as effective PT-ablation agents for
cancer treatment.

2. Materials and Methods
2.1. Reagents

All reagents and solvents were of the highest analytical grade, were obtained from
Sigma-Aldrich, and were used as received without any further purification.

2.2. Preparation of Ca2+-Doped MgFe2O4 NPs

Ca2+-doped MgFe2O4 NPs were synthesized based on the previously described
solvothermal reflux (SR) method with slight modifications [28,29]. Briefly, benzyl ether
(40 mL), oleic acid (9.0 mL), and oleylamine (11 mL) were mixed, stoichiometric metal
precursors were added to the reaction solution, and the reaction solution was stirred for
10 min. The reaction solution was heated at 300 ◦C for 1 h and then, cooled to room temper-
ature (RT). Finally, the reaction solution was separated by centrifugation and re-dispersed
in n-hexane for further experiments.

2.3. Characterization

The optical absorbance spectra of the prepared Ca2+-doped MgFe2O4 NPs were
recorded using a UV–vis spectrophotometer (Shimadzu UV-2600). The particle size dis-
tribution of the prepared Ca2+-doped MgFe2O4 NPs was measured using dynamic light
scattering (DLS) (Brookhaven Ins. Cor., 90 plus particle size analyzer). Fourier-transform
infrared (FTIR) spectra of the prepared Ca2+-doped MgFe2O4 NPs were obtained as KBr
pellets using a Thermo Scientific iD1 transmission spectrometer. Powder X-ray diffraction
(XRD) analysis of the prepared Ca2+-doped MgFe2O4 NPs was performed using an X-ray
diffractometer (Miniflex 600, Rigaku) with a Cu-Kα radiation source. The morphologies
of the prepared Ca2+-doped MgFe2O4 NPs were investigated using a scanning electron
microscope (SEM, JSM-7001F) with attached energy dispersive X-ray (EDX) mapping,
transmission electron microscope (TEM, JEM 2100), and Cs-corrected field emission TEM
(Cs-corrected FETEM, JEM-ARM200F) equipped with an EDX spectroscopy and map-
ping. X-ray photoelectron spectroscopy (XPS) was used to assess the compositional and



Pharmaceutics 2023, 15, 1555 3 of 17

chemical states (Kα, Thermo Fisher Scientific, Waltham, MA, USA). The stability of the pre-
pared Ca2+-doped MgFe2O4 NPs was assessed for 30 days at RT in deionized water (DW),
phosphate-buffered saline (PBS), and 10% fetal bovine serum (FBS), and was determined
using a UV–vis spectrophotometer and TEM. For colloidal stability in Roswell Park Memo-
rial Institute (RPMI) 1640 medium, the Ca2+-doped MgFe2O4 NPs were incubated in the
RPMI medium supplemented with 10% FBS for various time intervals. The hydrodynamic
size was measured using dynamic light scattering (DLS) (Brookhaven Ins. Cor., 90 plus
particle size analyzer).

2.4. Determining the PT Effect of Ca2+-Doped MgFe2O4 NPs

Aqueous solutions of Ca2+-doped MgFe2O4 NPs at various concentrations (75, 100,
and 125 µg/mL) were recorded using a UV–vis spectrophotometer. One milliliter of Ca2+-
doped MgFe2O4 NPs aqueous solution in a quartz cuvette, with different concentrations
(75, 100, and 125 µg/mL), was exposed to 785-nm-wavelength laser irradiation (CNI
laser, China) at power densities of 0.5 W/cm2 and 0.8 W/cm2 for 300 s, and the solutions’
temperatures were monitored using a compact thermal camera (FLIR Cx-Series). The
PT stability of the solution with the prepared Ca2+-doped MgFe2O4 NPs (125 µg/mL) in
a quartz cuvette was assessed by exposing it to an NIR laser (785 nm, 0.8 W/cm2) for
300 s (NIR laser power turned on) and then allowing it to cool to RT for 900 s (NIR laser
power turned off). The NIR laser power on/off cycles were applied four times to test
the PT stability. The PT conversion efficiency (η) of the prepared Ca2+-doped MgFe2O4
NPs (125 µg/mL) aqueous solution was calculated according to the available reference
Equation (1) [30–32]. The UV–vis spectra and TEM images of the Ca2+-doped MgFe2O4
NPs were observed after four laser on/off cycles.

η =
hS(TMax − TSur)− Qdis

I(1 − 10−A785 )
(1)

2.5. Cell Culture

The normal human dermal fibroblast (HDF) cell line and human breast cancer cell
line (MDA-MB-231 cells) were obtained from the Korean Cell Line Bank (Seoul, Republic
of Korea). Cells were cultured and propagated in Dulbecco’s modified Eagle’s medium
(DMEM) and Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with
10% FBS and 1% penicillin/streptomycin at 37 ◦C in a humidified 5% CO2 atmosphere.

2.6. In Vitro Cytotoxicity

In vitro cytotoxicity was assessed using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. The HDF and MDA-MB-231 cells (5× 104 cells/well)
were cultured in 96-well flat-bottom plates in the DMEM and RPMI 1640 media. After 24-h-
long incubation, Ca2+-doped MgFe2O4 NPs at various concentrations (range, 0–400 µg/mL)
were added to 96-well plates for an additional 24 h and 48 h. Next, 100 µL of the MTT
solution (0.5 mg/mL) was added to each well for an additional 4 h. The MTT-containing
medium was removed, and dimethyl sulfoxide (DMSO, 100 µL) was added to all wells to
dissolve the formazan crystals for 30 min. The absorbance of each well was recorded at
570 nm using a plate reader (Bio-TEK MQX200).

2.7. In Vitro Hemolysis Assay

The in vitro hemolysis assay was performed according to the previously described
method [33]. Red blood cells (RBCs) were collected from fresh mouse blood. Then, the
RBCs were separated by centrifuging at 12,000 rpm for 7 min and diluted with 10 × PBS.
Afterward, 0.3 µL of the RBC suspension was gently mixed with Ca2+-doped MgFe2O4
NPs in PBS at various concentrations (25, 50, 75, 100, and 125 µg/mL). RBC-treated PBS
served as a negative control, whereas RBC-treated DW was used as a positive control. After
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incubation at RT for 4 h, all samples were centrifuged at 12,000 rpm for 7 min, and the
absorbance of the supernatant was recorded at 541 nm using a microplate reader.

2.8. Chick Chorioallantoic Membrane Assay

Freshly fertilized chicken eggs were obtained from chicken form (Chuncheon, Republic
of Korea). Eggs were incubated at 37 ◦C and 60% relative humidity for 9 days. The
chorioallantoic membrane (CAM) was removed on day 10 of the embryo development,
to create a window in the eggshell. Then, 200 µL of PBS as a negative control, sodium
hydroxide (NaOH, 0.1 M) as a positive control, and Ca2+-doped MgFe2O4 NPs (125 µg/mL)
were added to all eggs and incubated for 5 min. Finally, toxicity was observed in terms of
blood vessel damage and hemorrhage [34].

2.9. In Vitro PTT

For the in vitro PTT of cancer cells, MDA-MB-231 cells (5 × 104 cells/well) were
cultured in 96-well flat-bottom plates in the RPMI 1640 medium for 24 h. After that,
Ca2+-doped MgFe2O4 NPs at various concentrations (range, 0–125 µg/mL) were added to
96-well plates for an additional 10 h incubation, following which the cells were irradiated
with an NIR laser (785 nm, 0.8 W/cm2) for 300 s. After 5 h of additional incubation, cell
viability was detected using the standard MTT assay, as previously described. In addition,
cells were incubated with Ca2+-doped MgFe2O4 NPs (125 µg/mL) for 10 h, and then
irradiated using an NIR laser (785 nm) at 0.5 W/cm2 and 0.8 W/cm2 for 300 s. After 5 h of
additional incubation, cell viability was measured using the standard MTT method.

For in vitro cell imaging, cells were cultured in 35-mm-diameter confocal dishes and
incubated for 24 h at 37 ◦C. After that, cells were separated into four groups: control
(100 µL PBS) only; control (100 µL PBS) + laser irradiation (0.8 W/cm2, 300 s); Ca2+-doped
MgFe2O4 NPs (125 µg/mL) only; and Ca2+-doped MgFe2O4 NPs (125 µg/mL) + laser
irradiation (0.8 W/cm2, 300 s). The cells were treated with PBS (100 µL) or Ca2+-doped
MgFe2O4 NPs (125 µg/mL) for an additional 10 h incubation, following which some cells
were irradiated using the NIR laser (785 nm, 0.8 W/cm2) for 300 s. After 5 h of incubation,
cells were co-stained and tested using a live/dead staining assay with the fluorescent
probes calcein-AM (green color) and propidium iodide (PI, red color), and also tested
with trypan blue staining for 30 min. In addition, all cell nuclei and mitochondria were
co-stained with Hoechst 33342 and MitoTracker Red for 30 min. Images of all groups of
cells were acquired using a confocal laser scanning microscope (A1R; Nikon, Japan) in tail
scan mode for live imaging. For the detection of reactive oxygen species (ROS), cells were
cultured in a 35-mm-diameter culture plate and incubated for 24 h. After the incubation,
all cells were divided into four groups, as previously described. All cells were stained
with 2,7-dichlorofluorescein diacetate (DCFH-DA) for 30 min and imaged using a confocal
fluorescence microscope in tail scan mode for live imaging.

For the apoptosis assay, cells were seeded into 6-well flat-bottom plates in the RPMI
1640 medium for 24 h. The cells were then separated into four groups, as previously de-
scribed. After various treatments, all cells were collected, washed with PBS, and co-stained
with an Annexin V-FITC and PI staining kit (BD Pharmingen, Canada). Finally, the cells
were analyzed using flow cytometry to detect apoptotic cells (BD FACSCalibur, Canada).

Statistical analysis was performed, and all data were reported as the mean and stan-
dard error of the mean. Statistical differences were assessed using a one-way analysis of
variance (ANOVA) test, using SPSS 14, with * denoting p < 0.05.

3. Results and Discussion

3.1. Preparation and Characterization of Ca2+-Doped MgFe2O4 NPs

In this work, Ca2+-doped MgFe2O4 NPs were prepared using the solvothermal reflux
technique at 300 ◦C for 1 h, as shown in Scheme 1 [28,29]. The UV–vis absorbance spectrum
of the prepared Ca2+-doped MgFe2O4 NPs exhibited a broad absorbance in the ultraviolet
to NIR range (200–1100 nm), indicating that Ca2+-doped MgFe2O4 NPs could be used as a
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potential PT material for PTT (Figure 1a). Figure 1b shows the FTIR spectra of Ca2+-doped
MgFe2O4 NPs. Ca2+-doped MgFe2O4 NPs exhibited two major peaks at 579 and 1408 cm−1,
which were attributed to the Fe–O and C=O bonds, while the absorption bands at 1558,
2847, and 2915 cm−1 were attributed to the C–H stretching vibration mode, confirming
that the prepared Ca2+-doped MgFe2O4 NPs were successfully synthesized [35]. The size
of the prepared Ca2+-doped MgFe2O4 NPs assessed using a DLS was 14.24 ± 1.32 nm,
which is suitable for in vitro and in vivo therapeutic applications (Figure 1c). The Ca2+-
doped MgFe2O4 NPs were analyzed by XRD (Figure 1d). The XRD pattern of the prepared
Ca2+-doped MgFe2O4 NPs exhibited intense peaks corresponding to (220), (311), (400),
(422), (511), (440), and (533), suggesting their crystalline nature [36]. All of the diffraction
peaks matched well with the international standard data card Joint Committee on Powder
Diffraction Standards (JCPDS) number 89-3084.
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Scheme 1. Ca2+-doped MgFe2O4 NPs were successfully prepared for PTT.

The morphology of the Ca2+-doped MgFe2O4 NPs was investigated using TEM and
Cs-corrected FETEM with EDX mapping and EDX spectroscopy. The TEM images of Ca2+-
doped MgFe2O4 NPs revealed that most of the particles were a nearly uniform and cube-like
shape, with an average particle size of 14.24 ± 1.32 nm (Figures1 e and S1). Our TEM images
are similar to those in a previous report by Heiba et al. [37] and Sivagurunathan et al. [38],
which showed cube-shaped ferrite NPs. The Cs-corrected FETEM with EDX mapping
(Figure S2) and EDX spectroscopy (Figure S3) of Ca2+-doped MgFe2O4 NPs revealed the
presence of Mg, Fe, Ca, and O. In addition, the SEM images of Ca2+-doped MgFe2O4
NPs showed that the particles were almost cube shape and had uniform morphologies
(Figure S4). Similar SEM images are observed by Naaz et al. [39] for the cube shape of
MgFe2O4 NPs. SEM-related EDX mapping (Figure S5) and EDX spectroscopy (Figure S6)
revealed the presence of Mg, Fe, Ca, and O. XPS is a versatile surface analysis technique
that is frequently used to examine compositional and chemical states [40]. The goal of
the XPS analysis was to learn more about the valence states of the elements on the Ca2+-
doped MgFe2O4 NPs surface. Survey scan spectra of the prepared nanoparticles (Ca, Mg,
Fe, and O elements) are shown in Figure 2a. According to Figure 2b, the Ca 2p core is
divided into 2p3/2 (binding energy = 346.91 eV) and 2p1/2 (binding energy = 350.52 eV)
peaks [41]. The Mg2+ ions were assigned one characteristic peak at 55.59 eV and three
deconvoluted peaks at 56.99, 56.36, and 55.41 eV, as shown in the Mg 2p spectra (Figure 2c).
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The XPS spectra of the Fe 2P core in the Fe3+ valence state are shown in Figure 2d. The
estimated binding energies of the Fe 2p3/2 and Fe 2p1/2 lines were 710.53 eV and 724.17
eV, respectively. Fe3+ was predominant, as evidenced by the satellite peaks of the Fe 2p
core at 732.45 and 718.33 eV [28]. The O1s signal is shown in Figure 2e, revealing that the
main peaks were located at 530.64 and 529.72 eV. The former peak was equivalent to the
surface-located lattice oxygen [28]. The long-term stability of Ca2+-doped MgFe2O4 NPs
dispersions is essential for biomedical applications [42]. The stability test of the Ca2+-doped
MgFe2O4 NPs dispersed in DW, PBS, and 10% FBS for 30 days was performed using a
UV–vis spectrophotometer. As shown in Figure 2f,g, no obvious changes were observed
in the UV–vis absorbance spectra of the Ca2+-doped MgFe2O4 NPs solution in DW, PBS,
and 10% FBS for 30 days, implying that the prepared Ca2+-doped MgFe2O4 NPs exhibited
good stability and high biocompatibility. The TEM image of Ca2+-doped MgFe2O4 NPs
revealed a spherical morphology with uniform shapes in 10% FBS after 30 days (Figure 2h).
For colloidal stability in the RPMI medium, the Ca2+-doped MgFe2O4 NPs were incubated
in the RPMI medium with 10% FBS to assess their colloidal stability in biological systems.
The hydrodynamic size of the Ca2+-doped MgFe2O4 NPs in RPMI medium was gradually
increased because of small aggregates or precipitates in biological systems in the presence
of amino acids and salts (Figure S7). Similar behavior has been reported for colloidal
stability in the biological medium in the presence of NPs [43].
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Figure 1. (a) UV–vis absorption spectra of Ca2+-doped MgFe2O4 NPs (the inset shows the Ca2+-doped
MgFe2O4 NPs solution). (b) FTIR spectrum of Ca2+-doped MgFe2O4 NPs. (c) DLS measurements
for determining the particle size distribution of Ca2+-doped MgFe2O4 NPs. (d) XRD analysis of
Ca2+-doped MgFe2O4 NPs. (e) TEM images of Ca2+-doped MgFe2O4 NPs.
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Ca2+-doped MgFe2O4 NPs solution (125 µg/mL) increased to 51.7 °C within 300 s of the 
NIR laser irradiation at 0.8 W/cm2, and real-time temperature changes of Ca2+-doped 
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Figure 2. (a) XPS survey spectrum of Ca2+-doped MgFe2O4 NPs. XPS spectra for Ca 2p (b), Mg
2p (c), Fe 2p (d), and O 1s (e) of Ca2+-doped MgFe2O4 NPs. UV–vis absorption spectra of Ca2+-doped
MgFe2O4 NPs in DW, PBS, and 10% FBS for 5 min (f) and 30 days (g). (h) TEM images of Ca2+-doped
MgFe2O4 NPs in 10% FBS after 30 days. (i) UV–vis absorption spectra of Ca2+-doped MgFe2O4 NPs
at various concentrations.

3.2. Determining the PT Effect of Ca2+-Doped MgFe2O4 NPs

The aqueous solutions of Ca2+-doped MgFe2O4 NPs at different concentrations (75,
100, and 125 µg/mL) were observed using a UV–vis spectrophotometer, revealing good
absorption in the NIR range, suggesting that Ca2+-doped MgFe2O4 NPs are highly effec-
tive for PT-based cancer treatments (Figure 2i). To explore the PT effect of Ca2+-doped
MgFe2O4 NPs, 1-mL-aqueous solutions of Ca2+-doped MgFe2O4 NPs in a quartz cuvette
at various concentrations (75, 100, and 125 µg/mL) were exposed to NIR laser irradiation
(785 nm) at power densities of 0.5 (Figure 3a) and 0.8 W/cm2 (Figure 3b) for 300 s, and their
temperatures were recorded using a compact thermal imaging camera. The temperature of
the Ca2+-doped MgFe2O4 NPs solution (125 µg/mL) increased to 51.7 ◦C within 300 s of
the NIR laser irradiation at 0.8 W/cm2, and real-time temperature changes of Ca2+-doped
MgFe2O4 NPs were captured using a compact thermal imaging camera (Figure 3c), whereas
water (0 µg/mL) in the same treatment conditions only exhibited a slight temperature
increase (from 27.56 ◦C to 29.2 ◦C). Therefore, Ca2+-doped MgFe2O4 NPs are excellent
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candidates for NIR-mediated PTT. The temperature change depended on the concentration,
laser power density, and irradiation time [44].
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Figure 3. Temperature profiles for various concentrations of Ca2+-doped MgFe2O4 NPs irradiated
with a 785 nm laser at 0.5 (a) and 0.8 W/cm2 (b) for 300 s. (c) Infrared thermal images for various
concentrations of Ca2+-doped MgFe2O4 NPs irradiated with a 785 nm laser at 0.8 W/cm2 for 300 s.
(d) Temperature profile of Ca2+-doped MgFe2O4 NPs (125 µg/mL) irradiated with a 785 nm laser at
0.8 W/cm2 for 300 s and then allowed to cool down to RT for 900 s. (e) A linear relationship between
time and -Ln θ was found during the cooling period after the laser irradiation was turned off. (f) PT
stability of Ca2+-doped MgFe2O4 NPs. (g) UV–vis absorption spectra of Ca2+-doped MgFe2O4 NPs
in DW, before and after four on/off laser cycles. (h) TEM image of Ca2+-doped MgFe2O4 NPs after
four on/off laser cycles.

To investigate the PT conversion efficiency of Ca2+-doped MgFe2O4 NPs, the temper-
ature changes in the aqueous solution of Ca2+-doped MgFe2O4 NPs (125 µg/mL) were
monitored in response to the 5 min 785-nm-wavelength laser irradiation at 0.8 W/cm2.
After turning off the laser, the aqueous solution of Ca2+-doped MgFe2O4 NPs was allowed
to slowly cool down to RT for 15 min during each cycle (Figure 3d). The estimated PT
conversion efficiency (η) of the solution of Ca2+-doped MgFe2O4 NPs (125 µg/mL) was
30.12%, and the estimated time constant for the heat transfer of Ca2+-doped MgFe2O4
NPs was 376.45 s (Figure 3e), indicating that Ca2+-doped MgFe2O4 NPs can be used as an
efficient PT material. In fact, the PT conversion efficiency of Ca2+-doped MgFe2O4 NPs
was higher than previously reported classic photothermal agents such as gold nanorods
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(21%) [45], MoS2 nanosheets (24.4%) [46], Cu2-xS nanocrystals (16.3%) [47], and SiO2/Au
nanoshells (30%) [48]. To further examine the PT stability of Ca2+-doped MgFe2O4 NPs, the
aqueous solution of Ca2+-doped MgFe2O4 NPs (125 µg/mL) was exposed to the NIR laser
irradiation (785 nm, 0.8 W/cm2) for 300 s, following which the laser was switched off for
900 s. After four on/off NIR laser cycles, the temperature profile of Ca2+-doped MgFe2O4
NPs exhibited no significant changes, indicating that the prepared Ca2+-doped MgFe2O4
NPs had high PT stability (Figure 3f). Furthermore, the optical properties of the aqueous
solution of Ca2+-doped MgFe2O4 NPs were observed by UV–vis spectrophotometry after
four on/off laser cycles, and revealed no noticeable changes in the absorbance spectrum
(Figure 3g). The TEM image was also clearly visible after four on/off NIR laser cycles,
revealing spherical particles with uniform shapes (Figure 3h).

3.3. In Vitro Cytotoxicity, Hemolysis, and CAM Assay

The basic requirements for biomedical applications of NPs are high biocompatibil-
ity and safety, which are essential for industrializing nanomedical systems [49,50]. The
in vitro cytotoxicity of Ca2+-doped MgFe2O4 NPs at various concentrations (0–400 µg/mL)
for HDF cells and MDA-MB-231 cells was assessed using the MTT assay. As shown in
Figures S8 and 4a, Ca2+-doped MgFe2O4 NPs exhibited no noticeable cytotoxicity after
24 h and 48 h of incubation, for concentrations in the 0–400 µg/mL range, and the cell
viability remained above 95%, implying that Ca2+-doped MgFe2O4 NPs had excellent
biocompatibility. To investigate the hemocompatibility of Ca2+-doped MgFe2O4 NPs, a
hemolysis assay was performed to explore the effect of Ca2+-doped MgFe2O4 NPs in PBS
at various concentrations (25, 50, 75, 100, and 125 µg/mL) on RBCs. As shown in Figure 4b,
the prepared Ca2+-doped MgFe2O4 NPs (125 µg/mL) demonstrated an incredibly low
hemolysis ratio (3.2%), which was lower than the permissible limit (5%), confirming that
Ca2+-doped MgFe2O4 NPs had good hemocompatibility and could be used for in vivo
cancer treatments [51]. In addition, the toxicity of Ca2+-doped MgFe2O4 NPs (125 µg/mL)
was evaluated using the chick CAM assay (Figure 4c). Ca2+-doped MgFe2O4 NP-treated
chick embryos exhibited no observable toxicity in blood coagulation compared with PBS,
indicating that Ca2+-doped MgFe2O4 NPs were non-toxic to egg CAM [34,52].

3.4. In Vitro PTT

To investigate the PT effect of the prepared Ca2+-doped MgFe2O4 NPs, the in vitro
PT effect was evaluated using the MTT assay. Cells were incubated with Ca2+-doped
MgFe2O4 NPs at different concentrations (0–125 µg/mL) for 10 h and then irradiated using
the NIR laser (785 nm, 0.8 W/cm2) for 300 s. As shown in Figure 4d, the viability of
non-laser-irradiated cells was 94.5% at the high concentration of Ca2+-doped MgFe2O4
NPs (125 µg/mL), implying no observable effect on cancer cells. Most of the cells were
killed after incubation with Ca2+-doped MgFe2O4 NPs (125 µg/mL) and irradiation using
the NIR laser (785 nm, 0.8 W/cm2) for 300 s, and the cell viability decreased to 32.37%,
confirming that laser-irradiated Ca2+-doped MgFe2O4 NPs induced significantly more cell
death. Similar results were obtained when Ca2+-doped MgFe2O4 NPs were compared with
various ferrite NPs (Table S1). In addition, cells were treated with Ca2+-doped MgFe2O4
NPs (125 µg/mL) for 10 h and irradiated using the NIR laser (785 nm) at 0.5 and 0.8 W/cm2

for 300 s (Figure 4e). Most of the cells were killed owing to the Ca2+-doped MgFe2O4 NPs
(125 µg/mL) after being NIR laser-irradiated (0.8 W/cm2) for 300 s, demonstrating the
promise of Ca2+-doped MgFe2O4 NPs as effective PT materials for treating cancers.
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Figure 4. (a) In vitro biocompatibility of Ca2+-doped MgFe2O4 NPs at various concentrations on
MDA-MB-231 cells after 24 h and 48 h. (b) In vitro hemolytic activity of Ca2+-doped MgFe2O4 NPs at
various concentrations. (c) Chick CAM assay. (d) In vitro cell viability of Ca2+-doped MgFe2O4 NPs
at various concentrations, assessed on treated cells that were laser-irradiated at 0.8 W/cm2 for 300 s.
(e) In vitro cell viability of Ca2+-doped MgFe2O4 NPs (125 µg/mL), assessed on treated cells that
were laser-irradiated at 0.5 and 0.8 W/cm2 for 300 s. The shown data are expressed as mean ± s.d.,
(n = 3), * p < 0.05.

Inspired by the above experiment, we further confirmed the results of the live/dead
cell-staining calcein-AM/PI assay (Figures 5 and S9). The MDA-MB-231 cells treated with
Ca2+-doped MgFe2O4 NPs (125 µg/mL) were clearly evident in the presence of strong red
fluorescence after the NIR laser irradiation, implying that more dead cells were detected
in this group. In contrast, all the other groups exhibited intense green fluorescence and
negligible cell death, indicating that more live cells were detected in the other groups.
In addition, the live/dead staining assay was further confirmed by trypan blue staining,
owing to their ability to distinguish between live (unstained) and dead (blue-stained) cells.
As shown in Figure S10, no obvious changes were observed in the control cells with or
without the NIR laser radiation, indicating that all the cells exhibited good morphology.
The MDA-MB-231 cells that were treated with Ca2+-doped MgFe2O4 NPs (125 µg/mL)
and were not laser-irradiated exhibited negligible cell death. In contrast, cells incubated
with Ca2+-doped MgFe2O4 NPs (125 µg/mL) exhibited clear blue staining after the laser
irradiation, indicating that more dead cells were present in this group.
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Figure 5. Confocal laser scanning microscope images of tile scans of MDA-MB-231 cells treated
with PBS only, PBS + laser irradiation, Ca2+-doped MgFe2O4 NPs only, and Ca2+-doped MgFe2O4

NPs + laser irradiation. Calcein-AM (green) and PI (red) were used to distinguish between live and
dead cells (20× magnification; scale bar: 100 µm).

In addition, each group of cells was further co-stained with Hoechst 33342 and Mito-
Tracker Red, and evaluated using a confocal fluorescence microscope (Figure 6a). Hoechst
33342 and MitoTracker Red were used for nuclear and mitochondrial staining with blue
and red fluorescence, respectively [53]. Hoechst 33342 clearly detected fragmented nuclei
in the laser-irradiated Ca2+-doped MgFe2O4 NPs (125 µg/mL), and MitroTracker Red
was colocalized with the mitochondria-specific marker, whereas the other groups showed
that the nucleus and mitochondria appeared under normal conditions. The presence of
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toxic ROS in the MDA-MB-231 cells was assessed using DCFH-DA as a fluorescent dye,
which could be converted into a potent green fluorescent molecule DCF in the presence
of toxic ROS [35]. As shown in Figures 6b and S11, the strong green fluorescence signal
was almost undetectable in the control only, control + laser-irradiated, and Ca2+-doped
MgFe2O4 NPs (125 µg/mL), which did not affect cancer cells. In contrast, Ca2+-doped
MgFe2O4 NPs (125 µg/mL) caused strong fluorescence signals after the laser irradiation,
which could lead to the production of ROS and damage biomolecules, mitochondria, and
nuclei [54]. To evaluate the cell death mode after PT, cell apoptosis was also evaluated using
flow cytometry (Figure 7). Ca2+-doped MgFe2O4 NPs (125 µg/mL) induced significant
apoptosis (67.2%) after the laser irradiation, compared with the other groups (1.68%, 3.31%,
and 5.54%), suggesting that the PT effect of Ca2+-doped MgFe2O4 NPs on MDA-MB-231
cells was enhanced by the NIR laser irradiation [55].
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Figure 6. (a) Confocal laser scanning microscope images of MDA-MB-231 cells treated with PBS
only, PBS + laser irradiation, Ca2+-doped MgFe2O4 NPs only, and Ca2+-doped MgFe2O4 NPs + laser
irradiation. Hoechst 33342 and MitoTracker red were used to stain the nuclei and mitochondria
(20× magnification; scale bar: 100 µm). (b) Confocal laser scanning microscope images of DCFH-DA-
stained MDA-MB-231 cells treated with PBS only, PBS + laser irradiation, Ca2+-doped MgFe2O4 NPs
only, and Ca2+-doped MgFe2O4 NPs + laser irradiation, for determining the intracellular ROS level
(20× magnification; scale bar: 100 µm).
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Figure 7. Flow cytometry analysis of the apoptosis of MDA-MB-231 cells, induced by PBS only,
PBS + laser irradiation, Ca2+-doped MgFe2O4 NPs only, and Ca2+-doped MgFe2O4 NPs + laser
irradiation using Annexin-V/PI staining.

4. Conclusions

In this study, we successfully designed and developed novel biocompatible PT materi-
als for cancer therapy. Ca2+-doped MgFe2O4 NPs were prepared using the solvothermal
reflux method. The prepared Ca2+-doped MgFe2O4 NPs had a uniform and spherical
morphology, with an average particle size of 14.24 ± 1.32 nm, and exhibited a strong
PT conversion efficiency (30.12%), high biocompatibility, PT stability, high NIR absorp-
tion, and biosafety. Impressively, in vitro assays indicated that Ca2+-doped MgFe2O4 NPs
did not exhibit any significant cytotoxicity against MDA-MB-231 cells without laser irra-
diation, implying that Ca2+-doped MgFe2O4 NPs had excellent biocompatibility. Cells
treated with Ca2+-doped MgFe2O4 NPs exhibited a considerable PT ablation effect on NIR-
laser-irradiated MDA-MB-231 cells, because these nanomaterials had good PT conversion
efficiency, implying that laser-irradiated Ca2+-doped MgFe2O4 NPs induced significantly
more cell death. To the best of our knowledge, there have been no prior studies on Ca2+-
doped MgFe2O4 NPs as novel PT ablation materials for cancer treatment. The Ca2+-doped
MgFe2O4 NPs developed in this study are promising as safe and efficient PT materials for
cancer therapy in the near future.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15051555/s1, Figure S1: TEM image of Ca2+-
doped MgFe2O4 NPs. Figure S2: Cs-corrected FETEM with EDX mapping. Figure S3: Cs-corrected
FETEM with EDX spectroscopy. Figure S4: SEM images of Ca2+-doped MgFe2O4 NPs. Figure S5.
SEM with EDX mapping of Ca2+-doped MgFe2O4 NPs. Figure S6: SEM-EDX spectra of Ca2+-doped
MgFe2O4 NPs. Figure S7: Hydrodynamic size of Ca2+-doped MgFe2O4 NPs after incubation in RPMI
medium supplemented with 10% FBS. Figure S8: In vitro biocompatibility of Ca2+-doped MgFe2O4
NPs at various concentrations on HDF cells after 24 h and 48 h. Figure S9: Confocal laser scanning
microscope images of tile scans of MDA-MB-231 cells treated with PBS only, PBS + laser irradiation,
Ca2+-doped MgFe2O4 NPs only, and Ca2+-doped MgFe2O4 NPs + laser irradiation. Calcein-AM
(green) and PI (red) were used to distinguish between live and dead cells (20× magnification;
scale bar: 100 µm). Figure S10. Optical images of trypan blue-stained MDA-MB-231 cells treated
with PBS only, PBS + laser irradiation, Ca2+-doped MgFe2O4 NPs only, and Ca2+-doped MgFe2O4
NPs + laser irradiation (20× magnification; scale bar: 100 µm). Figure S11. Confocal laser scanning
microscopy images of tile scans of DCFH-DA-stained MDA-MB-231 cells treated with PBS only,
PBS + laser irradiation, Ca2+-doped MgFe2O4 NPs only, and Ca2+-doped MgFe2O4 NPs + laser
irradiation, for determining the intracellular ROS level (20× magnification; scale bar: 100 µm).
Table S1. Comparative study of the photothermal effect of Ca2+-doped MgFe2O4 NPs and various
ferrite NPs. References [35,56–58] are cited in the supplementary materials.
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