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Abstract: Ethical regulations and limited paediatric participants are key challenges that contribute to
a median delay of 6 years in paediatric mAb approval. To overcome these barriers, modelling and
simulation methodologies have been adopted to design optimized paediatric clinical studies and
reduce patient burden. The classical modelling approach in paediatric pharmacokinetic studies for
regulatory submissions is to apply body weight-based or body surface area-based allometric scaling to
adult PK parameters derived from a popPK model to inform the paediatric dosing regimen. However,
this approach is limited in its ability to account for the rapidly changing physiology in paediatrics,
especially in younger infants. To overcome this limitation, PBPK modelling, which accounts for
the ontogeny of key physiological processes in paediatrics, is emerging as an alternative modelling
strategy. While only a few mAb PBPK models have been published, PBPK modelling shows great
promise demonstrating a similar prediction accuracy to popPK modelling in an Infliximab paediatric
case study. To facilitate future PBPK studies, this review consolidated comprehensive data on the
ontogeny of key physiological processes in paediatric mAb disposition. To conclude, this review
discussed different use-cases for pop-PK and PBPK modelling and how they can complement each
other to increase confidence in pharmacokinetic predictions.

Keywords: pharmacokinetic modelling; PBPK modelling; popPK modelling; pharmacokinetics;
pediatrics; monoclonal antibodies; physiologically based pharmacokinetic modelling; population
pharmacokinetics

1. Introduction

Over the past few decades, novel developments in therapeutic monoclonal antibodies
(mAbs) have helped establish their place as a mainstay in the treatment of several adult
diseases, with more than 110 mAbs approved by the U.S. Food and Drug Administration
(FDA) or European Medicine Agency (EMA) (Table S1) [1]. While less than 40 mAbs have
been approved for paediatric indications (Table S1), the utility of mAbs in the treatment of
paediatric diseases has gradually gained recognition. More recently, bamlanivimab (LY-
CoV555) and REGN-COV2 were used to treat SARS-CoV-2 infections in paediatrics above
12 years old [2,3]. With the introduction of the Paediatric Research Equity Act (PREA) by the
FDA and grant incentives by the health authorities to encourage paediatric research [4–6],
there have been interesting opportunities to develop mAbs for paediatric diseases.

Despite growing interest in developing mAbs for paediatric treatment, ethical regula-
tions and limited paediatric participants remain key barriers that hinder paediatric clinical
trials [7]. These key challenges contribute to a median delay of 6 years in mAb treatment
being approved for paediatric indications [8]. To overcome these barriers, the pharma-
ceutical industry is increasingly adopting modelling and simulation methodologies to
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design optimized paediatric clinical studies and reduce patient burden [9,10]. For instance,
pharmacokinetic data from adults can be extrapolated to the paediatric population by
modelling and simulations to inform the selection of the first-in-paediatric dose for clinical
trials that balance efficacy and safety [11–13]. Moreover, from a regulatory perspective,
the utility of modelling and simulation methodologies has been acknowledged by the
FDA, which highly recommends the inclusion of modelling and simulation methodologies
for paediatric study plan (PSP) submissions [14]. This mini-review aims to evaluate the
classical modelling approach for mAb pharmacokinetic predictions in paediatric and their
relevant knowledge gaps. Correspondingly, this mini-review explores how physiologically-
based pharmacokinetic (PBPK) modelling, an emerging alternative, can be advantageous
in bridging these knowledge gaps.

2. Methodology
2.1. Comparison of Modelling and Simulation Methodologies Used in Pediatric mAb Development

PubMed was used to conduct a broad systematic search in the literature for the char-
acteristic features of different modelling methodologies. Keywords included ‘population
pharmacokinetics modelling’, ‘popPK modelling’, ‘physiologically based pharmacokinetic
modelling’, ‘PBPK modelling’ and ‘allometric scaling’. To narrow down the search results to
paediatric and monoclonal antibodies, the keywords ‘paediatric’, ‘children’, ‘infants’, ‘mon-
oclonal antibodies’ and ‘mAbs’ were included. Additionally, the FDA drug database was
used to identify the most common modelling methodologies employed for mAb develop-
ment. Each Biologics License Applications (BLA) approval for existing approved paediatric
mAbs was vetted to compile modelling methodologies for use in a regulatory submission.

2.2. Screening Age-Dependency of Physiological Parameters for Pediatric PBPK
Model Development

PubMed was used to screen the significant ontogeny of physiological parameters for
paediatric PBPK development in monoclonal antibodies using the keywords ‘neonates’,
‘infants’, ‘young infants’, ‘children’, ‘adolescents’, and ‘paediatric’. This was accompanied
by relevant physiological parameters of interest. Reference lists of key research articles with
comprehensive datasets on paediatric physiological parameters were manually screened to
seek out relevant references to corroborate our dataset.

2.3. Analysis of Pediatric PBPK Modelling Studies

Given the limited PBPK studies published for mAbs, a broad PubMed search was
performed with the keywords ‘paediatric PBPK model’ and ‘monoclonal antibodies’ or
‘mAbs’. Subsequently, to screen for a paediatric PBPK model specific to an individual
mAb, the aforementioned keyword search was accompanied by existing mAbs approved
for paediatric usage. Only studies with reported AUC predicted and observed serum
concentration-time graphs from which AUC could be calculated were shortlisted. Serum
concentration-time graphs were digitized by Graph Reader (v. 4.0, AstraZeneca, Cam-
bridge, UK), and AUC was calculated using R (v. 4.2.2, Core Team (2022) Vienna, Austria).
Microsoft® Excel® (v. 2208, Microsoft Office, Washington, DC, USA), which was used for
graph plotting and fold change visualization.

3. Results and Discussion
3.1. Classical Modelling Approach for Pediatric Dosing Regimen

Modelling and simulation approaches to extrapolate the first-in-paediatric dose ranged
from allometric scaling based on body size to more complex physiologically-based phar-
macokinetic (PBPK) and population-pharmacokinetic (pop-PK) modelling [15,16]. The
strengths and limitations of these approaches are summarized in Table 1.

The classical approach that pharmacokinetic studies used for regulatory submissions
to FDA and EMA were to apply both the body weight-based or body surface area (BSA)-
based allometric scaling to adult PK parameters derived from the popPK model for the
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prediction of PK in children [16,17]. Out of the 39 mAbs currently approved for paediatric
usage, only 10 mAbs have PBPK models for human adults or paediatrics.

Allometric scaling from adults to children based on body weight to determine the
dosing regimen may be appropriate for mAb, where PK is primarily correlated with
body weight and exhibits linear PK [18–21]. However, when mAb clearance is not scaled
linearly with weight, a body-weight dosing approach could result in a clinically sub-
optimal dose for children from a lower weight group [19,22]. Hence, in clinical practice,
allometric scaling is rarely applied to paediatric dosing for any approved mAbs in isolation
but is rather combined with more scientifically rigorous approaches such as population
PK (popPK) modelling to determine safe yet effective mAb exposures for the paediatric
population [5,13,18–20,23,24].

PopPK leverages mathematical models to evaluate pooled PK data from different
clinical studies. Covariate information (weight, age or gender) can be integrated into
popPK analysis, and this could help explain PK variability within the population [25]. The
key advantages of this approach are the ability to analyse sparse data (typical for paediatric
studies) and to identify and include the covariates that affect PK, facilitating paediatric
dose selection [8]. For instance, body weight is a commonly included covariate in popPK
modelling since it was established to significantly impact mAb PK.

Despite popPK modelling being commonly used to support the paediatric clinical
trial design [26–29], its ability to capture the complexities of physiological changes in
paediatrics and the impact of mAb on PK is restricted [30]. While age can be included
as a sigmoidal maturation function (guided by the sum of gestational and postnatal age)
in popPK modelling to explain the maturational differences between paediatrics and
adults [8], it is crucial to acknowledge that children are not small adults. There is a growing
body of evidence that suggests allometric scaling based on body weight cannot reflect
the complex developmental processes that occur during paediatric growth, especially in
younger age groups [31]. This is supported by several studies corroborating evidence that
the rapidly changing physiology in young children could affect the pharmacokinetics of
mAb. For instance, extracellular fluid volume decreases rapidly following birth, whereas
plasma volume gradually increases, leading to a higher proportion of the total body
volume available for mAb distribution [6,32]. While allometric scaling within popPK
modelling can account for size differences between adults and children, it does not account
for the aforementioned ontogeny of paediatric physiology [33], and this remains a key
limitation of popPK modelling in paediatric mAb development. Given that the paediatric
population is vulnerable to side effects from dosing errors, especially younger infants [34],
it is imperative that modelling and simulation approaches account for how physiological
differences between paediatrics and adults could affect the pharmacokinetics of mAbs and
correspondingly drug exposure levels.

Table 1. Comparison of modelling approaches for mAb pharmacokinetic predictions in the paedi-
atric population.

Methods Allometric Scaling Pop-PK PBPK

Characteristics

Empirically derived function,
predicting individual PK parameters

(e.g., CL and V) based on
demographic information (e.g., BW)
(e.g., k = 0.75 for CL, 1.0 for V) [8]

Prediction based on
retrospective analysis of

pooled clinical data with the
allometric and maturation
function incorporated. Can
predict within dose range
studied or other doses and

age range [31].

Based on understanding
complex physiological

processes to mechanistically
predict PK based on the

interplay between
drug-specific characteristics

[35].
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Table 1. Cont.

Methods Allometric Scaling Pop-PK PBPK

Main applications

Extrapolate clinical PK information
from adults to pediatric patients,

typically combined with pop-PK to
support the design of pediatric

clinical studies [31]

Statistically driven analysis of
pooled PK data from different

clinical studies. Covariate
analysis (age, gender, weight)

can explain sources of PK
variability. [31]

Leverage mechanistic
mathematical models that

recapitulate the physiology of
humans, from neonates to

adults, to assess the impact of
ontogeny on mAb PK [36,37]

Strengths Simple and quick with minimal
resources required [8]

Analyse sparse data (typical
for pediatric studies), and

identify covariates that affect
PK.

Can integrate complex
customised allometric and
maturation functions [38].

Can be used for predictions
with limited clinical data.

Accounts for the ontogeny of
physiological processes in

pediatrics, especially younger
infants, and its impact on

mAb PK [39,40].

Gaps

Only captures body-size related
information. Limited representation

of complex physiological process
such as TMDD or FcRn recycling. [31]
Promising for mAbs with linear PK,

which is affected by few
well-understood parameters.

However, less scientifically vigorous
compared to pop-PK and PBPK [24].

Knowledge about the
appropriate allometric and

maturation functions required.
Predictions limited to scaling
of selected parameters within

the population and doses
studied [38].

Heavily reliant on biological
understanding of ontogeny

considering the physiological
processes in pediatrics for
initial model development.
Reliability of data largely

hinges on underlying
ontogeny data [40,41].

BW, body weight; CL, clearance; FcRn, neonatal Fc receptor; PK, pharmacokinetics; PBPK, physiologically based
pharmacokinetic modelling; pop-PK, population pharmacokinetic modelling; TMDD, Target-mediated drug
disposition; V, distribution volume.

3.2. Physiologically Based Pharmacokinetic Modelling—An Emerging Alternative?

To address the limitations of popPK modelling, PBPK modelling, which is capable of
accounting for the ontogeny of key physiological processes, was considered to determine
the first-in-paediatric dose for clinical trials. PBPK models leverage differential equa-
tions which describe compartments by representing specific tissues linked by blood flow to
recapitulate the anatomy and physiology of humans, from neonates to adults [36,37]. Subse-
quently, ontogeny in paediatric physiology, such as blood flow, lymph flow and biochemical
processes, can be incorporated to evaluate their effects on drug exposure [26,42].

The utility of PBPK modelling studies has been established in small molecule drugs
and plays a critical role in regulatory submissions to the FDA and EMA [35,39,43,44].
However, it cannot be assumed that similar success can be achieved when PBPK modelling
is applied to mAbs, given that the PK of small-molecule and large-molecule drugs are
inherently different (Table 2). Hence, the suitability of PBPK modelling for paediatric mAb
development must be evaluated separately.

3.3. Ontogeny of Key Physiological Processes in Pediatric Monoclonal Antibody Disposition for
Exploration in PBPK Studies

To provide perspectives on how PBPK studies could explore the age-dependency of
key physiological processes in paediatric mAb disposition, we consolidated physiological
data across different age groups from birth to adults (Table 3) and highlighted a few
significant findings from a recent review evaluating the current understanding in this
area [5,45].

Given that mAbs have a large molecular size, contributing to poor membrane perme-
ability, their distribution is primarily restricted to the plasma and extracellular fluid [46].
Thus, plasma and extracellular fluid volume could be used to estimate the volume and
distribution of mAbs. Clinical studies have observed extracellular fluid decreased rapidly
from birth, especially over the first few months. Coupled with a modest increase in plasma
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volume from birth, the net total body volume of distribution was higher in young infants
compared to adults [5].

While the extravasation of mAbs in paediatrics has yet to be quantified, the extravasa-
tion rates of other plasma proteins, such as albumin, which demonstrate similar distribution
patterns and FcRn affinity, could serve as a proxy to explore the ontogeny of mAbs extrava-
sation [47]. Studies have reported the higher extravasation of plasma proteins in neonates
compared to adults [5], suggesting a similar trend in mAbs. The possible mechanisms ex-
plaining the higher extravasation rate of plasma proteins could be the higher proportion of
‘leaky’ tissues (tissues where capillary permeability is higher) and higher capillary density
in young infants compared to adults.

Paediatric pharmacokinetic studies [48–50] have also reported a higher absorption rate
of therapeutic proteins in infants compared to adults. Since one major absorption pathway
of mAbs is lymphatic drainage and recirculation, lymph flow rate provides an indication
of mAbs absorption rate [51]. While lymph flow rates have not been quantified in human
infants, they are commonly estimated to be 0.2% of the plasma flow [52], which is higher in
infants compared to adults (Table 3).

Table 2. Comparison of pharmacokinetic attributes in small molecule drugs and monoclonal an-
tibodies. Attributes of small molecule drugs and mAbs were consolidated from research studies
[45,53–57].

Attributes Small Molecules mAbs

Molecular weight <500 Da 150 kDa

Target Intracellular and surface targets Membrane proteins or soluble proteins in
circulation

Route of
administration

Oral, intravascular (IV), subcutaneous (SC),
intramuscular (IM)

Parenteral (intravascular (IV), subcutaneous (SC),
intramuscular (IM))

Posology Short-acting: often dosed daily or multiple times a
day Long-acting with dosing intervals up to months

Absorption Through passive diffusion and active transporters.
Usually rapid after oral administration.

Mainly through lymphatic uptake due to their
large molecular size. Slow after subcutaneous

administration.

Distribution (Vd) Volume of distribution high (0.1 to 1000 L/kg) Volume of distribution is limited. Typically
limited to plasma or interstitial fluid.

Metabolism/ Typically eliminated by CYP, UGT, transporters,
renal and biliary pathways.

Intracellular catabolism by lysosomal
degradation after endocytosis

Elimination Mainly via biliary and renal excretion Mainly via target-mediated drug disposition
(TMDD) but can be recycled via FcRn

Half-life (t1/2) Short (<24 h) Long (days or weeks)

Clearance (CL) Mostly linear PK; non-linearity mainly due to the
saturation of metabolic pathways

Non-linear clearance is observed at low dose
levels due to TMDD; linear clearance observed at

above saturable dose range

Immunogenicity Typically not observed

Likely generation of antidrug antibodies (ADA)
due to immunogenicity. ADA can form an

immune complex with mAb, which can
accelerate overall mAb clearance.
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Table 2. Cont.

Attributes Small Molecules mAbs

Drug–drug interaction Expected and need to be investigated for CYP P450
and transporter interactions

Rarely observed with some exceptions (e.g.,
mAbs modulating cytokine pathway may

interact with CYP3A4-mediated clearance of
small molecule drugs)

Special population

Physiological parameters (e.g. body composition,
organ size, metabolic enzyme and transporter

activity, plasma protein levels) affecting ADME may
differ based on demographic characteristics (age, sex,
ethnicity) and on comorbidities (eg hepatic or renal

impairment)

Age-dependent changes in Fc receptor for the
paediatric population and pregnant population

Table 3. Key ontogeny physiological parameters data for exploration in PBPK studies. [5,6,41,58–60]
*FcRn p51 and B2M abundance refers to fetal values.

Key Physiological
Parameters Age Group (Years)

Birth 1
month 2 months 3

months
6

months
12

months
18

months <2 2–6 6–12 12–18 Adults (>18) Refs

Extracellular fluid
(ECF) volume % 45 40 32 30 29 26 23 20 19 18 18 18 [6]

Plasma volume
(mL/kg) 40 45 45 50 50 50 55 55 50 46 43 43 [5]

Capillary density
(capillaries/mm2) 223 89.04 74.94 33.5 89.04

106.7 (18–40
years old) 171

(40–65 years old)
[41]

Leaky:Tight tissue
mass ratio 0.129 0.115 0.118 0.116 0.102 0.098 [58,

59]

Endogeneous IgG
concentrations

(µM)
69.26 35.16 20.21 25.05 27.79 40.21 41.68 60.53 77 76.51 [41]

Lymph Flow Lymph flow data have not been quantified in pediatrics. However, research in the literature supports that the number of lymph nodes is
less in pediatrics; thus, lymph flow is scaled allometrically with an exponent of 0.75 using 3.855 mL/h/kg as a reference value in adults. [41]

FcRn p51
abundance *

(pmol/mg protein)
3.36 (3.07) * 3.11 1.70 1.72 2.25 [60]

FcRn B2M
abundance *

(pmol/mg protein)
58.9 (40.722) * 50.2 41.3 42.1 27.7 [60]

* Refers to fetal values for FcRn p51 and B2M abundance. p51 and B2M are 2 different subunits of FcRn.

A major elimination pathway of mAbs is the lysosomal degradation after endocy-
tosis, and clinical evidence of the Fc neonatal receptor (FcRn) role in protecting mAbs
from lysosomal degradation has emerged [52]. Approximately 66% of FcRn-bounded
mAbs in the vascular endothelium were recycled back to the plasma, prolonging their
half-lives [61–64]. FcRn expression has not been quantified in human infants until very
recently when Barber et al. investigated the ontogeny of FcRn expression in paediatric
human tissues [60]. The study covered a wide developmental age range, quantifying FcRn
expression in paediatric tissues (liver, intestine, kidney and skin). They discovered for the
first time a declining trend in FcRn abundance from neonatal to adult levels, confirming an
earlier prediction previously made by a minimal PBPK model of IgG [65].

This newfound discovery of a higher FcRn expression in paediatrics compared to
adults disputed a prior hypothesis put forth by Malik et al. which proposed that lower
FcRn expression levels in paediatrics could be responsible for the increasing mAb clearance
observed in young infants [5]. However, there is a caveat to this hypothesis. An elevated
mAb clearance in young infants could also be due to their higher level of endogenous IgG
concentration after birth, resulting in increased competition for FcRn binding between IgG
and mAb. Consequently, the decrease in mAb and FcRn binding could explain the decrease
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in FcRn recycling of mAb and, thus, increased mAb clearance. At present, an increased
mAb clearance cannot be attributed to a single variable but rather can be more accurately
explained by a multitude of variables. Thus, exploring the age-dependency of different
physiological processes responsible for mAb elimination could provide further insights
into this area.

3.4. Perspectives on Existing Pediatric PBPK Models for Monoclonal Antibodies

An analysis of paediatric PBPK modelling studies for monoclonal antibodies was per-
formed to evaluate the prediction accuracy of existing PBPK models. However, paediatric
PBPK studies for mAbs are still limited [15,41,65], despite the increasing appreciation of
its utility in accounting for how the ontogeny of paediatric physiology could affect mAb
PK [66,67]. At present, there are only seven paediatric PBPK models published [40], and
these paediatric PBPK studies are limited to less than 10 mAbs relative to the 39 mAbs
currently approved for paediatric usage. This is possible because the dearth of knowl-
edge regarding age-related changes in mAb PK and the ontogeny of paediatric physiology
data has hindered PBPK model development which requires rich physiological knowl-
edge [15,41,68].

Infliximab is one of the more well-studied monoclonal antibodies in terms of PBPK
modelling. Pan et al. constructed an Infliximab PBPK model for full-term neonates to
adolescents [41]. Using this PBPK study as an example, we evaluated how PBPK prediction
accuracy varied across different paediatric age groups. The area under the curve (AUC)
predicted; the over-observed ratio was used as a measure of prediction accuracy. In this
study, PBPK modelling across all paediatric age groups had a prediction accuracy that fell
within 0.5–1.5-fold change (Figure 1), suggesting that it is reasonably accurate. In the same
study, allometric scaling using popPK parameters also found that predicted mean clearance
values for infliximab fell within two-fold of the observed data [41]. These findings were also
supported by Malik et al., who reported that PBPK models for infliximab achieved predic-
tions within two-fold of the observed concentrations 66.7% of the time for children above
4 years old [19,24]. Additionally, when multiple adult popPK models were allometrically
scaled for Infliximab, the poorest model still fell below the two-fold error threshold [24].
Taken together, the PBPK model for Infliximab showed comparable prediction accuracy to
the classical approach of applying allometric scaling to popPK parameters.
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Figure 1. Evaluation of prediction accuracy of pediatric PBPK studies for Infliximab. Prediction
accuracy of PBPK models across all pediatric age group fall within 0.5–1.5 fold change. h denotes
time (in hours). Yellow data point is behind red data point as their values overlap.
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4. Future Directions

While there has been considerable progress in PBPK modelling for Infliximab, the same
PBPK model does not guarantee similar success for other mAbs and disease states. Moving
forward, PBPK studies should expand their scope to include the other mAbs approved for
paediatric usage, subject to clinical data availability for the PBPK model development. The
general workflow of PBPK model development based on the aforementioned Infliximab
case study is described in Figure 2, which can be ‘adapted’ for other mAbs paediatrics
PBPK model development [41]. Another aspect that future PBPK studies could explore
is to account for the differences in the target receptor expression across different disease
states [69], given that target-mediated drug disposition remains one of the key elimination
pathways for mAbs.
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Figure 2. General workflow of PBPK model development based on Infliximab case study by Pan et al.
Initial model development involves a ‘bottom-up’ approach to build a preliminary mAB PBPK model
using drug-specific preclinical and clinical data (e.g., binding to FcRn) and systems parameters
(e.g., proteomics of target expression) to inform the population model. Model is then tested to
predict observed clinical data in various clinical scenarios (e.g., single ascending dose) and, if needed,
optimised to capture reported clinical data in healthy adult and diseased populations. Validated
adult PBPK model of mAB is then applied to predict PK in paediatrics using a population model
adapted with ontogeny of physiological parameters and demography in paediatric population.

However, one of the biggest challenges for PBPK modelling is that ontogeny data are
still emerging, and assumptions are often made to compensate for the lack of ontogeny data.
For instance, the lack of FcRn abundance in paediatrics requires the study above to assume
a correlation between FcRn and IgG to study the trajectory of IgG half-lives in paediatrics.
To increase the confidence of existing PBPK models, these assumptions require further
validation with clinical data. Yet, there is an inherent limitation with collecting paediatric
clinical data for ethical reasons and a limited sample size. Hence, PBPK studies should strive
to leverage in vitro-in vivo extrapolation (IVIVE) data, which are more easily accessible,
and develop optimal practices to minimize compromising prediction accuracy. With IVIVE,
a preliminary exploration into the ontogeny of physiological processes could provide hints
of clinically significant ontogeny for future exploration in paediatrics to reduce patient
burden in clinical studies. IVIVE techniques for mAbs have made considerable progress
and allow the correlation between in vivo mAb clearance and FcRn binding affinity, as well
as FcRn-dependent transcytosis, to be explored [70,71]. As paediatric clinical data remain
scarce, refining IVIVE techniques could be a solution that allows the translation of in vitro
assay data into reliable in vivo extrapolations.
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5. PBPK Potential Role in Regulatory Submissions for Monoclonal Antibodies

Generally, popPK modelling has been used extensively in regulatory submissions
to FDA and EMA for mAb approval, and they have proved useful in explaining sources
of variability in clinical PK data for mAbs. However, very few popPK analyses include
neonatal and infant mAb PK data, with most paediatric popPK studies recruiting older
children and adolescents above 6 years of age [8]. Additionally, studies have reported
that the approach of applying size-based allometric scaling to popPK models typically
works well until a lower age group is reached [45]. Thus, it remains to be evaluated if the
current mAb dosing approach is safe and effective for younger infants, especially since
significant physiological changes occur between birth and 2 years of age [31]. In this case,
PBPK models could be valuable in accounting for the ontogeny of paediatric physiology in
younger infants and increase the confidence of PK predictions of popPK modelling [8].

While PBPK models show much promise, there are some limitations to consider. For
instance, the reliability of a paediatric PBPK model hinges largely on underlying ontogeny
data. In cases where ontogeny data are lacking, pragmatic attempts, such as drawing
parallels between PK data of endogenous and therapeutic proteins to compensate for the
lack of FcRn ontogeny data, were made [41,65]. However, this approach came with residual
uncertainty, given that it was based on assumptions [65]. Additionally, they required large
amounts of detailed data for development and validation, contributing to a lengthy and
arduous process; hence, PBPK models were less commonly utilised compared to empirical
population PK models in paediatric research [5,68,72–75].

Ultimately, the type of modelling approach to use should be based on the specific
research question. For instance, mAbs with a high target burden, such as trastuzumab,
often exhibit non-linear PK due to TMDD. However, there was no reliable method to scale
the TMDD of a non-linear popPK model by allometry [24]. In this case, PBPK’s modelling
capability, when accounting for TMDD, would be highly desired [31].

It is also crucial to bear in mind that modelling approaches are not mutually exclusive
and that allometric scaling, popPK and PBPK can be used synergistically together. As
covered previously, allometric scaling combined with popPK modelling is the classical
approach in regulatory submissions for mAb approval to the FDA and EMA. However,
allometry has also been combined with PBPK modelling for therapeutic proteins in com-
mercially available software SimCYP (SimCYP Ltd., a Certara company, Sheffield, UK)) [76].
For instance, blood flows and organ volumes for paediatrics are scaled allometrically from
adult reference values. Additionally, allometric scaling can be particularly useful when
ontogeny data are lacking. For instance, lymph flow data in paediatric humans has yet
to be quantified, but research in the literature supports the fact that the number of lymph
nodes decreases during childhood [41]. Thus, PBPK studies have explored the scaling
lymph flow allometrically with an exponent of 0.75 using 3.855 mL/h/kg as a reference
value in adults [41]. Acknowledging there may be residual uncertainty that arises from
this approach, it is a pragmatic approach allowing the exploration of hypotheses in PBPK
studies. Once future clinical data emerge to bridge the lack of existing ontogeny data, the
PBPK model could be further refined to improve prediction accuracy.

6. Conclusions

To conclude, popPK modelling typically works well for older children above 6 years
of age. However, the lack of popPK studies in neonates and younger infants does raise
questions if this remains the gold-standard approach for younger infants and neonates.
Especially when significant physiological changes occur in young infants, leveraging on
PBPK modelling, which is a mechanistic bottom-up approach that accounts for physio-
logical changes in young infants and could prove to be a promising tool in the arsenal of
modelling and simulation methodologies. While PBPK modelling for paediatric mAbs is
still nascent in its developments, the initial success in the above-discussed Infliximab case
study demonstrates that it is promising in serving as a complement to the classical pop-PK
modelling approach, increasing confidence in its predictions. When answering different
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research questions, pop-PK or PBPK have the edge over the other, and the key is to identify
when to apply these modelling methodologies. Ultimately, where we draw the line between
the different methodologies could constantly evolve as we deepen our understanding of
mAb pharmacokinetics in paediatrics. Hence, dictating a specific methodology to be used
for certain age brackets could be a premature conclusion as the drug properties in relation
to systems parameters in the population, including age range, all need to be considered
when answering a specific research question.
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