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Abstract: Over the past two decades, significant technological innovations have led to messenger
RNA (mRNA) becoming a promising option for developing prophylactic and therapeutic vaccines,
protein replacement therapies, and genome engineering. The success of the two COVID-19 mRNA
vaccines has sparked new enthusiasm for other medical applications, particularly in cancer treatment.
In vitro-transcribed (IVT) mRNAs are structurally designed to resemble naturally occurring mature
mRNA. Delivery of IVT mRNA via delivery platforms such as lipid nanoparticles allows host cells to
produce many copies of encoded proteins, which can serve as antigens to stimulate immune responses
or as additional beneficial proteins for supplements. mRNA-based cancer therapeutics include mRNA
cancer vaccines, mRNA encoding cytokines, chimeric antigen receptors, tumor suppressors, and
other combination therapies. To better understand the current development and research status of
mRNA therapies for cancer treatment, this review focused on the molecular design, delivery systems,
and clinical indications of mRNA therapies in cancer.
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1. Introduction

Messenger RNA (mRNA), a transient intermediator between genes and proteins,
was first discovered in 1961 by Brenner et al. [1]. In 1990, in a study by Wolff et al. [2],
in vitro-transcribed mRNA was directly injected into mouse muscles for the first time,
and the corresponding protein products were detected, which proved the feasibility of
mRNA therapy. Since then, several strategies have been explored to ameliorate the high
immunogenicity and instability of IVT mRNA and its inefficiency in in vivo delivery.
Advances in IVT mRNA with chemical modifications and in vivo delivery systems have
expedited the development of mRNA as a new class of drugs. mRNA therapy has several
advantages. The first is safety, as mRNA does not enter the nucleus; therefore, it has no
risk of integration into the genome. Second, mRNA can be degraded through normal
cellular pathways, and the metabolites are natural. Third, for any target protein of a known
sequence, mRNA can be quickly produced in vitro by an enzymatic reaction, thereby
avoiding complex manufacturing [3].

The effectiveness of these two COVID-19 mRNA vaccines in the real world has again
aroused an upsurge in mRNA therapy research worldwide. In cancer treatment, in 2017,
Sahin et al. [4] reported for the first time a clinical trial of applying personalized mRNA
cancer vaccines against multiple antigens to patients with melanoma. In addition to mRNA
cancer vaccines, treatment methods such as mRNA encoding immunomodulatory factors,
tumor suppressor genes, and antibodies are also in the preclinical/clinical stages of cancer
treatment. This review focused on the modification regulation/sequence optimization
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system of in vitro transcription of mRNA molecules, in vivo delivery, and the clinical
application scenarios of mRNA as a promising new generation of biomacromolecule drugs
in the field of cancer.

2. Components and Design of IVT mRNAs

Similar to natural mRNA, IVT mRNA contains five components from the 5′ to the
3′ end: a 5′ cap, 5′ untranslated region (5′ UTR), coding sequence (CDS), 3′ UTR, and
poly(A) tail (Figure 1). IVT mRNAs are susceptible to non-enzymatic decay and attack by
the host cellular mRNA degradation system [5]. They should be optimized to take better
advantage of the eukaryotic protein translation machinery than endogenous mRNAs and to
ensure sufficient half-life to achieve protein expression levels and durations. With a deeper
understanding of the influence of mRNA sequence and structure on its biological perfor-
mance, the emergence of diverse design strategies provides broader options for mRNA
optimization, typically with chemical synthesis, computational biology, and bioinformatics.
The current advances in the design of the five elements of IVT mRNA are discussed below.
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2.1. 5′ Cap

In eukaryotic transcription, 7-methylguanosine (m7G) is connected to the 5′ ter-
minal nucleotide of mRNA via a 5′-5′ triphosphate bond to form the 5′-cap structure
(m7G(5′)ppp(5′)Np). The cap structure recruits eukaryotic initiation factor 4E (eIF4E) to ini-
tiate the translation process [6]. In addition to facilitating polyadenylation at the 3′ end [7–9],
splicing [10,11], and nuclear export of endogenous precursor mRNA (pre-mRNA) [11,12]
in natural situations, the cap structure in the case of IVT mRNA is essential for translation
efficiency and stability (half-life). Based on the number of methylated nucleotides at the C2′

position (2′-OMe) of the ribose from the 5′ end, cap 0 (m7GpppNp) can be distinguished
from cap 1 (m7GpppNmpNp) or cap 2 (m7GpppNmpNmp) by the ribose methylation at
C2′ or both C2′ and C3′, respectively (Figure 2a). Uncapped mRNAs or those with cap 0
can be recognized by pattern recognition receptors (PRRs), such as retinoic-acid-inducible
gene I (RIG-I) and melanoma-differentiation-associated protein 5 (MDA5), triggering the
IFN innate immune response to inhibit translation and protein synthesis [13].
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There are two common methods for IVT mRNA capping: one is the addition of cap
analogs as RNA polymerase substrates for one-step co-transcription capping, and the other
is to employ specialized capping enzymes for post-transcription capping. Co-transcription
capping with synthetic cap analogs, such as anti-reverse cap analogs (ARCAs) with a
typical structure of m2

7′ , 3′−OGpppG or m7(3)dGpppG (Figure 2a), is used earlier and more
frequently, allowing IVT to be completed in a single step. In ARCAs, the C3′ hydroxyl
of m7G is modified such that the 3′-5′ phosphodiester bond cannot be formed, ensuring
correct capping. Modification of the C2′ position can also prevent reverse capping [14].
Linking two nucleosides with tetra- instead of triphosphate and appropriate modification
of this oligophosphate chain can improve stability and translation efficiency by facilitating
eIF4E binding [15–19] (Figure 2b). At present, CleanCap®, a next-generation one-pot
capping technology, enables co-transcription capping without cap analogs with a capping
rate of >95% [20]. Post-transcription capping implies that an additional enzymatic capping
step is performed after transcription. At present, the vaccinia capping enzyme (VCE) is
commercially available and completes mRNA capping similarly to the eukaryotic capping
machinery to produce IVT mRNA with cap 0 (m7GpppNp). Commercialization of the
2′-O-methyltransferase VP39 in vaccinia viruses for further processing renders IVT mRNA
with a cap 1 [21]. Some viral enzymes, such as VP4 in Bluetongue viruses, can obtain cap 1
directly [22]. Capping, as an additional step, complicates industrial production and may
reduce yield.

2.2. Untranslated Region (UTR)

There are many cis-elements and secondary structures on the 5′ and 3′ UTRs of
eukaryotic mRNA that interact with various RNA-binding proteins (RBPs), and it is widely
accepted that 5′ and 3′ UTRs are essential for mRNA translation and stabilization. However,
due to the lack of in-depth insight into the regulatory mechanisms involved, current IVT
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mRNA design predominantly uses UTRs derived from genes with high expression, such
as α-globin or β-globin UTRs from Xenopus laevis and Homo sapiens [23,24], which leaves
much room for optimization.

Several aspects are relevant to UTR sequence engineering. (1) Structure: in general,
translation efficiency suffers when excess secondary structures are introduced into the
5′ UTR [25]. (2) Kozak sequence: For efficient translation of the CDS region, the “AUG
background” nucleotides around the initiation site AUG should be an optimal Kozak se-
quence. In vertebrates, the general sequence can be described as follows: (gcc)gccRccAUGG
(AUG: initiation codon; [gcc]: importance unknown; R: purine (adenine accounts for ~97%);
lower case: most common bases (may vary); upper case: highly conserved bases) [26].
(3) Upstream start codon (upstream AUG, uAUG) or upstream open reading frames
(uORFs): unexpected start codons or open reading frames upstream of the designed
CDS may interfere with target protein expression [27] or cause the regulator of nonsense
transcript 1 (UPF1)-dependent degradation of mRNA [28–30]. (4) Internal ribosome entry
sites (IRESs): The IRES consists of hundreds of nucleotides (nt) that were first discovered in
viral gene expression and later confirmed in some mRNAs of eukaryotic cells. It can bind
to the 40S subunit of the ribosome and initiate translation of CDS, bypassing canonical
cap-dependent translation initiation. The IRES in the 5′ UTR is approved for the translation
of IVT mRNA without cap [31,32].

Optimization of the 3′ UTR may improve IVT mRNA stability [33]. Adenylate–
uridylate-rich elements (AREs; usually, AUUUA motifs are scattered or overlapped within
or near U-rich regions) are the most common mRNA stability determinants in mammals.
Some AU-rich element RNA-binding proteins (AUBPs) stabilize mRNA, whereas others,
such as AU-rich element RNA-binding protein (AUF1), tristetraprolin (TTP), and human
antigen R (HuR), form exosomes that mediate 3′→5′ degradation starting from the poly(A)
tail [34,35]. Guanosine–uridine-rich elements (GREs) [36] and cytosine-rich elements (CREs)
also regulate mRNA expression through combined factors. The 3′ UTR also plays a role in
mRNA transport and localization. At specific regions in the 3′ UTR, mRNA localization
signals function as zip codes and interact with trans-acting factors in a sequence- and
structure-dependent manner to determine the subcellular transport and anchoring of the
mRNA, which affects translation. For IVT mRNA sequence engineering, it is advisable to
locate the best translation site based on the synthesis, processing, (secretion), and functional
pathway of the encoded protein by editing the 3′ UTR [37].

Machine learning combined with high-throughput sequence screening may be a
hotspot for next-generation mRNA design. Castillo-Hair et al. [38] conceived a three-step
workflow for this pattern, which can be interpreted as follows: establishment of a training
set from experimental data, generation and verification of a machine learning model, and
model-based computational mRNA design. The first step requires a massively parallel
screening assay of the mRNA library containing the sequence fragment to be optimized
with freely chosen metrics to quantify mRNA performance. The experimental results in step
three can serve as data input for feedback [33,39–41]. Since plasmid-based screening cannot
reliably characterize the expression level of IVT mRNA [42], a well-designed screening
assay is required [41]. The machine-learning-based framework is expected to thrive in
future mRNA design because of its iterative optimization capability and open-source
linkage of data and algorithms.

2.3. Coding Sequence (CDS)

The coding sequence (CDS) is the core of the IVT mRNA. Codon optimization in the
CDS region refers to synonymous substitutions that regulate protein translation while
avoiding attack by endonucleases [43]. Considering the “codon bias,” one common method
is to use more frequently used codons in human mRNAs as replacements for rare codons to
accelerate mRNA translation and avoid degradation caused by translation blockage [44,45].
In addition, the frequency of certain codon pairs (“codon pair bias”) and dinucleotides
is thought to be related to the translation efficiency [46–48]. Optimization of G/C at the
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third position of the codon stabilizes mRNA and promotes translation. Hia et al. [49]
combined high-throughput sample analysis and experimental methods to comprehensively
explain that GC3 (G or C at the third position of codons) and the GC content of the whole
mRNA affect stability. Since the exchange of G↔A and C↔U at position three of the codon
has little effect on the determination of amino acids, GC3 and AU3 content can be used
to some extent as markers to reflect the properties of mRNAs. Studies have shown that
GC3-rich mRNAs have a higher ribosome reading rate and protein expression efficiency
than AU3-rich mRNAs. Total GC content provides a translation-independent stabilization
effect that correlates with mRNA degradation mediated by RBPs [50]. Moreover, decreasing
the U ratio attenuates the activation of PRRs such as Toll-like receptor-7 (TLR-7), resulting
in mRNA degradation [51–55].

Both the primary and high-level structures are essential for CDS translation. Undesir-
able codon optimization may generate unanticipated secondary structures and unfavorably
affect the kinetics and authenticity of ribosome scanning, resulting in erroneous wobble
pairing and reduced quality and quantity of protein expression [56–58]. Therefore, the
optimization of both mRNA and secondary structures may have a synergistic effect in
terms of enhancing and prolonging protein expression.

Computer-aided mRNA design is applicable to CDS engineering. In addition to the
machine learning framework mentioned above, LinearDesign, a word lattice parsing-based
algorithm developed by Baidu that enables the rapid optimization of sequence design, is
promising for mRNA-based cancer treatment [59].

2.4. Poly(A) Tailing

Polyadenylation of pre-mRNA in eukaryotic cells occurs after transcription and before
transport from the nucleus to the cytoplasm to form the poly(A) tail, which contains
consecutive adenine nucleotides (50–250 nt) bound by PABPs to promote nuclear export [60],
increase translation [61,62], and inhibit degradation [63]. In the closed-loop model of mRNA
translation, poly(A) prevents mRNA degeneration [64]. Poly(A)-specific ribonucleases
(PARNs) with 3′→5′ exonuclease activity can bind to the 5′ cap to cause deadenylation [65],
which acts as an important initiator of some crucial mRNA decay pathways. In eukaryotes,
the poly(A) of most cytoplasmic mRNAs gradually becomes shorter, and mRNAs with
shorter poly(A) tails have been found to be less translated and more rapidly degraded [66].
However, with advances in poly(A) tail sequencing, seemingly paradoxically, tails truncated
to a minimal length are emerging as a feature of highly enriched and well-expressed
transcripts, which may be partly due to the shrinking of binding regions for deadenylases
and translation inhibitors [67].

IVT mRNAs with different poly(A) tail lengths, ranging from 60–70 nt [68] to the
generally accepted appropriate length of 120–150 nt, have been tested in various cell
lines [69,70]. The optimal tail length of IVT mRNAs requires adaptation to a specific case,
based on the intrinsic properties of IVT mRNAs and the cytoplasmic environment [71].

There are two methods for synthesizing IVT mRNAs with poly (A) tails of a specific
length. One is to insert the poly[d(A/T)] sequence of a certain length into the DNA tem-
plate (pDNA or PCR product), and the other is to perform post-transcriptional enzymatic
polyadenylation with recombinant poly(A) polymerases. The former provides mRNA
with a specific length of poly(A) tail in one step, which facilitates the quality control of
IVT mRNA, particularly for clinical applications. The latter offers the possibility of in-
serting chemically modified nucleotides into the poly(A) tail to increase its stability and
promote translation [72]. A conserved hairpin, rather than the poly(A) tail at the 3′ end of
histone mRNAs, performs a poly(A)-like function that can replace poly(A) or be appended
downstream as a possible optimization [73–75].

2.5. Chemical Modification

The role of nucleotide modification of mRNA is multifaceted and context-dependent [76].
It affects dsRNA formation in IVT, secondary structure, translation, and immunogenic-
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ity [76–79]. As foreign substances with immunostimulatory properties, unmodified IVT
mRNAs can be recognized by the PRRs of innate immune cells, eventually leading to the
breakdown of the entire translational apparatus of the host cell. The ability to elicit an innate
immune response is also referred to as intrinsic adjuvant activity. Appropriate chemical
modifications can reduce the degradation of mRNA and maintain the stability of its sec-
ondary structure [78]. More importantly, chemical modification of nucleotides can regulate
the immunogenicity of IVT mRNA.

In tumor IVT mRNA vaccines, overdue intrinsic adjuvant activity is unfavorable for
antigen processing and presentation and insufficient for T and B cell activation; however,
the moderate intrinsic adjuvant activity of IVT mRNA vaccines can promote the maturation
of antigen-presenting cells (APCs), such as DCs (cytokines TNF, IL-12, and IL-6 involved),
to exert APC function in adaptive immunity [80]. According to our cancer therapy strategy,
methods for IVT mRNA optimization, including chemical modification and purification
techniques such as high-performance liquid chromatography (HPLC) [81], should be
applied to adjust immunogenicity to a suitable level.

Modification of nucleosides prevents the recognition of PRRs, including TLR3, TLR7,
and TLR8 [82]. Adenosine is commonly replaced by N6-methyladenosine (m6A) or N1-
methyladenosine (m1A), cytidine by 5-methylcytidine (m5C) or 5-hydorxymethylcytidine
(hm5C), and uridine by pseudouridine (ψ), 2-thiouridine (s2U), N1-methylpseudouridine
(m1ψ), or 5-methyluridine (m5U) (Figure 3). Karikó et al. [82,83] found that m5C and
ψ significantly reduce the immune response and improve translation efficiency. In a
study by Kormann et al. [84], 14 days after intramuscular administration of IVT mRNA
containing 25% uridine and cytidine replaced with s2U and m5C, respectively, protein
expression levels were 4.8- and 4.4-fold higher, respectively, than those in mice injected
with unmodified mRNA. As the modification in two FDA-approved COVID-19 mRNA
vaccines, m1ψ reduces immunogenicity compared with canonical U, with the change in
mRNA structure affecting translation initiation and half-life [77–79,85]. In general, the
proportion of chemically modified nucleotides is determined by their loading ratio to
achieve optimal protein expression [84,86]; post-transcriptional nucleotide modification
could also be an alternative [87].
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3. mRNA Delivery System

Although the first attempt to inject naked mRNA has been shown to generate an
encoded protein [2], the lack of an efficient delivery system has limited its use in the
early years. Naked mRNAs can be rapidly degraded by extracellular RNases and have
difficulty passing freely across cell membranes. Thus, to play an important role in vivo,
mRNA delivery platforms must overcome several extracellular and intracellular barriers.
These include protection from degradation by nucleases in physiological fluids, protection
from interception by the mononuclear phagocytosis system, elimination of glomerular
filtration after systemic administration, and improvement in the ability of mRNA to reach
the cytoplasm for translation after reaching the target tissue and being swallowed by the
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target cell. Therefore, appropriate methods are required for efficient mRNA delivery to
achieve these functions. After being encapsulated in a delivery vehicle, mRNA is able to
enter the target cells through multiple mechanisms, which depends on the properties of the
delivery platform and the cell type. For instance, mRNA delivered by lipid nanoparticles
(LNPs) can be internalized by micropinocytosis and endocytosis; polyplexes enter the cells
via caveolae-mediated endocytosis while lipoplexs via clathrin-mediated endocytosis or
fusion with the cell membrane [88]. The optimization of mRNA delivery systems is of great
importance for mRNA drug development.

3.1. Naked mRNA Injection or Electroporation

Naked mRNA can hardly enter cell lines cultured in vitro because of its negative
charge and large size [89]. The in vivo delivery efficiency of naked mRNA is highly de-
pendent on the route of administration. Naked mRNA has low delivery efficiency, except
with subcutaneous injection [89]. Eukaryotic cells can take up naked mRNA; however, the
uptake efficiency of naked mRNA is too low (<1%) to have a significant effect on most
somatic cells, except dendritic cells (DCs). Some researchers have suggested that immature
DCs in the lymph nodes or dermis can selectively take up naked mRNA via micropinocyto-
sis [90,91]. Thus, the injection of naked mRNA is now used for vaccines containing encoded
antigens, mainly intradermal [92,93] (i.d.) or intranodal [94,95] injections. Some adjuvants
are added to enhance the therapeutic immune response triggered by naked mRNA, such
as granulocyte–macrophage colony-stimulating factor (GM-CSF) [93] or tyrosine kinase 3
(FLT3) ligand [96]. Naked mRNA administration has made some progress in both cancer
vaccines [4] and infectious disease vaccines [97].

Some ex vivo loading methods have been used for immunological application of
mRNA. Although DCs have been shown to engulf naked mRNA in vivo, ex vivo trans-
fection still has higher efficiency and specificity. In these cases, mRNA is introduced by
electroporation, forming membrane pores and directly entering the cytoplasm. The ex
vivo mRNA loading strategy was applied to DCs [98] and CAR-T cells [99,100]. The ex
vivo procedure is usually associated with superfluous costs and risks, but this shortcom-
ing no longer exists with CAR-T, which initially involves an ex vivo procedure. In vivo
electroporation has been used in preclinical studies to increase uptake efficiency [101,102].

3.2. Liposome and RNA Lipoplexes (LPX)

Lipids have always been attractive materials for mRNA transfer because they are
selectively electrical and biodegradable. Among them, cationic lipids are the first choice for
nucleic acid delivery because they carry an electrical charge opposite to that of RNA. Lipo-
somes are closed spherical lipid bilayers that form an internal cavity that can hold aqueous
solutions. Liposomes usually contain cationic lipids (DOTAP [103] and DOTMA [104]) that
can bind negatively charged RNA and some helper lipids (DOPC, DOPE, and DSPC) to
form the lipid bilayer structure.

RNA LPX refers to cationic liposomes that are mixed with RNA. Liposomes are
lipid carriers of nucleic acids that are used as transfection reagents in vitro. Owing to
their positive surface charge, they can form complexes (spherical or continuous bilayer
structures) with negatively charged nucleic acids. LPX was first used for RNA delivery
in 1989, inspired by its success in DNA delivery [23], and has now been widely used for
mRNA vaccine delivery. RNA-LPX was prepared by diluting the RNA with liposomes in
ethanol and sodium chloride solutions at a selected charge ratio [105].

Changing the ratio of cationic lipids to RNA could alter target specificity. Decreasing
cationic lipid content could allow systematic delivery to the spleen. This improved mRNA-
LPX, when injected intravenously, could systematically be targeted to the spleen DCs
and serve as a cancer vaccine [105]. The same formulation is effective in the treatment
of autoimmune encephalomyelitis by delivery of autoantigens [106] and in the treatment
of melanoma by delivery of tumor-associated antigens (TAAs) [107]. LPX mRNA can be
administered via several routes, with intravenous administration being the most common.
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Intravenous administration showed the highest delivery efficiency and satisfactory immune
organ specificity. LPX mRNA is mainly used for the systematic delivery of cancer vaccines,
and several projects are in clinical trials (summarized in another review [108]).

3.3. Lipid Nanoparticle (LNP)

At present, the LNP-based mRNA delivery system is considered to be one of the most
advanced and promising delivery systems, particularly after the great progress achieved
with regard to the COVID-19 vaccine. LNPs differ from liposomes in that they have micellar
structures within their particle core [109].

LNPs typically contain four types of lipid materials: cationic or ionizable lipids, choles-
terol, phospholipids, and polyethylene glycol (PEG) lipids. Of these, cationic/ionizable
lipids play an important role in forming a core with mRNA through electrostatic interac-
tions to protect against RNase. LNPs are prepared via self-assembly and rapid mixing,
which is generally facilitated by microfluidic chip devices [110].

Initially, cationic lipids, such as DOTMA/DOTAP, were used because they not only
bind anionic mRNA but also fuse the membrane to promote cellular uptake and endosomal
escape. Although cationic lipids showed promising effects for successful delivery, the
permanent charge they carried resulted in high cytotoxicity and limited their potential
applications [111]. Ionizable lipids, which have no charge at physiological pH but become
positively charged at low pH, were introduced as second-generation cationic lipids to
reduce cytotoxicity. In the preparation of LNPs, ionizable lipids carry a positive charge and
efficiently bind mRNA. This type of ionizable LNP remained neutral in a physiological pH
environment, thus reducing cytotoxicity. In addition, endocytosis of LNPs could trigger a
pH decrease mediated by the proton pump, allowing them to escape more easily [112,113].
Hundreds of ionizable lipids have been developed for various applications. Several pa-
rameters, such as tail length, unsaturation, branching, and pKa, significantly influence the
properties of ionizable lipids. The unsaturation and tail length of ionizable lipids affect
the pKa, fusogenicity, cellular uptake, and delivery efficiency [114]. Unsaturated ioniz-
able lipids with proper unsaturation have higher efficiency in mRNA delivery [115,116].
pKa is thought to affect the particle characteristics, cellular uptake, and endosomal es-
cape. Some studies have shown that the optimal pKa value for mRNA delivery to the
liver is 6.2–6.8; however, it varies from organ to organ [117,118]. Multi-tailed [119] and
branched-tail [120] ionizable lipids have also been developed and have progressed in their
expression. Significant efforts have been made to optimize these properties to achieve the
best delivery efficiency and lowest cytotoxicity. The nitrogen-to-phosphate (N/P) ratio
is a major property in LNP packaging formulations, and most formulas adopt a ratio of
6 or 3. DLin-MC3-DMA, which was optimized from DODMA, DLin-DMA, and DLin-
KC2-DMA [121], is a promising product for use in commercial siRNA drugs [122] and
various mRNA applications [123–125]. ALC-0315 and SM-102 were used by BioNTech and
Moderna, respectively, for the COVID-19 vaccine [126] (Figure 4). Many companies have
developed various ionizable compounds, such as LP01 (Intellia Therapeutics) [127] and
ATX (LUNAR composition, Arcturus) [125], which have been described in detail in another
review [128].
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Helper lipids, including phospholipids and cholesterol, are incorporated to promote
formulation stability, membrane fusion, and escape from the endosome [129]. For ex-
ample, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) is a widely used helper phos-
pholipid that can stabilize the structure of LNPs [130]. Both the mRNA-1273 [131] and
BNT162b2 [132] COVID-19 vaccines use DSPC. DOPE is another commonly used phos-
pholipid. Some studies show that an optimized formulation containing DOPE instead
of DSPC could destabilize endosomal membranes to promote endosomal escape [119].
Hydrophobic and rigid cholesterol can fill the gaps in lipid membranes to stabilize the
structure, as it plays a role in the cytoplasmic membrane [133]. PEG is normally anchored to
lipids to prolong their half-life in the circulation [130] by decreasing macrophage-mediated
clearance [134] and apolipoprotein adhesion. In addition, modification of PEG could
improve steric stability to extend storage time [135]. DMG-PEG is the most commonly
used agent, whereas some formulations contain DSPE-PEG to further extend the half-life
in the circulation. DSPE-PEG has saturated alkyl chains (C18) in contrast to DMG-PEG
(C14). Longer alkyl chains affect the efficiency of cellular uptake and endosomal escape but
dissociate more slowly in the circulatory system [136]. The amount of incorporated PEG
lipid determines the particle size [137].

In addition to their successful application in the local delivery of vaccines, LNPs have
also enabled targeted delivery to organs via systematic administration [138,139]. This
specificity of organ selectivity is mainly based on the global/obvious pKa of the lipid and
serum protein interactions of selective organ-targeting (SORT) nanoparticles [140]. The
alkyl length of the lipid can also alter delivery to the target organs, such as the liver and
spleen [141]. Neurotransmitter-derived lipidoids (NT-lipidoids) have also been developed
to transport mRNA cargo across the blood–brain barrier (BBB). Cell-targeted delivery
can also be achieved by decoration with targeted antibodies [142,143]. This type of LNP-
targeting T cell has been shown to produce CAR-T cells in vivo by targeted delivery of
mRNA encoding CAR [144]. The formulation could also be modified by adding new
components to improve performance, for example, the addition of poly (disulfide amide)
(PDSA) to promote triggered release in cancer [145,146].

In addition to release specificity, release efficiency is another important concern for
LNPs. Lipid materials induce efficient cellular uptake; however, very few mRNA trans-
porters can escape from endosomes and enter the cytosol. Studies on siRNA [147] and
mRNA [117] revealed that less than 5% could escape from the endosome because the RNA
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could only be released within a limited time window [147]. Although many efforts have
been made to elucidate the mechanism of endosomal escape, it remains unclear to date.

Several quality control standards have been established to ensure the safety and ef-
ficacy of the mRNA-LNP products. The encapsulation efficiency and concentration of
mRNA are usually determined using the Quant-iT RiboGreen RNA assay [148]. The
physicochemical properties of the particles, including particle size distribution, polymer
dispersity index (PDI), and zeta potential, were measured using particle size analyzers.
The morphology, size, and structure of the nanoparticles were visualized using transmis-
sion electron microscopy (TEM). Intraserum stability [149], anti-RNase performance, and
storage stability [150] were also evaluated to ensure a stable product quality. The payload
distribution and capacity of mRNA-LNPs are critical but remain a challenge, and some
researchers have developed a method based on multi-laser cylindrical illumination confocal
spectroscopy (CICS) [151].

3.4. Polymer-Based Nanoparticles

Polymeric materials, such as polyetherimide (PEI), poly-L-lysine (PLL), polyami-
doamine (PAMAM), and poly (lactic-co-glycolic acid) (PLGA), are other options that are
not as clinically advanced as lipids (Figure 5). Polymeric materials have the advantages
of easy synthesis and scalability. However, they have some disadvantages compared to
lipids, such as polydispersity and biodegradability. To overcome the shortcomings of
biodegradability, various efforts have been made to extend branching structures [152] or
construct biodegradable domains [153].
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PEI is one of the most widely used polymeric materials, and its linear derivative is
commercially available and can be used for mRNA delivery [154]. However, PEI is still
highly toxic because commercial high-molecular-weight PEI is not degradable [155]. Some
researchers have tried to solve this problem by adding acid-labile imine linkers [155] or by
reducing its molecular weight and introducing branching [156].

Most polymeric materials are cationic; however, PLGA is anionic and has received
FDA approval for certain applications. Anionic polymers are unlikely to bind to negatively
charged mRNA, so they are always used in conjunction with other cationic polymers. PLGA
improves delivery efficiency [157] and prolongs the half-life of the mRNA complex in the
circulatory system [158,159]. By coupling an anti-CD8 antibody to another anionic material,
polyglutamic acid (PGA), nanoparticles of poly (β-amino ester) (PbAE)/PGA-anti-CD8
were sufficient to target circulating T cells. mRNA could be delivered to T cells by injection,
and encoded CARs or TCRs could mediate therapeutic effects [160].

3.5. Cationic Nanoemulsions (CNEs)

CNEs are oil-phase dispersions in the aqueous phase. CNEs are mainly composed
of two parts: one is a cationic lipid such as DOTAP, which can be added to the oil phase
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to bind mRNA; the other is an oil-in-water emulation adjuvant composed of squalene
and surfactants. CNEs are prepared by different strategies, in which the aqueous phase
containing buffer and Tween is mixed with the oil phase containing cationic lipid, Span 85,
and squalene [161]. It has been used mainly for DNA transport and as a self-amplifying
mRNA vaccine with valid efficacy [162].

3.6. Protamine-Based Delivery

In addition to cationic lipids, negatively charged mRNA can also be transferred by
cationic peptides via electrostatic interactions. Similar to lipids, the amount incorporated
into the complex and the expression efficiency of charged mRNA are determined by the
N/P ratio [163]. Protamine is one of the best-known cationic peptides and was used in
early studies. Protamine and mRNA can form condensed nanoparticles that protect mRNA
from degradation by serum RNase [164,165]; however, this overly tight combination could
also impair expression efficiency [166]. Protamine-formulated mRNA elicited a stronger
immune response than naked mRNA [165] but could be advantageous in the application of
mRNA vaccines [167–169].

4. mRNA-Based Cancer Immunotherapies

Immunotherapies are used to eliminate cancer cells by activating the innate and
adaptive immunity, and various studies and strategies have been well tested. Owing
to their efficacy and wide range of applications, immunotherapies are considered the
most promising strategies for cancer treatment. There are a number of stepwise processes
in the immune response to cancer. First, cancer cells release antigens that are taken up
by DCs, presented on the major histocompatibility complex (MHC), and recognized by
T cells to initiate proliferation and activation. Effector T cells then recognize and kill
cancer target cells via T cell receptors (TCRs) and peptide–MHC-specific recognition,
releasing more tumor antigens to expand the immune response. However, there are many
reasons for the poor performance of the autoimmune response in patients with cancer.
For example, (1) a low abundance of tumor antigens protects them from being presented
by MHC; (2) DCs and T cells cannot recognize the antigens due to peripheral tolerance;
(3) immunosuppression may be caused by the tumor microenvironment; and (4) immune
suppression markers on the surface of cancer cells assist cancer cells in causing immune
suppression [170,171]. To restore and strengthen cancer immunity, cancer immunotherapies
that target different targets have been developed. Among these, cancer vaccines based on
mRNA platforms have been rapidly developed. In particular, the recent FDA approval
of two mRNA-LNP vaccines for COVID-19 prevention makes the clinical use of mRNA
vaccines in cancer treatment promising. In this review, we present the preclinical/clinical
cases, characteristics, and prospects of mRNA-based cancer immunotherapies. Based
on the different mechanisms of immunotherapies mediated by mRNA [172], mRNAs
can be divided into (1) neoantigen mRNA, (2) tumor-associated antigen (TAA) mRNA,
(3) antibody mRNA, and (4) immunomodulator mRNA (Figure 6).
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4.1. Neoantigen mRNA Vaccines

The most critical aspect of tumor antigen mRNA vaccine design is the selection
of antigens that are ideally expressed only by cancer cells and are immunogenic [173].
This class of cancer cell epitopes is referred to as neoantigens or tumor-specific antigens
(TSAs). In non-viral pathogenic human tumors, new epitopes are exclusively generated by
tumor-specific DNA alterations caused by genetic instability [174]. These DNA changes
include nonsynonymous mutations, frameshift mutations (insertions or deletions), gene
fusions, post-translational modifications that alter the amino acid sequence, and intron re-
tention [175–179]. In addition, post-translational modifications that alter the amino acid se-
quence and intron retention at the mRNA level can lead to the expression of non-autologous
proteins. These new epitopes with individual specificity, called neoantigens [180], enable
the immune system to recognize and destroy a tumor carrying these mutations. Epitopes
from viral open reading frames (ORF) also contribute to neoantigens in virus-associated
tumors, such as those caused by human papillomavirus (HPV). Thereafter, they undergo
cytosolic degradation, are processed into short peptides (8–10 amino acid residues), and
then transported to the endoplasmic reticulum to be loaded onto HLA molecules [181]. In
contrast to autologous sequences, to which the immune system is tolerant, the ‘foreign’
peptide will be recognized by the T cell receptor (TCR) of CD8+ T cells and activated cyto-
toxic T lymphocytes (CTLs), which are responsible for the killing of tumor cells [182,183].
However, although tumor cells have many mutations, few are recognized by the patient’s
own T cells, because neoantigen-specific T cell reactivity is generally limited to a few
mutant epitopes [184]. One way to break the immune tolerance of T cells is to use mRNA
to express neoantigen peptides to establish systemic DC targeting and neoantigen-specific
T cell immunity.

Some neoantigens have high prevalence and conserved mutation profiles and are re-
ferred to as shared neoantigens, which have significant potential for use as broad-spectrum
therapeutic cancer vaccines for patients with the same mutated genes. When the same
neoantigen is present in a patient’s tumor cell, the corresponding off-the-shelf neoantigen-
targeted immunotherapy can be used for treatment, which can significantly shorten the
development cycle. For example, BRAF V600E, ERBB2 S310F, KRAS G12D, PIK3CA E545K,
etc., are all generated by somatic mutations that are common in cancer patients [185]. Ap-
proaches to predict and prioritize immunogenic shared neoantigens are becoming more
comprehensive, opening up new opportunities to develop neoantigen-targeted therapies
in a very general way. For example, researchers have used computational epitope predic-
tion, biochemical analysis, and proteomic analysis to predict and identify an mKRAS G12
peptide with high stability and affinity to HLA-A and HLA-B in a specific race [186]. In
2018, Moderna and Merck developed a novel shared antigen mRNA vaccine formulated
with lipid nanoparticles called V941 (mRNA-5671), which targets the four most common
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KRAS mutations (G12D, G12V, G13D, and G12C) in solid tumors. Preclinical data show
that after vaccination in a mouse model, the neoantigen is translated to induce CD8+IFN+

T cells that specifically target KRAS mutant tumor cells. Phase I trials of mRNA-5671 were
recently completed in two groups (NCT03948763), either as monotherapy (intramuscular
injection) or in combination with the anti-PD-1 antibody pembrolizumab (intravenous
injection) to assess the safety and tolerability, involving 100 patients with lung, pancreatic,
and colorectal cancers (not published yet). Since all types of HPV encode “early proteins”
(E proteins: E1, E2, E6, E7) and “late proteins” (L proteins: L1, L2), the development of
mRNA vaccines for HPV-positive malignancies has also evolved rapidly [187]. BNT113
(HPV16 E7 mRNA), an intravenous cancer vaccine that efficiently matures and amplifies
antigen-specific effector and memory CD8+ T cells, was tested in mice using lipoplex (LPX)
delivery. Its administration mediated tumor regression and prevented tumor recurrence in
two HPV-positive mouse tumor models (TC-1 and C3) and showed a combined effect with
PD-L1 inhibitors [188]. BNT113 in combination with anti-CD40 (HARE-40) is currently be-
ing tested in a phase I/II vaccine dose-escalation study in patients with advanced HPV16+

cancer (NCT03418480). Another phase II trial of BNT113 combined with pembrolizumab
versus pembrolizumab alone as a first-line treatment in patients with HPV16+ head and
neck cancer expressing PD-L1 is also underway (NCT04534205).

However, most cancer mutations are unique to each individual patient and require
a personalized medical approach; thus, a highly specific procedure has been developed.
Surgically resected tumors, tumor biopsies, and healthy blood cells were collected, and
the extracted DNA from the samples was subjected to whole-exome and RNA sequencing
to identify nonsynonymous mutations. Whether a mutation can be used as a therapeutic
target depends on several critical factors [189]: (1) the mutated sequence can be translated
into a protein in tumor cells, and the expression level of the originating gene should be
greater than 33 TPM; (2) the mutated protein can be processed into a peptide; immunogenic
peptides usually have low hydrophobicity and mutations do not occur at the second amino
acid site; (3) the peptide can be presented by MHC with a binding stability greater than
1.4 h; (4) the mutated peptide has high affinity, which is usually stronger than 34 nM for
MHC molecules; and (5) the mutated peptide–MHC complex has high affinity, ranging from
30 nM to 26 pM, for the T cell receptor (TCR) [190]. Therefore, the prediction of neoantigens
requires not only the identification of mutations expressed in the genome, but also data on
the patient’s MHC type [191]. A number of computational, biochemical, proteomic, and
immunological assays have been used to predict the high affinity, immunogenicity, and
expression efficiency of mutant peptides and HLA in tumors. Furthermore, a number of
MS-based immunopeptidomic datasets such as IEDB [192], SysteMHC Atlas [193], and
PRIDE [194] have been used in machine learning for neoantigen prediction. Tools such as
NetMHC [195], MHCflurry [196], NetMHCpan [197], PSSMHCpan antigen-garnish [198],
pVAC-Seq [199], and others have been widely used to predict peptide–HLA affinity based
on various algorithms. The expression of mutated alleles and the processing and presenta-
tion of neoantigens can be confirmed by RNA-seq [200], HLA immunoprecipitation, and
targeted mass spectrometry separately [201]. However, candidate neoantigens selected on
a computer may not be recognized by T cells; therefore, it is necessary to verify the presen-
tation and immunogenicity of neoepitopes [202,203]. Biochemical assays were performed
to characterize the affinity and stability of peptide–HLA (p-HLA). Immunological datasets
were collected by co-culturing T cells with mature dendritic cells (mDCs) pulsed with can-
didate epitopes [186,200] or stimulating peripheral blood mononuclear cells (PBMCs) from
patients with neoepitopes, followed by T cell activation assessment by IFN-γ-ELISPOT,
flow cytometry, etc. [204]. Subsequently, a series of potentially immunogenic peptides can
be selected based on their immunogenicity and protein-binding affinity.

A one-step procedure for the design and synthesis of neoantigenic mRNA has been
developed. A patient-tailored DNA plasmid encoding a selected set of several neoanti-
gens in tandem with minigenes (TMGNEO plasmid) was developed (Figure 7). It has been
reported that the combination of an N-terminal leader peptide with MITD bound to the
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C-terminus of the antigen significantly improves the presentation of HLA epitopes in
DCs [205]. The TMG template design consists of the T7 promoter, sequences encoding
the MHC-I signal peptide (SP), TMGNEO, the trafficking domain of major histocompatibil-
ity complex class I (MITD), two consecutive 3′-untranslated regions of human β-globin,
and 120 adenosine poly(A) tails [69]. To generate a tandem minigene, minigenes were
linked with a non-immunogenic glycine/serine linker [4,206,207]. After plasmid synthesis,
in vitro-transcribed mRNA can be produced, which can be used for ex vivo loading of
autologous DCs or LNP encapsulation to produce the final vaccine [208].
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BioNTech SE has developed an iNeST platform for patient-specific cancer antigen
therapy, including BNT121 and BNT122. BNT121, a vaccine containing 10 neoantigens, was
tested by intranodal administration in 13 melanoma patients. It was found to induce T cell
infiltration to kill tumor cells and to have recurrence-free disease activity (NCT02035956) [4].
Strong immunogenicity has also been observed in a number of tumor types following
injection of BNT122 (RO7198457), which contains up to 20 patient-specific novel epitopes
(NCT03289962). mRNA-4157 is another personalized mRNA cancer vaccine developed by
Moderna, which contains 20 neoepitopes with strong immunogenicity selected according
to the unique characteristics of the patient’s immune system and specific mutations. The
mRNA is encapsulated in the LNP, and the vaccine is injected intramuscularly. The drug
is being tested for an acceptable safety profile and observed clinical responses in patients
with solid tumors (NCT03313778) and melanoma (NCT03897881) (Table 1).
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Table 1. Clinical trials of neoantigen mRNA.

Period Product Type Study Phase Sponsor Formulation Route Other Therapy Response

2020–2023 IVAC_W_bre1_uID
and IVAC_M_uID TNBC NCT02316457 Phase I BioNTech SE LPX i.v. / ongoing

2017–2019
IVAC MUTANOME,

RBL001/RBL002
(BNT121)

melanoma NCT02035956 Phase I BioNTech SE naked mRNA i.n. / not published

2017–2024

Autogene
cevumeran

(RO7198457,
BNT122)

solid tumors NCT03289962 Phase I Genentech, Inc. naked mRNA i.v. Atezolizumab ongoing

2017–2025 mRNA-4157 solid tumors NCT03313778 Phase I ModernaTX, Inc. LNP i.m. Pembrolizumab ongoing

2018–2020 NCI-4650 solid tumors NCT03480152 Phase I/II National Cancer
Institute (NCI) / i.m. / safe with a slight

adverse event [209]

2018–2021 personalized mRNA
tumor vaccine

solid tumors in
digestive system NCT03468244 NA Changhai Hospital LPP s.c. / not published

2019–2024 RO7198457 advanced melanoma NCT03815058 Phase II Genentech, Inc. LPX i.v. Pembrolizumab ongoing

2019–2024 mRNA-4157
high risk of
recurrence
melanoma

NCT03897881 Phase II ModernaTX, Inc. naked mRNA / Pembrolizumab ongoing

2019–2022 personalized mRNA
tumor vaccine

esophageal cancer,
NSCLC NCT03908671 / Stemirna

Therapeutics LPP s.c. / not published

2019–2023 RO7198457 pancreatic cancer NCT04161755 Phase I
Memorial Sloan
Kettering Cancer

Center
LPX /

Atezolizumab,
chemotherapy

(mFOLFIRINOX)
ongoing

2020–2025 RO7198457 NSCLC NCT04267237 Phase II Hoffmann-La Roche LPX i.v. Atezolizumab withdrawn

2022–2023 SW1115C3 solid tumor NCT05198752 Phase I Stemirna
Therapeutics LPP / / ongoing

2022–2025 neoantigen tumor
vaccine

gastric cancer,
esophageal cancer,

and liver cancer
NCT05192460 / Jianming Xu / / PD-1/L1 drugs ongoing

2022–2026 GRT-C901/GRT-
R902

colonic neoplasms
and colorectal

neoplasms
NCT05456165 Phase II Gritstone bio, Inc. chimpanzee

adenovirus i.m
Atezolizumab,

Ipilimumab,
chemotherapy

ongoing

2019–2025 RO7198457 NSCLC NCT04267237 Phase II Hoffmann-La Roche LPX i.v. Atezolizumab ongoing

2019–2024 RO7198457 melanoma NCT03815058 Phase II Genentech, Inc. LPX i.v. Pembrolizumab ongoing

Abbreviations: i.v., intravenous injection; i.n., intranodal injection; i.m., intramuscular injection; s.c., subcutaneous injection; TNBC, triple-negative breast cancer; NSCLC, non-small-cell
lung cancer; LPX, lipoplex; LNP, lipid nanoparticle; LPP, lipopolyplex.
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4.2. TAA mRNA Vaccines

In addition to neoantigen vaccines, another class of tumor antigen vaccines is also
widely used, namely tumor-associated antigen (TAA) vaccines [210,211]. TAAs are au-
toantigens that are preferentially or abnormally expressed in tumor cells and can also
be expressed at certain levels in normal cells. They can be classified into the following
categories [212,213]: (1) cancer/germline antigens (or cancer testis antigens), which are
normally expressed only in immune-privileged germline cells but are transcriptionally
reactivated in tumor cells (e.g., melanoma antigen gene family (MAGE), B-M antigen-1
(BAGE), New York esophageal squamous cell carcinoma (NY-ESO-1), and synovial sarcoma
X chromosome breakpoint-2 (SSX-2)) [214]; (2) cell lineage differentiation antigens, which
are derived from normal tissues (e.g., tyrosinase, glycoprotein 100 (gp100), melanoma
antigen recognized by T cells 1 (Melan-A/MART-1), prostate-specific antigen (PSA) and
prostate acid phosphatase (PAP) in prostate cancer, and mammaglobin-A (MAM-A) in
breast cancer) [215]; and (3) proliferation-, differentiation-, and antiapoptosis-related pro-
teins with tumor-selective high expression contributing to the malignant phenotype (e.g.,
carcinoembryonic antigen (CEA), human telomerase reverse transcriptase (hTERT), human
epidermal growth factor-2/neu (HER2/Neu), baculoviral inhibitor of apoptosis repeat-
containing protein 7 (livin), baculoviral inhibitor of apoptosis repeat-containing 5 (survivin),
and mucin-1 (MUC-1)) [216]. Despite significant differences in the expression of TAAs in
normal tissues and cancer cells, TAAs are characterized by low tumor specificity and low
immunogenicity [217,218]. Therefore, cancer vaccines using these antigens must be suffi-
ciently effective to break immune tolerance with several features. Incomplete peripheral
tolerance of TAA-reactive T cells and very low expression of TAA in peripheral tissues are
critical for restoring immunoreactivity via expression of the relevant TAA in APCs [219].

In 1995, the first TAA mRNA encoding the human carcinoembryonic antigen CEA
was constructed, capped, polyadenylated, and stabilized by the 5′ and 3′ UTRs of hu-
man β-globin. After the injection of naked mRNA into mice, CEA antibody production
was observed, which was the first proof of concept for TAA mRNA vaccines for cancer
therapy [220]. A series of TAA mRNAs were then validated in a mouse cancer model,
including gp100 [221], melanoma antigen recognized by T cells 1 (MART1) [222], and
tyrosinase-related protein 2 (TRP2) [223,224] in B16F10 melanoma tumors, cytokeratin19
mRNA in Lewis lung cancer [225], and CD133 mRNA in gliomas [226].

The main problem in the development of TAA mRNA vaccines is the achievement
of immunogenicity from TAA. The use of multiple shared TAA mRNA has become the
main trend in the development of clinical cancer vaccines, which have been verified in
various clinical trials and show strong potential for the induction of antitumor immune
responses [227] (Table 2). Vaccination with DCs electroporated with mRNA encoding WT1
(NCT00965224) or WT1, PRAME, and CMVpp65 (NCT01734304) or CT7, MAGE-A3, and
WT1 mRNA (NCT01995708) or WT1/PRAME (NCT02405338) mRNA was tested in acute
myeloid leukemia (AML). An increase in antigen-specific T cells and induced antibody
responses was observed [228,229], and overall survival (OS) improved [230].
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Table 2. Clinical trials of TAA mRNA.

Period Product/TAA Type Study Phase Sponsor Formulation Route Other Therapy Response

2022–2027
mRNA-4359 (mRNA

encoding IDO and
PD-L1)

advanced solid
tumors NCT05533697 Phase I/II ModernaTX, Inc. / i.m. Pembrolizumab ongoing

2009–2013
CV9103 (mRNA

encoding 4 PSAs, PSCA,
PSMA, and STEAP1)

hormonal refractory
prostate cancer NCT00831467 Phase I/II CureVac AG protamine-stabilized

mRNA i.d. /
well tolerated,

prolonged patient
survival [231]

2013–2017

CV9104 (mRNA
encoding PSA, PSMA,

PSCA, STEAP1, PAP, and
MUC1)

PCa NCT01817738 Phase I/II CureVac AG protamine-stabilized
mRNA i.d. / not published

2007–2009 mRNA in AML cell lysate AML NCT00514189 Phase I M.D. Anderson
Cancer Center DCs loaded i.v. / not published

2010–2024 tumor mRNA PCa NCT01197625 Phase I/II Oslo University
Hospital DCs loaded i.v. / not published

2007–2014 GRNVAC1 (mRNA
encoding hTERT, LAMP) AML NCT00510133 Phase II Asterias

Biotherapeutics DCs loaded i.v. / not published

2011–2013
DC-006 vaccine (mRNA

encoding hTERT,
survivin)

recurrent epithelial
OC NCT01334047 Phase I/II Steinar Aamdal DCs loaded i.d. / not published

2009–2012
mRNA encoding hTERT,

survivin, and tumor
mRNA

metastatic malignant
melanoma NCT00961844 Phase I/II Steinar Aamdal

DCs loaded and ex
vivo T cell expansion

and reinfusion
i.v. Temozolomide not published

2009–2014

CV9201 (mRNA
encoding NY-ESO-1,

MAGE-C1/C2, survivin,
and 5T4)

NSCLC NCT00923312 Phase I/II CureVac AG protamine-stabilized
mRNA / / well tolerated and

therapeutic [232]

2011–2023 tumor mRNA melanoma NCT01456104 Phase I
Memorial Sloan
Kettering Cancer

Center
DCs loaded i.d. / ongoing

2020–2025

BNT111 (mRNA
encoding NY-ESO-1,

MAGE-A3, tyrosinase,
and TPTE)

unresectable/stage
III/stage IV
melanoma

NCT04526899 Phase II BioNTech SE LPX i.v. Cemiplimab ongoing

2019–2023 W_ova1 Vaccine (3 OC
TAA mRNAs) OC NCT04163094 Phase I University Medical

Center Groningen LPX i.v. adjuvant
chemotherapy ongoing

2020–2023

BNT112 (mRNA
encoding kallikrein-2/3,

acid phosphatase
prostate, HOXB13, and

NK3 homeobox 1)

PCa NCT04382898 Phase I/II BioNTech SE LPX i.v. Cemiplimab an acceptable safety
profile [233]



Pharmaceutics 2023, 15, 622 18 of 38

Table 2. Cont.

Period Product/TAA Type Study Phase Sponsor Formulation Route Other Therapy Response

2020–2025 BNT113 (mRNA
encoding E6/E7)

unresectable/metastatic/recurrent
head and neck

cancer
NCT04534205 Phase II BioNTech SE LPX i.v. Pembrolizumab ongoing

2013–2022 mRNA encoding CT7,
MAGE-A3, and WT1 multiple myeloma NCT01995708 Phase I

Memorial Sloan
Kettering Cancer

Center
LCs loaded s.c. /

safe and therapeutic
with a slight adverse

event [234]

2015–2019 mRNA encoding WT1
and PRAME AML NCT02405338 Phase I/II Medigene AG DCs loaded i.d. / not published

2012–2018 mRNA encoding WT1,
PRAME, and CMVpp65 AML NCT01734304 Phase I/II

Ludwig-
Maximilians—
University of

Munich

TLR7/8-matured
DCs loaded i.v. /

feasible and safe
with a slight adverse

event [228]

2009–2014 mRNA encoding hTERT,
survivin, and p53

breast cancer and
malignant
melanoma

NCT00978913 Phase I Inge Marie Svane DCs loaded i.d. Cyclophosphamide not published

2017–2021

CV9202 (BI 1361849,
mRNA encoding MUC1,
survivin, NY-ESO-1, 5T4,

MAGE-C1/C2)

NSCLC NCT03164772 Phase I/II Ludwig Institute for
Cancer Research LNP i.d. Durvalumab,

Tremelumumab
with an adverse

event

2013–2016 CV9202 (BI 1361849) NSCLC NCT01915524 Phase I CureVac AG LNP i.d.
Radiotherapy, an

EGFR tyrosine
kinase inhibitor

well tolerated with
an adverse event

[169,235]

Abbreviations: i.v., intravenous injection; i.n., intranodal injection; i.m., intramuscular injection; s.c., subcutaneous injection; i.d., intradermal injection; PCa, prostate cancer; AML,
acute myeloid leukemia; OC, ovarian cancer; NSCLC, non-small-cell lung cancer; LPX, lipoplex; LNP, lipid nanoparticle; LPP, lipopolyplex; DC, dendritic cell; LC, Langerhans cell;
IDO, indoleamine 2,3-dioxygenase; PD-L1, programmed cell death 1 ligand 1; PSA, prostate-specific antigen; PSCA, prostate stem cell antigen; PSMA, prostate-specific membrane
antigen; STEAP1, six-transmembrane epithelial antigen of the prostate 1; PAP, prostatic acid phosphatase; MUC1, mucin 1; hTERT, human telomerase reverse transcriptase; LAMP,
lysosome-associated membrane protein; survivin, baculoviral inhibitor of apoptosis repeat-containing 5; NY-ESO-1, New York esophageal squamous cell carcinoma; MAGE-C1/C2,
melanoma antigen family C1/C2; 5T4, trophoblast glycoprotein; MAGE-A3, melanoma-associated antigen 3; TPTE, putative tyrosine-protein phosphatase; HOXB13, homeobox B13;
E6/E7, early protein 6/7; CT7 (MAGE-C1), melanoma-associated antigen C1; WT1, Wilms tumor 1; PRAME, preferentially antigen expressed in melanoma; CMVpp65, cytomegalovirus
pp65; p53, tumor antigen p53; EGFR, epidermal growth factor receptor.
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Melanoma, a form of skin cancer, is a malignant tumor that is prone to metastasis.
Because of the location of the lesion, which lends itself to the local injection of mRNA with
a high degree of safety, melanoma mRNA vaccines have been tested in several clinical trials
and have significantly advanced. BNT111, a mixture of RNA-LPX encoding four TAAs
(NY-ESO-1, MAGE-A3, tyrosinase, and TPTE), has shown great therapeutic potential alone
or in combination with the PD-1 inhibitor, inducing strong CD4+ and CD8+ T cell immunity
and maintaining antitumor effects for months after vaccination was ceased [107]. Moderate
flu-like symptoms (such as fever and chills), which were classified as grade 1-2 adverse
events, occurred in 5% of the patients (NCT02410733). Based on these results, BNT111 was
fast-tracked by the FDA for a phase II clinical trial with the anti-PD-1 antibody cemiplimab
in patients with anti-PD-1 refractory or relapsed, unresectable stage III/IV melanoma
(NCT04526899). The BNT112 cancer vaccine has also been tested as monotherapy or in
combination with cemiplimab in patients with prostate cancer (NCT04382898). BNT114 (a
mixture of TAA mRNAs encoding breast cancer antigens) and BNT115 (a mixture of three
ovarian cancer antigen mRNAs) are being developed. Reinhard et al. described another
strategy, called CarVac, in which TAA mRNA was used as a chimeric antigen receptor
(CAR)-T therapy stimulator to achieve adjustable expansion of low doses of CAR-T cells.
CLDN6-CAR-T cells gradually disappeared from the tumor microenvironment (TME) in
the absence of a proliferation signal. Administration of CLDN6 mRNA-LPX (BNT211)
effectively induced APCs to present antigens, and the number of CLDN6-CAR-T cells
peaked 3-4 days after vaccination and then declined. Good safety and efficacy have also
been demonstrated after multiple administrations [236].

Another mRNA drug company, CureVac AG, has developed a series of RNActive®

vaccines that use chemically unmodified, sequence-optimized mRNA to encode TAAs for
cancer treatment [235]. Specific cytotoxic T lymphocytes and antibodies can be induced
by exposure to unmodified mRNA to produce self-adjuvants. CV9103, a prostate can-
cer vaccine containing protamine-stabilized mRNA encoding the antigens PSA, PSCA,
PSMA, and STEAP1, was well tolerated in a clinical trial of 48 participants and induced
immune responses that could lead to prolonged patient survival [231] (NCT00906243,
NCT00906243). CV9201 is another mRNA-based cancer immunotherapy encoding five
TAAs (NY-ESO-1, MAGE-C1, MAGE-C2, survivin, and 5T4). In 60% of the patients, there
was more than a twofold increase in B cells directed against antigens after treatment with
CV9201 [232]. CV9202 contains mRNAs encoding six different NSCLC TAAs (MUC-1,
survivin, trophoblast glycoprotein, NY-ESO-1, MAGE-C1, and MAGE-C2) (NCT01915524).
Following intradermal administration, antigen-specific immune responses increased in
84% of patients; 80% of patients had a 40% increase in antigen-specific antibody levels
and functional T cell levels, and 52% of patients had multiple antigen specificities [235]
(NCT01915524). Based on these studies, CV9202 has also been evaluated in phase I/II
studies in combination with the anti-PD-L1 antibody durvalumab or the anti-CTLA4 an-
tibody tremelimumab, administered subcutaneously with a needle-free injection device
(NCT03164772).

Standardization of TAA mRNA construction is also possible; BNT111 is a good exam-
ple. The addition of a 5′-cap analog, 5′ and 3′ UTRs, and a poly(A) tail can increase mRNA
stability and translation efficiency. The full-length TAA-coding sequence was tagged with
a signal peptide (SP), tetanus toxoid CD4+ epitopes P2 and P16, and MITD for enhanced
HLA presentation and immunogenicity [107] (Figure 8).

In TAA mRNA vaccines, other strategies have been used to activate antigen-presenting
cells, such as the electrical transfer of DC in adoptive therapy or administration of antigen
mRNA targeting the spleen. These strategies have considerable therapeutic value in AML
and offer potential treatment options for non-solid cancers that are difficult to treat.

Clinical trials with an mRNA cancer vaccine have shown that vaccination against
mutant epitopes or TAAs was safe and well tolerated, with most of these conditions
being early onset, transient, and manageable. When injected intramuscularly, the most
common adverse events of mRNA-LNP were pain at the injection site, fatigue, headache,
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arthritis, and myalgias [209]. When the mRNA-based cancer vaccine was administered
intravenously by LPX, the clinical adverse events were mild to moderate flu-like symptoms,
such as pyrexia and chills [107]. Future preclinical and clinical studies should investigate
potential safety concerns such as local and systemic inflammation.
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4.3. mRNA Encoding Ab

Since the development of hybridoma technology for the production of monoclonal
antibodies (mAbs) in 1975, antibodies have become the most rapidly developing cancer-
targeted drugs [237]. A series of antibodies that mediate tumor cell killing by antibody-
dependent cellular cytotoxicity (ADCC), antibody-dependent cell phagocytosis (ADCP),
and complement-dependent cytotoxicity (CDC) activities, or by immunosuppressive signal
blockade, are well used in clinical trials. Conventional antibodies consist of antigen-binding
sites (Fabs) and constant region (Fc) fragments. Fab fragments bind to tumor antigens
and the Fc region lyses cancer cells by interacting with Fc receptors (FcγRs) on effector
cells (such as NK cells and macrophages) [238]. Many chimeric antibodies against cancer
antigens (murine Fab and human Fc regions) have been approved for clinical use (Table 3).
In addition, many immune checkpoint inhibitors (ICIs) are also widely used in immunother-
apies [238–241] (Table 4) and are often combined with other therapies (such as neoantigen
mRNA and TAA mRNA). In addition to traditional antibodies, antibody fragments (in-
cluding single-chain variable fragments (scFvs) and single-domain antibodies (sdAds))
and bispecific/multispecific antibodies have shown great potential in immunotherapies.
Bispecific antibodies (bsAbs) have two antigen-binding arms and function to mediate
immune cell killing by forming a T cell–bsAb–tumor cell complex, blocking two receptors
of tumor cells [242].

Table 3. Clinically approved mAbs.

Target mAb Type

anti-CD20 antibody rituximab lymphoma, chronic
lymphocytic leukemia

anti-EGFR antibody cetuximab head and neck cancer and
colorectal cancer

anti-HER2 antibody trastuzumab HER2-positive metastatic
breast cancer

Abbreviations: EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor-2.

However, customization of each antibody, quality control, and purification are chal-
lenges for mass antibody production. Therefore, the use of mRNA to generate intact mAbs
in vivo was tested. Compared with protein antibody therapy, mRNA platforms have some
unique advantages: (1) different antibodies can share the same design, production, and
purification protocol of IVT mRNA; (2) optimized variants can be produced by changing
the coding region of the IVT mRNA; (3) IVT mRNA uses the cells’ own ribosomes to encode
proteins and undergoes correct assembly and post-translational modification; (4) as the
serum half-life of the mRNA-encoded Ab is determined by the half-life of both the Ab itself
and the mRNA, the half-life of short-lived proteins can be extended [243]; and (5) in the
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current study, there was no upper dose and no dose-limiting toxicity for antibody mRNA
administration. mRNA therapy features easy quality control, rapid production, and good
tolerance and safety, which makes it a better mAb protein alternative [244].

Table 4. Clinically approved ICI mAbs.

Immune Checkpoint
Inhibitors Location Ligand mAb Product

PD-1 inhibitors T cells PD-L1

Pembrolizumab Keytruda

Nivolumab Opdivo

Cemiplimab Libtayo

PD-L1 inhibitors Cancer cells PD-1

Atezolizumab Tecentriq

Avelumab Bavencio

Durvalumab Imfinzi

CTLA-4 inhibitors T cells CD80, CD86
Ipilimumab Yervoy

Tremelimumab Imjudo
Abbreviations: PD-1, programmed death 1; PD-L1, programmed cell death 1 ligand 1; CTLA-4: cytotoxic T
lymphocyte antigen 4.

In 2008, CureVac attempted the expression of mRNA-encoded antibodies against
HER2, EGFR, and CD20 in vitro. Nine years later, the CureVac team tried to use mRNA-
LNPs encoding the anti-CD20 antibody rituximab in vivo and established high serum
titers in mice with curative effects of significant inhibition of tumor cell growth in lym-
phoma models, demonstrating for the first time that mAb mRNA is effective in cancer
immunotherapy [245]. Rybakova et al. tested the pharmacokinetics and pharmacody-
namics of the mRNA-encoded anti-HER2 antibody, trastuzumab, and demonstrated its
anticancer activity [246].

In addition to monoclonal antibodies, a series of mRNA-encoded bispecific antibodies
(bsAbs) have been developed. Two chemokines, chemokine ligand 2 (CCL2) and CCL5,
play major roles in the accumulation of tumor-associated macrophages (TAMs) and induc-
tion of immunosuppression in hepatocellular carcinoma (HCC). To prevent immune cell
chemotaxis, a bsAb, BisCCL2/5i, which binds CCL2 and CCL5, was developed by Wang
et al. The drug effectively promotes the differentiation of TAM into the antitumoral M1
phenotype and reverses immunosuppression in the TME. The use of BisCCL2/5i renders
HCC sensitive to trimeric PD-1 ligand inhibitors (PD-Li) and prolongs survival in liver
malignancy models [247].

Bispecific T cell engagers (BiTEs) are a class of bsAbs without the Fc region. They
consist of two single-chain variable fragments (scFv) joined by a flexible linker. One scFv
recognizes the T cell surface protein CD3, whereas the other scFv binds to a target antigen
on cancer cells. This specific structure of BiTEs enables the localization of T cells to tumor
cells and thus mediates tumor killing [248]. Stadler et al. generated a RiboMab platform
with three BiTE mRNAs targeting three tumor-associated antigens (TAAs) (CD3 × tight-
junction proteins claudin 6 (CLDN6), claudin 18.2 (CLDN18.2) × CD3, and epithelial
cell adhesion molecule (EpCAM) × CD3). mRNA-encoded CD3×CLDN6 BiTE (which
remained above half-maximum levels for up to 6 days) had a longer duration in serum
than protein (which was barely detectable after 24 h). CD3×CLDN6 and EpCAM×CD3
IVT mRNA in a human ovarian cancer xenograft mouse model showed complete tumor
regression without a systemic immune response [249]. CD3×CLDN6 mRNA (BNT142) is
currently in phase I/II clinical trials (NCT05262530) (Table 5).
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Table 5. Clinical trials of mRNA encoding Ab.

Period Product Type Study Phase Sponsor Formulation Route Other Therapy Response

2020–2024
BNT141 (mRNA encoding

anti-Claudin18.2
monoclonal antibody)

unresectable or metastatic
CLDN18.2-positive gastric,

pancreatic, ovarian, and
biliary tract tumors

NCT04683939 Phase I/II BioNTech SE LNP i.v. nab-paclitaxel,
gemcitabine ongoing

2022–2026
BNT142 (mRNA encoding

antibodies targeting
CD3 × CLDN6)

solid tumor NCT05262530 Phase I/II BioNTech SE LNP i.v. / ongoing

Abbreviations: i.v., intravenous injection; LNP, lipid nanoparticle; CLDN18.2, claudin 18.2; CLDN6, the tight-junction protein claudin 6.
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Although the number of clinical studies relying on mRNA antibody expression is
still very limited, the applications of both mAb and bsAb have already been validated.
Targeting cancer antigens, blocking immunosuppressive molecules on the surface of cancer
cells, and mediating the antitumor effect of T cells through mRNA-encoded antibodies
demonstrate the great potential of mRNA antibody immunotherapy. The development of
mRNA antibody platforms is expected to lead to more optimal antibody design, longer
half-life, and more clinical product applications in the future.

4.4. Immunomodulator mRNA Vaccines

The TME is closely associated with tumorigenesis and development. Tumor cells
mediate immune suppression by releasing signaling molecules into the TME. This explains
the difficulty in activating immune responses in tumors and results in the failure of cancer
therapies in some patients [250]. Therefore, it is important to restore the antitumor im-
mune response environment by regulating immunosuppression with immunomodulatory
agents [251]. Clinically, injecting cytokines into cancer patients has become a cancer treat-
ment strategy. For instance, more than 140 clinical trials have been launched to test type I in-
terferon (IFN-I), which can directly induce apoptosis of tumor cells, prevent angiogenesis of
tumor blood vessels, activate mDCs, and promote the differentiation of effector T cells [252].
Cytokines that activate antitumor effector cells (IL-12, IL-23, IL-36, GM-CSF, and IFN-α),
costimulators (OX40L (CD252), inducible costimulatory ligand (ICOSLG/CD275), tumor
necrosis factor receptor superfamily 9 (TNFSF9/4-1BBL/CD137L)), pattern-recognition
receptor (PRR) agonists (TLRs and RIG-I agonists), and others are commonly used in im-
munotherapy [250]. Commonly used antitumor cytokines include interferons, interleukins,
lymphokines, and tumor necrosis factors with various functions. Some have proinflam-
matory functions (IL-23, IL-36γ, IFN-α), stimulate the proliferation and differentiation
of immune cells (CD70, IL-15, GM-CSF), or activate lymphocyte functions (IFN-γ, IL-12,
IL-27). Costimulatory molecules act as stimulatory immune regulators to enhance the
magnitude of immunological responses against malignant cells by binding to T cell surface
receptors [253]. PRR agonists activate the innate immunity and release various cytokines to
activate the immune system [254]. Current immunomodulator therapies have some clinical
limitations, such as severe dose toxicity due to their short half-life, repeated administration,
and systemic delivery (such as IL-12). Therefore, intratumoral (i.t.) and intradermal (i.d.)
injections are commonly used to induce local immune responses. The standout advan-
tages of both transiently induced protein expression and delivery via the local route make
mRNA therapy well suited to modulate the TME, and a number of preclinical studies have
been performed.

IL-12 is a well-described cytokine important for the activation of cytotoxic T lympho-
cytes (CTLs) and natural killer (NK) cells. In 2018, the therapeutic effect of IL-12 mRNA-
LNPs on MYC oncogene-driven hepatocellular carcinomas (HCC) was verified [255]. In
this case, the liver-targeted delivery feature of LNP was used to target HCC, but this mode
of administration is not applicable to many other cancers. Then, more intratumorally (i.t.)
delivered mRNA was tested in mice. Furthermore, because of the unique functions of each
cytokine, the use of a single cytokine has limited effects on tumor treatment. Therefore,
multiple cytokines with different functions are often combined to achieve improved thera-
peutic effects. The efficacy of IL-12, IL-27, GM-CSF, and their combination encapsulated
in di-amino lipid nanoparticles was tested in the B16F10 model. Administration of IL-12
and IL-27 mRNA appeared to induce NK and CD8+ T cells in the TME and showed the
best therapeutic effect [256]. Another preclinical study evaluated the intratumoral delivery
of an mRNA mixture (IL-12, GM-CSF, IL-15, and IFN-α) in a B16F10/CT26 tumor model.
mRNA expression increases the number of proinflammatory CD4+ and CD8+ T cells in
the TME and induces an immune response in distal tumors. The addition of anti-PD-1
antibodies further improved the survival rate of the mice [257]. In 2019, Haabeth et al.
established a precedent for the combination of cytokines and costimulator mRNA to initiate
global anticancer immunity. They utilized a charge-altering releasable transporter mRNA
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delivery platform to induce the local expression of cytokines (CD70, IL-12, and IFN-γ) and
costimulators (OX40L, CD80, and CD86) individually and in combination in two tumor
models (A20B-cell lymphoma and CT26 colon carcinoma). Mice treated with OX40L mRNA
showed complete eradication of both local and distal tumors, whereas those treated with
other mRNA showed only a partial response. Furthermore, the combination of OX40L
with CD80 or CD86, or OX40L with IL-12 dramatically increased both survival and tumor
growth delay [258].

These preclinical data suggest that some cytokines and costimulatory pathway molecules
can be effective strategies to revitalize T cell responses in cancer, particularly when admin-
istered in combination or in combination with immune checkpoint antibodies. In 2006, the
ability of the mRNA adjuvant to enhance the effect of the TAA mRNA vaccine was evaluated
in a mouse model of prostate adenocarcinoma. GM-CSF mRNA co-delivery has been found
to enhance the CTL response [259]. DC-activating FLT3 ligand mRNA further enhances the
immunological efficacy of naked RNA vaccines [96,260]. More mRNA adjuvants have been
used in clinical studies (Table 6). One of the pioneers of mRNA adjuvants is eTheRNA AG,
which contains three naked mRNA molecules (constitutively active TLR4 (caTLR4), CD40L,
and CD70). It promotes the activation and maturation of DCs, ex vivo or in situ, to activate T
helper cells and CTLs [261–263]. Administration of HPV/melanoma-associated TAA mRNA
in conjunction with TriMix showed a promising clinical response without increased toxic-
ity [264,265]. A phase I study on TriMix in breast cancer is also underway (NCT03788083). In
the pipeline of Moderna, mRNA-2752, an OX40L/IL-23/IL-36γ cocktail mRNA drug, pro-
motes tumor immune infiltration and tumor regression by inducing a broad immune response
involving many DC types and lymphocytes. IL-36γ and IL-23 specifically interact to mediate
antitumor efficacy, while the T cell costimulator OX40L significantly increases lymphocyte
response rates. Notably, in an immunologically barren tumor mouse model (B16F10-AP3),
the combination of the drug and ICIs increased survival to 85%, whereas tumor cells were
insensitive to ICIs alone [266]. A dose-escalation study of mRNA-2752 in various advanced
malignancies and an observational study of mRNA-2752 in combination with the anti-PD-1
antibody pembrolizumab in ductal carcinoma are also ongoing (NCT03739931, NCT02872025).
Another mRNA adjuvant containing only OX40L (mRNA-2416) is also being tested for tol-
erability and safety in combination with the anti-PD-L1 antibody durvalumab in metastatic
ovarian and lymphoma cancers (NCT03323398). Similarly, MEDI1191 (IL-12 mRNA) has
also demonstrated excellent safety, tolerability, and efficacy in combination with durvalumab
for the treatment of solid tumors (NCT03946800). Another IL-12 mRNA product, BNT151,
developed by BioNTech, is currently in phase I testing for metastatic tumors (NCT03871348).

These studies suggest that local modulator mRNA therapy enables many immuno-
suppressed or immune-cell-deficient TMEs to remodel their function and elicit a global
immune response from various DCs and lymphocytes, showing exciting therapeutic results
in distal tumors and multidrug-resistant metastatic tumors. In particular, when combined
with ICIs, they show enhanced antitumor responses. We anticipate that modulators with
different functions can be used in the field of cancer treatment to advance in situ vaccination
against cancers and achieve long-term benefits.
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Table 6. Clinical trials of immunomodulator mRNA.

Period Product Type Study Phase Sponsor Formulation Route Other Therapy Response

2017–2023 CV8102 (mRNA encoding
TLR7/8/RIG-I agonist)

advanced solid
tumors NCT03291002 Phase I CureVac non-coding,

non-capped RNA i.t. anti-PD-1 Ab

well tolerated
without

dose-limiting
toxicities [267]

2017–2019 CV8102 HCC NCT03203005 Phase I/II National Cancer
Institute, Naples

non-coding,
non-capped RNA i.d.

Cyclophosphamide,
IMA970A

(multipeptide-based
HCC vaccine)

safe with a side
effect [268]

2016–2023
mRNA-2752 (mRNA

encoding OX40L, IL-23, and
IL-36γ)

high-risk DCIS NCT02872025 Phase I Laura Esserman LNP Intralesional
injection Pembrolizumab

well tolerated with
slight dose-limiting

toxicities [269]

2018–2023
mRNA-2752 (mRNA

encoding OX40L, IL-23, and
IL-36γ)

advanced
malignancies NCT03739931 Phase I ModernaTX, Inc. LNP i.t. Durvalumab ongoing

2017–2022 mRNA-2416 (mRNA
encoding OX40L)

relapsed/refractory
solid tumor

malignancies or
lymphoma and OC

NCT03323398 Phase I/II ModernaTX, Inc. LNP i.t. Durvalumab not published

2019–2024

BNT131 (SAR441000,
mRNA encoding IL-12sc,
IFNα-2b, GM-CSF, and

IL-15sushi)

metastatic neoplasm NCT03871348 Phase I Sanofi saline-formulated
mixture i.t. Cemiplimab

REGN2810 ongoing

2019–2027 MEDI1191 (mRNA
encoding IL-12)

advanced solid
tumors NCT03946800 Phase I MedImmune LLC LNP i.t. Durvalumab ongoing

2020–2026 BNT151 (mRNA encoding
IL-2) solid tumors NCT04455620 Phase I/II BioNTech SE LPX i.v. / ongoing

2021–2023
BNT152 (mRNA encoding
IL-7) plus BNT153 (mRNA

encoding IL-2)
solid tumor NCT04710043 Phase I BioNTech SE LPX i.v. / ongoing

2022–2027 ABOD2011 (mRNA
encoding IL-12)

advanced solid
tumors NCT05392699 Phase I

Cancer Institute and
Hospital, Chinese

Academy of Medical
Sciences

naked mRNA i.t. / ongoing

Abbreviations: i.t., intratumoral injection; i.d., intradermal injection; i.v., intravenous injection; HCC, hepatocellular carcinoma; DCIS, ductal carcinoma in situ; OC, ovarian cancer;
LNP, lipid nanoparticle; LPX, lipoplex; TLR 7/8, toll-like receptor 7/8; RIG-I, retinoic-acid-inducible gene I; OX40L, the glycoprotein OX40, OX40 ligand; IL-23, interleukin-23; IL-36γ,
interleukin-36 gamma; IL-12sc, interleukin-12sc; IFNα-2b, interferon alpha2b; GM-CSF, granulocyte–macrophage colony-stimulating factor; IL-15sushi, interleukin-15sushi; IL-12,
interleukin-12; IL-7, interleukin-7; IL-2, interleukin-2.
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4.5. Protein Replacement Therapy

Tumor suppressor genes (TSGs) play important roles in maintaining genome integrity
and regulating cell proliferation, differentiation, and apoptosis. The loss of function of
TSGs is usually associated with cancer development, progression, and treatment resis-
tance [270]. In addition, several human cancer exome sequencing studies have uncovered
a series of cancer driver genes, most of which are TSGs [271]. Several key signaling path-
ways and processes are associated with the most likely cancer-driving TSGs, including
the Wnt/β-catenin pathway (adenomatous polyposis coli (APC), AXIN1, and cadherin-1
(CDH1)), the phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT)/mammalian target
of rapamycin (mTOR) pathway (phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1),
phosphatase and tensin homolog (PTEN), and tuberous sclerosis proteins 1

2 (TSC1/2)), cell
growth and differentiation (ras superfamily, hedgehog protein family), apoptosis/cell cycle
(tumor protein P53 (TP53), RB transcriptional corepressor 1 (RB1)), chromatin modifications
(CREB-binding protein (CREBBP), tet methylcytosine dioxygenase 2 (TET2), Wilms tumor
1 (WT1), and ubiquitin carboxyl-terminal hydrolase BAP1 (BAP1)), DNA damage repair
(serine-protein kinase ATM (ATM), serine/threonine-protein kinase ATR (ATR), breast
cancer 1/2 (BRCA1/2), DNA mismatch repair protein MLH1 (MLH1), and DNA mismatch
repair protein MSH2/6 (MSH2/6)), and transcriptional regulation (transcription factor
GATA-3 (GATA3) and runt-related transcription factor 1 (RUNX1)) [271,272]. Loss of func-
tion occurs in most TSGs, and the cancer phenotype is mediated by hyperactivation of the
mentioned pathways. In this case, a possible therapeutic approach would be able to inhibit
downstream pathways by replenishing TSGs. However, when DNA transfection is used
to restore functional copies, difficulties in delivery, genome integration, and mutation risk
have become major obstacles to gene therapy. mRNA has been shown to be advantageous
as an alternative to genes and proteins, and several preclinical studies have been conducted.

In a 2018 study, PTEN mRNA was encapsulated in PEG-coated polymer lipid hybrid
nanoparticles (NPs) and introduced into PTEN-null prostate cancer cells in vitro and
in vivo. Treatment with PTEN mRNA-NPs significantly promoted cancer cell apoptosis
by inhibiting the PI3K/Akt pathway, and the therapeutic effect was verified in a mouse
model of prostate cancer (PCa) xenograft [159]. In 2021, the team further investigated
whether PTEN mRNA-NPs restored protein expression and autophagy was induced in
PTEN-null cancer cells (B16F10 melanoma and anti-PD-1 ineffective prostate cancer). In
addition, combinatorial treatment with anti-PD-1 antibody resulted in upregulation of
CTLs and proinflammatory cytokines (e.g., IL-6, TNF-α, TNF-β, and IFN-γ) in the TME
and downregulation of myeloid-derived suppressor cells (MDSCs), which also triggered
immunological memory [273]. p53, one of the most frequently altered TSGs that promote
apoptosis, was also tested in mRNA therapy. Kong et al. used redox-responsive particles
(PDSA added) to deliver p53 mRNA in models of hepatocellular carcinomas (HCCs) and
non-small-cell lung cancers (NSCLCs) and showed an effect on tumor growth inhibition. In
addition, combination therapy with the mTOR inhibitor everolimus showed the strongest
therapeutic effect on in situ tumors [145]. Furthermore, the team added a CXCR4-targeted
peptide to hybrid NPs to achieve selective HCC targeting and high mRNA transfection
efficiency. The combination of p53 mRNA-NPs and PD-1 blockade significantly reduced
bloody ascites, pleural effusions, and lung metastases and prolonged survival in HCC
model mice [274]. Lung-targeting LNPs were effectively used to introduce TSC2 mRNA
into TSC2-null cells and suppress the mTOR pathway, resulting in improved control of
tumor cell proliferation in a mouse model of pulmonary lymphangioleiomyomatosis [275].

Although the application of TSG mRNA has not been extensively explored, this
restoration strategy has been demonstrated in several mouse cancer models, demonstrating
its transformative and powerful potential. Therapeutic effects have been achieved in
combination with immune checkpoint blockade therapy. We look forward to further
applications of TSG mRNA that will take advantage of the mRNA delivery platform and
advance translational medicine.
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5. Conclusions and Perspectives

However, the treatment of cancer is challenging. Most cancer vaccine trials have
limited success rates in patients with advanced disease or refractory tumors. Most com-
monly, effective T cell induction activation is the main obstacle. Although tumor cells
have many mutations, few are recognized by the patient’s T cells because the reactivity of
tumor-antigen-specific T cells is usually limited to a few mutated epitopes. Using mRNA
to express multiple neoantigen peptides or tumor-associated antigens to achieve systemic
DC targeting and establish neoantigen-specific T cell immunity is one of the methods used
to circumvent T cell immune tolerance [107]. In addition, immunotherapy includes ICIs
or other means, such as chimeric antigen receptor T cells, which may have synergistic
therapeutic effects with mRNA vaccines.

The current challenge in mRNA-based therapeutics lies in the improvement of stability
and delivery specificity. The in vivo translation efficiency and stability of mRNA could
be improved by optimizing mRNA technology, which requires a better understanding
of RNA biology and translation processes. For example, the optimization of UTRs will
increase translation efficiency and lead to tissue-specific mRNA translation [33]. Further-
more, delivery efficacy and specificity could be further improved, for example, to achieve
systemic DC targeting. Achieving organ- or cell-selective mRNA delivery is the most im-
portant challenge in biomedical engineering and nanomedicine. Various lipid nanoparticles
have been developed and optimized to increase cellular uptake and endosomal escape of
mRNA-LNP formulations. Other lipid nanoparticles, such as antibody-conjugated LNPs
and SORT LNPs, have been modulated to selectively accumulate in the target organs. Fur-
thermore, hybrid nanoparticles containing polymers may facilitate the controlled release of
mRNA. Other delivery strategies, such as the SEND system, can also be applied for mRNA
delivery [276].

In summary, significant technological innovations have made mRNA a new class of
drug in vaccine development and other medical indications. Although mRNA medicines for
cancer treatment encounter a tougher road to the clinic than mRNA vaccines against infectious
diseases, we believe that advances in basic mRNA biology and delivery platforms will prove
that in vitro-transcribed mRNA has the potential to revolutionize cancer therapies.
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