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Abstract: Carotenoids, including carotenes and xanthophylls, have been identified as bioactive ingre-
dients in foods and are considered to possess health-promoting effects. From a biopharmaceutical
perspective, several physicochemical characteristics, such as scanty water solubility, restricted disso-
lution, and susceptibility to oxidation may influence their oral bioavailability and eventually, their
effectiveness. In this review, we have summarized various formulation approaches that deal with the
modification of crystalline status for carotenoids, which may improve their physicochemical prop-
erties, oral absorption, and biological effects. The mechanisms involving crystalline alteration and
the typical methods for examining crystalline states in the pharmaceutical field have been included,
and representative formulation approaches are introduced to unriddle the mechanisms and effects
more clearly.

Keywords: carotenoids; crystallization status modification; formulation approaches

1. Introduction

Carotenoids are composed of compounds containing typically 40 carbon atoms and
are synthesized by plants or microorganisms. The structure of carotenoids commonly
includes a central carbon chain with several conjugated double bonds and they partially
have different cyclic or acyclic end groups [1]. Carotenoids are divided into carotenes and
xanthophylls depending on the chemical structure as presented in Figure 1. Carotenes,
such as α-carotene, β-carotene, and lycopene, only contain carbon and hydrogen in their
structure without oxygen atoms. Xanthophylls, such as astaxanthin, β-cryptoxanthin,
lutein, and zeaxanthin, are the other type; they are carotenoids containing one or more
oxygen atoms in their structure. The bioactivities of carotenoids have been demonstrated
to be associated with chemical structures, such as the number of conjugated double bonds
and the types of functional groups at the ends [2].

Carotenoids exhibit well-known anti-oxidative activities and are most likely involved
in scavenging the singlet oxygen and peroxy radicals [3]. Reactive oxygen species (ROS) are
generated during normal metabolism and engaged in enzymatic reactions, mitochondrial
electron transport and signal transduction. Excessive ROS would damage biologically
essential factors and elevate the risk of degenerative diseases [4]. Therefore, carotenoids are
considered excellent antioxidants that benefit various diseases associated with oxidative
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stress. The bioactivities of carotenoids have been reported in previous studies and are listed
in Table 1.
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Figure 1. The structure of carotenes and xanthophylls.

Carotenoids commonly exist in crystalline states and exhibit an ordered intermolecular
arrangement in the solid state. Various intermolecular interactions, such as hydrogen
bonding and π-π stacking interactions, maintain the structure integrity and crystalline
status of carotenoids [5,6]. The crystalline status of carotenoids contributes to the scant
solubility and dissolution, which further restricts their oral bioavailability and health-
promoting effects. Therefore, improving the solubility of carotenoids is a critical issue for
achieving the desired plasma concentration in systemic circulation to attain the expected
biological effects [7]. The higher lattice energy of crystalline compounds usually correlates
with their poor solubilities, because the energy has to be overcome before the compound
can be dissolved in the medium [8]. Carotenoids have poor aqueous solubility owing to
the higher lattice energy. Thus, the crystalline status is a crucial factor for the application
of carotenoids.
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Table 1. The bioactivities of carotenoids that have been reported in previous studies.

Carotenoids Dose Model Bioactivities Reference

Astaxanthin 1.0 mg/mouse/day
Diabetic

C57BL/KsJ-db/db
mice

Anti-diabetic
(Blood glucose↓ and preservation of

-cell function)
[9]

Astaxanthin 2 mg Healthy women

Immune response improvement
(Mitogen-induced

lymphoproliferation↑
Natural killer cell, total T and B cell↑

DNA damage biomarker↓)

[10]

Astaxanthin 5 µM Primary hippocampal
neurons

Treatment of Hcy-mediated
neurological disorders

(ROS and superoxide anion↓)
[11]

β-Carotene 45 mg/day Healthy older adults Immunostimulant
(Total T cells and NK cell↑) [12]

β-Carotene 200 mg/Kg Male albino mice

Anticonvulsant activity
(Duration of general tonic–clonic

seizures↓
General tonic–clonic seizures

latency↑)

[13]

β-Carotene 30 µM Human prostate cancer
cell line (PC-3 cell) Anticancer (cell viability: 51.4%) [14]

β-Carotene 2.05 mg/Kg Male albino mice
Treatment of Alzheimer’s disease

(Acetylcholinesterase and amyloid
β-protein↓)

[15]

β-Cryptoxanthin 0.8 mg/Kg/day Male mice Anti-obesity
(Adipocyte hypertrophy↓) [16]

Fucoxanthin 5 µM Human fibroblast
Protection against UVB

radiation-induced oxidative stress
(ROS↓)

[17]

Fucoxanthin 1.06-2.22% C57BL/6J mice

Anti-obesity and anti-diabetic effects
(Body weight and white adipose

tissue↓
MCP-1 expression↓ and Adrb3 and

GLUT4↑)

[18]

Fucoxanthin 0.2% C57BL/6N mice
Anti-obesity

(Fatty acid β-oxidation activity and
lipogenic enzyme activities ↓)

[19]

Lutein and
Zeaxanthin

Oral:
lutein 100 ppm

zeaxanthin 6 ppm
Topical:

lutein 10 ppm
zeaxanthin 0.6 ppm

Healthy women

Photoprotective
(Lipid peroxidation↓

skin lipid, skin hydration and skin
elasticity↑)

[20]

Lutein and
Zeaxanthin

Lutein: 5%
zeaxanthin: 0.2% β5−/−mice

Prevention of age-related retinal
pigment epithelium actin damage

(4-hydroxynonenal-adduct
formation, age-related cone and rod

photoreceptor dysfunction ↓)

[21]

Lutein and
Zeaxanthin

Lutein:10 mg
Zeaxanthin: 2 mg Healthy older adults

Improvement of cognitive function
(Macular pigment optical density,
complex attention and cognitive

flexibility domains↑)

[22]
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Table 1. Cont.

Carotenoids Dose Model Bioactivities Reference

Lycopene 5 µg/mL Fungal cell
(Candida albicans)

Antifungi
(Destruction of fungi membrane and

inhibition of the normal budding
process)

[23]

Lycopene 2 µM Rat cortical neurons
Treatment of Alzheimer’s disease
(Intracellular ROS and superoxide

production↓)
[24]

Lycopene 0.2 or 0.5 µM Neuronal SH-SY5Y
cells

Neuron protection
(ROS↓ and mitochondrial

dysfunction ↓)
[25]

Lycopene 0.03% (w/w, mixed into
normal chow) Male C57BL/6J mice

Treatment of Alzheimer’s disease
(Memory loss behavior, amyloid

plaques, amyloid precursor protein,
neuronal β-secretase BACE1,
inflammatory mediators and
oxidative stress↓, α-secretase

ADAM10↑)

[26]

Lycopene 2 µM Mice cerebral cortical
neurons

Neuron protection
(Nerve growth factor, brain-derived

neurotrophic factor, and vascular
endothelial growth factor excretion↑

and anti-apoptosis)

[27]

Lycopene 100 mg/Kg Female
Sprague-Dawley rats

Treatment of vascular dementia
(Oxidative stress in hippocampus↓) [28]

↑: enhancement. ↓: reduction. ROS: reactive oxygen species. Adrb3: β3-adrenergic receptor. GLUT4: glucose
transporter 4.

2. Effects of Crystalline Status Modification on the Physicochemical Properties
of Carotenoids

The chemical structures of carotenoids possess many chiral centers, which result in a
variety of conformations. The cis-form (Z-form) and trans-form (E-form) have been demon-
strated to affect the crystalline state and further have an impact on the physicochemical
properties. In general, the all-trans carotenoid isomers are the most stable ones owing to
their different Gibbs free energies and exist commonly in nature. Only 5-cis-lycopene was
found to be more stable than all-trans-isomers [29]. The cis-form isomers display diverse
properties compared to the trans-form isomers, such as a shallower color caused by the
shorter maximum absorption wavelength and smaller extinction coefficient [30], reduction
in the crystalline ratio, lower melting point, and poor stability [31]. Taking β-carotene as an
example, Figure 2 shows the isomers of β-carotene and the maximum absorption wave-
length of these compounds [32]. A previous study reported the transformation method and
different properties of the E-form and Z-form carotenoids. The Z-form lycopene has been
discovered to have a 4000-fold higher solubility compared to the E-form in ethanol [6]. The
lower degree of crystallinity leads to higher solubility in bile acid micelles, and the higher
solubility would further result in greater bioaccessibility. Interestingly, the ideal bioaccessi-
bility cannot completely correlate with bioavailability [6]. The cellular uptake efficiency is
a critical factor that influences bioavailability, and the efficiency depends on the molecular
structure and hydrophobic properties. In previous studies, Yang et al. [33,34] found that
the trans-lutein had better passive diffusion into enterocytes due to the linear structure,
and the affinity to transporters in the intestine changed the cellular uptake efficiency as
well because the relatively higher solubility of 9Z-astaxanthin caused poorer affinity to
the transporter compared with 13Z-astaxanthin and the trans-isomer. This theory can also
be applied to β-carotene. E-β-carotene was also reported to exhibit higher absorption
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than the Z-form in both in vitro [35] and in vivo studies [36]. Therefore, modification of
the crystalline conformation impacts the solubility, dissolution, intestinal absorption, and
further bioavailability of carotenoids, together with the bioactivity.
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Figure 2. The structures of E (trans)- and Z (cis)- forms of β-carotene.

Micronized crystalline lutein has been prepared to improve its dissolution and oral
bioavailability [37]. A wet-jet milling method with high mechanical force was applied to
reduce the particle size, and the procedures also converted the crystalline form into the
polymorphic state, which belonged to a metastable situation with higher energy. The effects
of size reduction and crystalline transformation are beneficial to dissolution and oral ab-
sorption. Though the solubility may have effects on the transporter affinity, the absorption
still requires the transition from solid form to solution [38]. In order to improve the aqueous
solubility of active crystalline compounds, the alternation of the crystalline condition is
the simplest method. Crystalline states can be classified into three types—polymorphic
state, pseudo-polymorphic state, and amorphous state—the difference among the three
states is shown in Figure 3. Polymorphs are the same constituents with different crystalline
arrangements, and they often benefit solubility. Notably, the improvement is small due
to the small energy difference between the polymorphs [39]. Pseudo-polymorphs include
hydrates or solvates, and they are usually unwanted crystalline forms. In the case of
solvates, this depends on the characteristics of solvents. On the other hand, water forms
hydrogen bonds with the active compounds in hydrates, and the lattice enthalpy would
escalate to decrease the solubility, accompanied by a lower bioavailability [5]. The amor-
phous state lacks the ordered arrangement of molecules, causing amorphs to have poor
thermodynamic stability, and it is usually the first choice to greatly enhance the aqueous
solubility [40]. The amorphous state is divided into molecularly pure, which only transfers
the crystalline state of the active compounds and formulation. Both of them may increase
the solubility; however, the stability and scale-up of the molecularly pure type are hard
to achieve [41]. Therefore, preparing a formulation to transfer the crystal to another state
is quite an important technique to enhance the solubility and oral absorption, and then
exhibit the expected bioactivities. To distinguish the crystalline status in the formulation,
detection methods have been introduced.
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3. Methods for Examining the Crystalline Status

Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermo-
gravimetric analysis (TGA), transmission electron microscopy (TEM), and scanning electron
microscopy (SEM) are fundamental methods to determine the characterization of the crystal
in pharmaceutical formulations; usually, more than two methods are adopted to reveal
more reliable results.

3.1. PXRD

PXRD is a well-known method to qualify the crystalline state and quantify the crys-
tallinity as well as crystal size in a formulation. Fingerprint data of APIs can be obtained
by PXRD, and possible polymorphs can be identified. The intensities of diffraction peaks
are positively related to crystallinity, and we can use them to calculate the percentage of
amorphization. However, nanocrystals and amorphism are hard to differentiate because
the low crystallinity leads to broad peaks (i.e., Scherrer broadening) [42]. The nanocrystal
size can be calculated using the Scherrer equation (Equation (1)), and the formula is only
viable for nanocrystals around 100–200 nm [43].

τ = kλ/(β cosθ) (1)

where τ is the average size of the crystal; k is the shape factor; λ is the wavelength of
the X-ray; β is the line broadening at half the maximum intensity in radians; θ is the
Bragg angle.

Figure 4 shows the PXRD profiles of β-carotene and nanoformulations, where the
API group presents sharp and strong peaks compared with the nanoformulation groups,
indicating the API has been encapsulated in the formulations in an amorphous state.
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3.2. Electron Microscopy—TEM and SEM

For nanoscale crystals, electron microscopy is applied to visualize the lattice. The
crystal size and the structure of the lattice are provided by TEM. The sizes calculated
using TEM may be larger than those from the Scherrer equation as particles seen in the
TEM images are possibly not crystals, and the crystalline imperfections broaden the peaks
in PXRD, causing calculation bias [44]. SEM is a technology suitable for morphology
observation, and the relationship between phases such as erosion can be further acquired
compared with TEM [45]. However, the two technologies are limited by the samples “seen”
by the microscope, and only unilateral information may be obtained. Thus, more significant
sample sizes and observed angles are needed to avoid sampling errors and to obtain the
whole morphology.

3.3. Thermal Methods—DSC and TGA

Thermal methods detect the thermal behavior of the whole sample, and they will not
encounter issues with the difference between the surface and the core or the sampling
bias [46]. DSC measures the heat required for the temperature increase in the samples;
the heat absorption from melt formation or release due to the crystallization will be de-
tected [42], and Tm (melting point), Tg (glass transition temperature), Tc (crystallization
temperature), and Td (degradation temperature) can be obtained [47]. The endothermic Tm
peak disappears once the crystals convert into amorphs, and the concept can be applied to
confirm the encapsulation of amorphous APIs in formulations [48]. Taking DSC thermo-
grams (Figure 5) as an example, the peak standing for the melting point of β-carotene at
186 ◦C was observed in the crystalline API and physical mixture, and the peak disappeared
in the formulation group. However, it is hard to distinguish the amorph merely from the
thermogram when the degree of crystallization is relatively high, and a simple formula
(Equation (2)) can be used to calculate the amorphous content [49].

Amorphous content =
∆Hamorphous

f

∆Hcrystal
f

(2)

where ∆Hamorphous
f represents the enthalpy of the fusion of the amorphous fraction, and

∆Hcrystal
f represents the enthalpy of the fusion of the crystalline fraction.
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loaded PLGA-PVP nanoparticles.

TGA measures the weight loss resulting from heating, and this technology can be
used to investigate crystals containing volatile substances [5]. It is also often conducted
combined with DSC to further confirm the thermal behavior. The crystal and amorph can
be distinguished by the different weight loss under the same temperature [50], which can
be used to prove the complex formation [51].
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4. Effects of Preparation Factors on Crystalline Status of Active Pharmaceutical
Ingredients

Turning active pharmaceutical ingredients (APIs) into amorphous or polymorph states
is expected to change their biopharmaceutical properties, including their dissolution rate
and bioavailability, which can be accomplished using various manufacturing processes.
Major preparation factors that affect the crystalline status are summarized in Figure 6.
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4.1. Excipients

Crystallization often includes two major steps, namely, nucleation and growth; the
addition of excipients can manipulate the crystallization of APIs. The rate of nucleation is
usually positively related to molecular mobility, suggesting that the restriction of molecular
mobility through intermolecular interaction between excipients and APIs can also affect
the crystallization of APIs.

Poly(ethylene oxide) as a plasticizer increases the nucleation rate due to its water-
absorbing properties [52]. Amphiphilic polymers are preferred for hydrophobic carotenoids
because the hydrophobic substituents of the excipients increase the interaction with
carotenoids, and the hydrophilic substituents interact with water to enhance the dissolu-
tion [53]. In addition, lipids act as inhibitors or promoters of crystallization. The choice of
lipids is based on three principles: hydrocarbon chain lengths, unsaturated degrees, and
esterification degrees [54]. Saturated fatty acids with high polarity and a short chain length
(e.g., butyric acid) have lower melting points, and the lower melting point prevents the
molecule from forming crystalline nuclei. Meanwhile, fatty acids can adsorb on the inter-
face of the liquid—solid nucleus to inhibit crystalline growth because of their surface-active
properties [55].

Moisture also plays an essential role in crystalline formation. When water and APIs
form crystals together, hydrates are produced, and the hydrogen bonding between water
and APIs leads to higher lattice enthalpy and poorer bioavailability [5]. Hydroxyl groups
of hydroxypropyl methylcellulose (HPMC) inhibit hydrate formation by occupying the
sites where APIs and water have hydrogen bindings. The higher molecular weight of the
excipients provides more functional groups for interactions and the full surface coverage
of APIs [56]. Excipients with charges, such as dextran, alginate, and chitosan, can form
ionic interactions with APIs possessing opposite charges, therefore, preventing the ongoing
crystallization of APIs [56]. As excipients have great impacts on the stabilization of amorph
conditions, excipient screening is an essential step for developing optimal formulations.
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4.2. Preparation

Dissolution followed by rapid precipitation, melting followed by rapid cooling, and
direct solid conversion are major methods to change the crystalline status of APIs. For the
technique of dissolution followed by rapid precipitation, excipients dissolved in organic
solvents loosen their structure, having interactions with the solvents. Meanwhile, APIs
dissolved in organic solvents (i.e., amorphous states of APIs) enter the structure of the
excipients and integrate into loosened excipients. With the rapid removal of solvents, the
excipient and the amorphous APIs do not have enough time for ordinary crystallization
and finally form a compact structure [57].

For the method of melting followed by rapid cooling, excipients and APIs are melted
via heating. In the melt phase, the heat loosens the structure of the excipients, allowing
APIs to occupy the space inside the excipients. Thereafter, fast cooling of the melt dramati-
cally increases the viscosity and decreases the volume in a short time, resulting in much
slower molecular mobility and molecule arrangement to prevent nucleation and crystalline
growth [58].

Direct solid conversion refers to mechanical activation by milling. During the milling
process, local heat accompanied by cooling results in amorphization, and the procedure
increases static disorder and intrinsic dynamic disorder to the threshold value of the lattice,
leading to the crumpling of the crystals. A limitation of this method, which should be
taken into consideration, is the possibility of incomplete crystalline disorder [59]. The
milling processing only renders the surface of the ingredients amorphized and may lead to
inconsistent results in the physicochemical characterization [46].

In fact, for APIs, different manufacturing processes will produce varying degrees of
amorphous forms, which cause diverse profiles in solubility, dissolution, and bioavailabil-
ity [60].

4.3. Confinement (Change in Particle Sizes)

Confinement in the pharmaceutical field represents the physical restriction of APIs
at the indicated scale. Under confinement, a different polymorph or amorph may appear,
and confinement represents a practical handle to control or stabilize crystalline growth, as
shown in Figure 7. The reasons why confinement affects the crystalline behavior remain
unclear, but there are some proposed mechanisms: (i) When the size of the confinement
is smaller than the critical nucleus size of the most stable crystals, the crystalline growth
will be inhibited and a new polymorph or amorph will possibly form [61]. However, all
polymorph forms of acetaminophen can grow under nanoconfinement [62]. The opposite
result may relate to the chosen size for the confinement. Several pore sizes have been
studied for the crystalline behavior of nifedipine, and McKenna and his colleague found a
new polymorph presented at a certain pore size [63]. (ii) APIs in each compartment have
to nucleate independently. As long as the compartment walls are not nucleated, homoge-
neous nucleation will dominate, which takes longer for crystallization. (iii) A thickness
of 1 nm immobilizes the surface layer with high surface energy possibly forming at the
compartment walls, and the immobilized layer slows the crystallization kinetics signifi-
cantly [63,64]. The nanocompartments of the liposome truly inhibit crystalline growth [65].
Praziquantel occurs in its amorphous form under nanoconfinement because of its larger
crystalline lattice, and amorphous praziquantel was found to increase the dissolution rate
by five-fold [66]. This strategy can also be applied to hydrophobic carotenoids. Next,
the application of these theories in carotenoid formulations will be introduced based on
different types of formulations.
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5. Approaches for the Crystalline Status Modification of Carotenoids
5.1. Co-Crystallization

Co-crystallization is defined as a single structurally homogeneous crystallization
containing at least two neutral units (API and excipients) existing in solid and definite
stoichiometric amounts [67]. This method is usually accomplished via supersaturation,
which refers to slow cooling until the solubility limit is reached. Usually, the solubility
of products prepared using this approach may not be significantly increased owing to
the existence of a crystalline lattice structure, but it may provide several advantages,
such as ease of preparation, lower hygroscopicity, and greater chemical stability of the
products [68]. The commonly used excipients for co-crystallization systems should contain
specific functional groups, including carboxylic acids (e.g., acetic acid and salicylic acid),
amides (e.g., nicotinamide, saccharin, and urea), and alcohols (e.g., mannitol and sorbitol)
to form intermolecular bonds with APIs [69].

The utilization of a supersaturated sucrose solution has been proposed for the prepa-
ration of carotenoid-rich extracts via the co-crystallization method [70], which aims to
improve the dispersibility, hygroscopicity, and thermal stability of β-carotene. The ordered
crystal of sucrose is transformed into an irregular and porous structure after the incorpo-
ration of β-carotene during the cooling and recrystallization processes. The crystalline
status of co-crystallization can be evidenced by DSC and XRD examination. Though the
technique of preparing pharmaceutical co-crystals with sucrose is believed to improve the
solubility, dissolution, and other physicochemical properties of the encapsulated materi-
als [71], merely the dissolution kinetics of sucrose have been determined in the current
literature. One possible reason might be that the true solubility of the cocrystal products
is not readily determined because API tends to transform into the most stable form in
solution [72]. Few studies on carotenoid-loaded co-crystallization have discussed the crys-
talline state. Therefore, it may be an unexplored frontier and require more investigation for
further discussion.

5.2. Solid Dispersion

Solid dispersion is a commonly used technology for crystalline state alternation and
is defined as the dispersion of APIs in an inert carrier, such as sugars, polymers, and
surfactants (Figure 8). Solvent evaporation and hot-melt methods are commonly operated,
and the amorphous state may be produced during solvent removal or cooling [41]. The
interaction between polymers and APIs generally results from the occurrence of hydrogen
bonds and hydrophobic interaction. When solid dispersions are placed into an aqueous
medium, such as simulated gastric fluid or simulated intestinal fluid, they would rapidly
dissolve and exist in the supersaturation state owing to the amorphous state occurrence.
Therefore, this may increase the aqueous solubility of poorly soluble APIs. Some polymers
have been reported to retard crystalline growth in several ways: polyvinylpyrrolidone
(PVP) suppresses the nucleation process and HPMC adsorbs on the surface of the crystal to
prevent the formation of crystals [73]. In addition, the nucleation and growth procedures
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may be retarded via hydrogen bonding between APIs and excipients, which further inhibits
crystalline formation [74].
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It has been reported that β-carotene containing a solid dispersion composed of PVP
and sucrose fatty acid ester (S-1670) was prepared by hot-melt extrusion and was found
to be in an amorphous state via DSC and XRD. It was also proved to enhance solubility
by about 390-fold, dissolution behavior, and also oral bioavailability [75–77]. A solid
dispersion prepared using cyclic amylopectin has been used to protect β-carotene from
light, heat and oxidation. The crystalline state of the solid dispersion was hard to detect
using XRD owing to the uniform distribution in cyclic amylopectin. Starch was reported to
inhibit the crystallization of a water-insoluble compound, β-carotene, and the composite
was formed in an amorphous state. Cyclic amylopectin with a hydrophobic internal core
could bind with β-carotene and hydrophobic compounds via intermolecular forces to
generate a more amorphous formation [78].

Chang et al. [79] prepared lycopene dripping pills consisting of PEG 6000, Cremophor
EL, and Tween 80 to improve the release behavior and oral bioavailability by approximately
six-fold. The dripping pills were determined to be in an amorphous form via SEM and DSC.
In this study, it was demonstrated that the lower viscosity caused by excessive emulsifiers
may facilitate recrystallization.

5.3. Inclusion Complex

A complex is defined as the combination of APIs and ligands through hydrogen
bonding, van der Waals forces, or hydrophobic effects [80]. Only a few compounds can
be used as ligands to encapsulate hydrophobic carotenoids such as β-cyclodextrin, β-
lactoglobulin, and amylose. The interaction of inclusion is shown in Figure 9.
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Cyclodextrin is a cyclic oligosaccharide and is classified into different types based on
the number of glucose residues, and it is the most well-studied complex ligand involving
encapsulated carotenoids. Carotenoids can be encapsulated in the hydrophobic cavity
of cyclodextrin through non-covalent interactions to stabilize the carotenoids with a ran-
dom transformation from a crystalline to an amorphous state [84], and the hydrophilic
outer surface of cyclodextrin helps the dissolution of carotenoids. Encapsulation in α-, β-,
and γ-cyclodextrin was studied in tomato oil, which contained a lot of carotenoids. The
complex presented as the microcrystalline in the emulsion form, and the complex powder
was obtained with lyophilization to remove the solvent, accompanied by higher encap-
sulation and higher antioxidant capability [85]. The β-carotene/β-cyclodextrin complex
was proposed, and β-carotene existed as an amorphous state in the complex, as shown
in the results of DSC and XRD, leading to a 10- and 40-fold higher solubility and stability,
respectively. Moreover, the antitumor activity was also improved [86]. The β-carotene/2-
hydroxylproply-β-cyclodextrin/carrageenan/soy protein complex was also proposed and
presented as an amorphous state in the DSC thermogram; it showed excellent bioaccessibil-
ity (78%) [87]. Astaxanthin has been prepared as a complex as well. The hexatomic side ring
of astaxanthin was incorporated into the cavity of methyl-β-cyclodextrin to form a complex
in an amorphous state, which was proved by the DSC thermogram, and the product ex-
hibited 54-fold higher solubility, a 10-fold dissolution rate, and better bioaccessibility [88].
Sun et al. [81] proposed fucoxanthin (FX)/2-hydroxylpropyl-β-cyclodextrin via sonication
and spray drying. The results of FTIR revealed that the characteristic peaks of FX disap-
peared, indicating that FX may have been successfully encapsulated, and the molecular
docking suggested hydrogen bonding between FX and 2-hydroxylpropyl-β-cyclodextrin.
XRD analysis also confirmed the amorphous state of FX. The FX/2-hydroxylpropyl-β-
cyclodextrin complex showed better stability and antitumor activities toward HCT-116 and
Caco-2 cells compared with free FX.

Amylose is also a food polymer that can accommodate hydrophobic carotenoids via
V-amylose crystalline formation, and whether complexes are formed depends on the size,
shape, and hydrophobicity of APIs. V-amylose is produced by the addition of ethanol
as a precipitant; however, ethanol cannot incorporate into the hydrophobic cavity, and
a hydrophobic carotenoid will be trapped by a nonspecific or specific interaction and



Pharmaceutics 2023, 15, 485 13 of 26

stabilized with amylose polycrystals [89–91] which may be why APIs exist as amorphs in
the amylose complex. However, among carotenoids, only β-carotene has been studied in
the starch-complex system; the major finding was improved stability.

β-lactoglobulin is also regarded as a complex ligand for carotenoids, existing as the
principal protein in whey protein. It can possibly bind hydrophobic carotenoids via the
internal cavity of the β-barrel, the surface near Trp19-Arg124, and the groove between the
α-helix and β-barrel of β-lactoglobulin [83,92]; the interaction may lower the molecular
mobility to prevent recrystallization [93]. The binding mechanism has been studied in
lycopene [94], but the effects on the bioactivity and physicochemical properties caused by
the crystalline alteration still need to be further studied.

5.4. Micro/Nano Particles

Microparticle preparation includes spray drying, hot-melt extrusion, and phase sepa-
ration [95], and the removal of solvents in spray drying as well as the cooling of the melt in
extrusion causes APIs to remain in an amorphous state. In terms of phase separation, it
works in a way similar to that of nanoprecipitation, which is the most common method
used for nanoparticle preparation. The main concept of nanoprecipitation is solvent shift-
ing, namely, the ouzo process. The schematic diagram of nanoprecipitation is shown in
Figure 10, where hydrophobic APIs and polymers are dissolved in an organic solvent, and
the organic solvent is added dropwise into an antisolvent (typically water). The solvent in
the droplets moves toward the antisolvent, and the antisolvent does the reverse, causing a
supersaturated state. This supersaturated state will further lead to the coprecipitation of
hydrophobic APIs and the hydrophobic moiety of polymers forming nanoparticles with
the surface coverage of the hydrophilic moiety of the polymers. The precipitated APIs
remain amorphous as they do not have enough time to recrystallize in such a quick solvent
replacement [96,97].
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In our previous study about carotenoid nanoparticles [98], β-carotene-loaded PLGA-
PVP nanoparticles were proposed, where amorphous β-carotene may benefit the solubility
and oral absorption. Better oral absorption may result from nanoparticle morphology.
Hu et al. [99] found that smooth and globular nanoparticles without irregularly lumpy
astaxanthin crystals penetrate more easily into the cell. The theory has been applied in
the micro-scale dimension, where astaxanthin-loaded hydrophilic microcapsules were
obtained by spray drying. XRD analysis indicated that astaxanthin was encapsulated in an
amorphous state, and the HepG2 cell growth inhibition activity was boosted [100]. Lutein
and PVP have been prepared as particles to increase solubility and stability. PVP can inhibit
crystallization by reducing molecular mobility, and the hydrogen bonding with lutein
stabilizes the amorphous lutein, accompanied by higher stability against heat, light, and
oxygen [101]. Lutein was also incorporated in zein nanoparticles and exhibited 80-fold
higher water solubility. No crystalline peaks of lutein were found in XRD analysis as
the nanoconfinement restricted the crystallization [102] and resulted in higher cellular
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uptake. Without excipients, the optical properties of β-carotene, lycopene, astaxanthin, and
lutein nanoparticles obtained via nanoprecipitation were compared. With this preparation,
the shell of the nanoparticles remained amorphous, and the core was still crystallized, as
shown in cryo-TEM images. Moreover, the effective conjugation length of amorphous
molecules was shorter than that of bulk crystals, and the absorption wavelength of amor-
phous molecules was blue-shifted. As a result, the color of the nanoparticles and crystals
was rendered yellow and red, respectively [103]. In addition to the amorphous form, a new
crystal may appear in the formulation. Ling et al. [104] proposed astaxanthin colloidal par-
ticles, and the decreased crystallinity led to a higher dissolution rate. Notably, astaxanthin
has two common crystalline forms: polymorph I and polymorph II. A different polymorph
was observed within the colloidal nanoparticle in the XRD analysis.

5.5. Lipid-Based Formulations

Lipid-based formulations, including emulsions, solid lipid nanoparticles (SLNs),
nanostructured lipid carriers (NLCs), and self-emulsifying drug delivery systems (SED-
DSs), are suitable for developing active lipid-soluble compounds, such as carotenoids,
for oral bioavailability improvement. Emulsions, SLNs, and NLCs are composed of an
aqueous phase and a lipid phase, with a surfactant for stabilization. The lipids used in
these formulations are liquid, solid, and a mixture of liquid and solid oil, respectively
(Figure 11). SEDDSs contain only oil and surfactants without water. Crystalline APIs
would first be dissolved or melted to disperse in the oil to maintain the liquid state during
the preparation procedure, so the APIs may be a solution type. Crystallization may occur
after homogenization, cooling, or the storage period. In addition, supersaturation also
causes the crystalline condition; therefore, the solubility of crystalline APIs in the solvent
(solid lipid and liquid lipid) is crucial for crystallization. The general solubility equation
(Equation (3)) is always utilized to calculate the solubility of crystalline APIs in a solvent
using easily measurable properties [105].

Log Sw = 0.5 − 0.01 (Tm − 25) − logKOW (3)

where SW is the molar water solubility, Tm is the melting point, and KOW is the oil–water
partition coefficient of the solute.
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For crystallization suppression, there are two main strategies: (i) enhancement of
the saturated solubility to impede nucleation, and (ii) slowing down the diffusion for the
prevention of crystalline growth (Figure 12). For the enhancement of the saturated solubility,
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the addition of surfactants, phospholipids, or high polarity, short-length saturated fatty
acids could form micelles to reduce the driving force of nucleation and prevent crystal
formation. Furthermore, the addition of non-polar agents, such as globular proteins or
cyclodextrins, on their surfaces for incorporation with hydrophobic active compounds
could also enhance the saturated solubility [55,105]. In order to slow down diffusion,
viscosity changes and size reductions are often used. In a previous study, the addition of
sugars enhanced the viscosity of the continuous phase to block the APIs’ diffusion, and the
growth was retarded [105]. A previous study demonstrated that heterogeneous nucleations
are confined when the average diameter of the drops is reduced and the crystallization is
limited [54].
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Apart from these strategies to prevent crystallization, the selection of lipids may affect
the crystallization of imperfect crystalline or amorphous states and have different drug
loadings, sizes, charges, and release behaviors [106]. The commonly used solid lipids in this
formulation preparation contain triglycerides, waxes, fatty acids, and fatty alcohols and
the lipid composition may have an influence on the crystalline state of SLNs/SLMs [107].
Taking the commonly used solid lipids, triglycerides as an example, these exhibit poly-
morphism upon cooling and possibly form the crystalline structure of α, β′, and β crystals
with hexagonal, orthorhombic, and triclinic unit structures, respectively. The α-form is the
most unstable structure, and spherical particles have been observed when triglycerides
are in this form. During storage, the prepared formulation may spontaneously transfer
the crystalline structure to a lower-energy state. Some lipids with higher polarity and
amphiphilic properties, such as phospholipids, sterols, and di- and mono-acylglycerols,
have been regarded as crystallization modifiers and affect the crystallization process [108].
In addition, the type of emulsifier may also affect the crystallization of lipid-based formula-
tions [109]. The longer alkyl chain length of the surfactants has been shown to enhance the
crystallinity of lipid-based formulations [107]. Thus, both the lipids and surfactants used
in the formulation play a vital role in the modulation of the crystallization process. More
research on each formulation is discussed as follows.

5.5.1. Solid Lipid Nanoparticles/Microparticles

The composition of solid lipid nanoparticles/microparticles (SLNs/SLMs) is similar
to that of emulsions, but solid lipids are applied in the oil phase to have controlled release
behavior or particle stability. The encapsulated drug may be prevented from crystallization
and then form a solid solution. The distribution of carotenoids in SLNs may be uniform
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due to the high hydrophobicity and crystallization temperature [110]. High-energy-state
α-crystals were found in the lipids of initial SLNs owing to rapid cooling, and the α-crystals
may transfer to β-forms during storage [111]. Compared to α-crystals, highly lipophilic
compounds such as carotenoids tend to be expelled under the β-crystalline state and the
drug content may be reduced to affect the therapeutic effect. Therefore, the stability of
SLNs is usually mentioned as a concern [112].

Some research has been reported about carotenoids containing SLNs/SLMs. β-
carotene has been developed as an SLM using stearic acid and sunflower oil to prevent
degradation during 7-month storage. The addition of sunflower oil resulted in less or-
dered crystals and induced an amorphous state, indicating the mixture of long-chained
solid lipids and liquid lipids was suitable for the preparation of stable SLMs to prevent
β-carotene degradation and exhibit excellent bioactivities [113]. Chen et al. [114] used
both palm stearin and cholesterol as the solid lipid carrier of fucoxanthin to avoid the
highly ordered crystalline structure of single solid lipids. The results showed that the
SLN-microcapsules exist in an amorphous state owing to anti-solvent precipitation and
ultrasonic treatment to form micelles easily and are capable of absorption by intestinal
epithelial cells, indicating that the solubility of carotenoids could be enhanced to reduce
the driving force of nucleation. The higher glass transition temperature indicated that the
formulation has better temperature resistance [115]. Zeaxanthin was also prepared for SLNs
using glycerol monostearate or glycerol distearate to resolve the problem of lipophilicity
and instability. The crystallinity was determined to decrease in the formulation via the
examination of DSC with the melting enthalpy decrease manner. The crystals of lipids
preferred to form α-crystals with the high-energy state during the rapid cooling proce-
dure [116]. Glycerol distearate is a mixture of C16 and C18 fatty acids and has a relatively
low melting point and enthalpy compared to glycerol monostearate, indicating it has a
poor crystalline structure. Therefore, SLNs prepared using glycerol distearate have the
irregularity of the lipid crystals and display greater dissolution behavior [116].

5.5.2. Nanostructured Lipid Carrier

Nanostructured lipid carriers (NLCs) are similar to nanoemulsions and SLNs, but the
lipids in NLCs include not only solid lipids but also liquid lipids. The incorporation of liq-
uid lipids can allow the internal lipid phase to have a less-ordered crystalline arrangement
to obviate the condition of active compound leakage and load more active compounds.
Owing to the composition of both solid and liquid lipids, crystallinity is always considered.
The crystalline index (CI) was reported to determine the crystalline state of APIs loaded in
NLCs and it is calculated using Equation (4). A higher CI indicates that the encapsulation
efficiency of NLCs may be higher owing to the less-ordered crystalline arrangement [106].

CI (%) =
Ms

Mp × γ
× 100 (4)

where Ms indicates the melting enthalpy of NLCs, Mp indicates the melting enthalpy of
pure solid lipids, and γ indicates the solid lipid concentration (%) in NLCs.

Astaxanthin-loaded NLCs have been developed to improve the physicochemical char-
acteristics and storage stability. Glyceryl behenate and oleic acid were selected as solid
and liquid lipids and lecithin and Tween 80 were chosen as surfactants in the oil phase
and water phase, respectively. The authors evaluated the properties of NLCs prepared via
lecithin removal, replacing Tween 80 with Tween 20 or replacing oleic acid with triacyl-
glycerols, and the results showed that there is no improvement in the stability of the NLCs
due to the chemically homogenous structure of the lipid mixture. In these formulations,
β-crystals were formed and the aggregation, which contributed to the hydrophobic inter-
action, partial coalescence, or the penetration of lipid crystals, made the NLCs unstable.
Among these solid lipids, NLCs prepared using glyceryl behenate were reported to have a
more imperfect crystalline lattice and lead to high stability and entrapment. The crystal
was demonstrated to be a metastable β′ polymorph, and the reduction in crystallinity
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compared to glyceryl behenate was determined by the broader and lower intensities in
the XRD patterns and DSC thermogram. The incorporation of bioactive compounds may
also make more imperfect crystals, leading to better encapsulation efficiency. The melting
point of astaxanthin disappeared in the NLC group, indicating that astaxanthin is not in
the crystalline state at this temperature and can be considered to be physically stable at
high temperatures [115]. Oleic acid has been reported as a crystallization inhibitor. Oleic
acid can adsorb and crystallize at the surface in the beginning so the crystallization may be
hindered [54].

Glycerol monostearate or glycerol distearate as a solid lipid, medium-chain triglyc-
erides as a liquid lipid, and soy lecithin and Tween 80 as surfactants were used to prepare
NLCs to load zeaxanthin. The enthalpy reduction was observed in the NLC group com-
pared to SLNs, indicating the crystallinity decrease in the lipid matrix. The lower enthalpy
and crystallinity are capable of encapsulating more APIs and displaying better release
behavior. Similar to the results of SLNs, NLCs prepared using glycerol distearate also had
better properties. The results showed that the incorporation of liquid lipids and the selection
of lipids have an influence on the crystallinity, and further improve the physicochemical
characteristics of active compounds and formulations [116].

5.5.3. Microemulsion/Nanoemulsion

An emulsion is a mixture of two immiscible phases (aqueous phase and liquid oil
phase) supported by a surfactant to reduce surface tension under thermodynamically
unstable conditions. Solubilized and crystallized β-carotene nanoemulsions have been
prepared to compare the influence of physical properties on bioaccessibility. The crystalline
state was examined while passing through the stimulated digestion process, and no crystal
was observed during digestion in the solubilized β-carotene nanoemulsion group. In the
crystallized β-carotene nanoemulsion group, the initial crystals gradually disappeared
and possibly contributed to the dilution by digestive juice in each step. The free fatty
acid release profiles in the in vitro digestion study indicated that the physical state of
β-carotene has no influence on lipid digestion. The bioaccessibility results showed that the
solubilized β-carotene nanoemulsions had an 11.7- and 46-fold enhancement compared
to crystallized β-carotene nanoemulsions and crystallized β-carotene in phosphate buffer
saline, respectively, suggesting that the solubilization state without crystals is the suitable
delivery strategy [117]. A previous study developed a lutein-loaded whey protein emulsion,
which is similar to a Pickering emulsion. The crystalline form of the formulation containing
only whey protein and phospholipids could be observed using a microscope, and the
situation could be improved after the addition of mono- and di-glycerides. The mono-
and di-glycerides benefited the solubility of lutein crystals and were demonstrated to
be physical barriers in the crystalline growth process to prevent the carotenoids from
crystallization, as well as improve the stability [118].

5.5.4. Self-Emulsifying Drug Delivery System

A self-emulsifying drug delivery system (SEDDS) is a mixture of active compounds,
oils, surfactants, and co-surfactants through a gentle stirring procedure and the o/w
emulsion is obtained by contact with digestion fluids and digestive motility. SEDDSs
can be divided into two groups according to the droplet size. The droplet size of self-
microemulsifying drug delivery systems and self-nanoemulsifying drug delivery systems
is 100–250 nm and less than 100 nm, respectively [119]. A SEDDS is often in an amorphous
state owing to being dissolved in lipids and surfactants. The crystallization always occurs
during digestion due to the supersaturation to make excess active compounds precipitate
or crystallize. In order to prevent supersaturation, some precipitation inhibitors have
been reported, including cellulose (HPMC and hydroxypropyl cellulose), polymers (PVP
and Soluplus®), surfactants (Tween, Cremophor, and D-α-Tocopherol polyethylene gly-
col 1000 succinate), and cyclodextrins [120,121]. The mechanism of the commonly used
precipitation inhibitor HPMC, is to adsorb onto the surface to inhibit the nucleation and
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growth and to form intramolecular and intermolecular hydrogen bonds between the active
compounds and itself via the hydroxyl groups in the structure. In addition, the “Spring and
Parachute” is also observed in formulations with these excipients. Supersaturation may be
rapidly reached, displaying spring behavior and the nucleation or crystalline growth may
be restrained to stabilize the metastable supersaturated samples, witnessing the parachute
phenomenon (Figure 13). In this way, the precipitation is inhibited, and there is a longer
time for absorption in the expected regions [121]. The degree of supersaturation (S) is
driven to precipitate, and it can be calculated using Equation (5) [122].

S =
total drug concentration

saturation concentration of the drug in the solvent
(5)
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A SEDDS was incorporated with a solid dispersion, named a lipid-based solid disper-
sion (LBSD), to load lycopene to enhance the dissolution characteristics and oral absorption
of lycopene. The results of XRD and DSC indicated that new signals appeared in the LBSD
and that it had a lower melting point. The release behavior of the amorphous marketed
product, Lycovit®, was significantly increased compared to the lycopene crystals, suggest-
ing the benefit of crystalline transition. Although no obvious enhancement was observed
in the LBSD owing to the non-amorphous state, the pharmacokinetic study demonstrated a
significant improvement in oral absorption compared to Lycovit® due to the long-chained
triglyceride for lymphatic transportation, suggesting the crystalline state did not fully
affect the oral absorption in this study [123]. Aung et al. [124] prepared astaxanthin-loaded
SMEDDS tablets containing SMEDDS, hydrophilic polymers as precipitation inhibitors, and
microcrystalline cellulose for tableting. The SMEDDS, composed of rice bran oil, Kolliphor®

RH 40, Span® 20, and two polymers, HPMC and polyvinyl alcohol, was used to obtain
the supersaturation state and enhance the release of astaxanthin. The crystallinity was
determined by PXRD and transferred from a crystalline to amorphous state after prepar-
ing the supersaturable SMEDDS. The SMEDDS with or without precipitation inhibitors
enhanced the release behavior, antioxidant activity, and cellular uptake. The precipitation
inhibitors in the SMEDDS could hinder the nucleation and precipitation and thus maintain
astaxanthin in the solubilized form.
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5.6. Liposome

The liposome is composed of a hydrophobic phospholipid bilayer shell and a hy-
drophilic core to form a spherical structure. Active lipophilic compounds tend to be
encapsulated within the lipid bilayer and not precipitate in a crystalline form. Regard-
ing the active hydrophilic compounds, they were loaded in the aqueous core with the
crystalline precipitate, amorphous precipitate, or solution state depending on the proper-
ties of the active compounds and preparation process (Figure 14) [125]. Carotenoids are
lipophilic compounds with high octanol–water partition coefficients; therefore, they are
usually encapsulated within the phospholipid bilayer. Astaxanthin has been prepared
for the liposome using the film dispersion-ultrasonic technique. XRD was conducted to
examine the crystalline state of astaxanthin, soybean phosphatidylcholine (excipient), and
the liposome. Pure astaxanthin was determined to be in a crystalline state owing to the
existence of many peaks. The pattern of liposomes was different from that of astaxanthin
and soybean phosphatidylcholine, implying that astaxanthin was successfully encapsulated
in the liposomes with hydrogen bonds between astaxanthin and the phospholipid bilayer.
The aqueous solubility of astaxanthin was observed to be enhanced 17-fold compared to
pure astaxanthin, which may be attributed to the crystalline alternation of astaxanthin after
liposome encapsulation [126].
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Although there are some studies illustrating other factors majorly affecting oral absorp-
tion, such as intestine-specific transporters or lymphatic transport, solubility enhancement
was mainly discussed and proved to efficiently improve oral bioavailability. The simplest
way to enhance solubility is to alter the crystalline state from crystals to amorphs or poly-
morphs. The limitation is the instability of crystals owing to the high-energy state. To
overcome this problem, there are many strategies and principles for crystallization suppres-
sion discussed in this article. To summarize, carotenoid formulations involved in the change
of crystallinity are listed in Table 2. This article included various carotenoid-containing
formulations, including those prepared using polymers or lipids, and the discussion of crys-
talline alternation. It may provide information to develop carotenoid-loaded formulations
to deal with the problem of solubility and stability and exhibit outstanding bioactivities.
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Table 2. The summary of carotenoid formulations involved in the crystalline change.

Carotenoids Formulation Composition Crystalline Status Results Reference

Carotenoids Co-crystal Sucrose Crystals Thermal stability↑ [70]

β-carotene Solid dispersion
Poly (vinyl pyrrolidone)
Sucrose fatty acid ester

(S-1670)
Amorphs

Solubility↑
Dissolution↑

Bioavailability↑
[75–77]

β-carotene Solid dispersion Cyclic amylopection Amorphs Stability↑ [78]

β-carotγene Inclusion complex Amylose
(Amylomaize starch)

Both Amorphs and
crystals Stability↑ [89]

β-carotene Inclusion complex Amylose
(Corn starch)

Both Amorphs and
crystals Stability↑ [91]

β-carotene Inclusion complex Amylose
(High-amylose corn starch) Amorphs Stability↑ [90]

β-carotene Inclusion complex

2-hydroxylproply-β-
cyclodextrin
Carrageenan
Soy protein

Amorphs Bioaccessibility↑ [87]

β-carotene Nanoparticles Poly (lactic-co-glycolic) acid
Poly (vinyl pyrrolidone) Amorphs Bioavailability↑ [98]

β-carotene Nanoemulsion Corn oil Amorphs Bioaccessibility↑ [117]

β-carotene Solid lipid
microparticles

Stearic acid
Sunflower oil

Amorphs or
Less ordered

crystals
Stability↑ [113]

Lycopene Solid dispersion
(Dripping pills)

PEG 6000
Cremophor® EL

Tween® 80
Amorphs Dissolution↑

Bioavailability↑ [79]

Lycopene
(Tomato oil) Inclusion complex α, β, γ-cyclodextrin Microcrystals

Color change
Stability↑

Antioxidation↑
[85]

Lycopene Lipid based solid
dispersion Gelucire 44/14 Polymorphs Dissolution↑

Bioavailability↑ [123]

Astaxanthin Inclusion complex Methyl-β-cyclodextrin Amorphs
Solubility↑

Dissolution↑
Bioaccessibility↑

[88]

Astaxanthin Colloidal particles
Tween® 20

Sodium caseinate
Gum arabic

Polymorphs Dissolution↑
Cellular uptake↑ [104]

Astaxanthin Microparticles

Povidone K30
Copovidone

PEG 6000
Poloxamer 188

Tocopherol
Colloidal silicon dioxide

Amorphs HepG2 cell growth
inhibition activity↑ [100]

Astaxanthin Nanoparticles Poly(lactic-co-glycolic acid) Amorphs Cellular uptake↑
Photoprotection↑ [99]

Astaxanthin Liposome
Soybean phosphatidyl

choline
Cholesterol

Both Amorphs and
crystals

Solubility↑
Stability↑ [126]

Astaxanthin Nanostructured
lipid carrier

Glyceryl behenate
Oleic acid
Lecithin

Tween® 80

Amorphs Stability↑ [115]

Astaxanthin

Self-
microemulsifying

drug delivery
system

Rice bran oil
Kolliphor® RH 40

Span® 20
HPMC

Polyvinyl alcohol

Amorphs
Dissolution↑

Antioxidation↑
Cellular uptake↑

[124]
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Table 2. Cont.

Carotenoids Formulation Composition Crystalline Status Results Reference

Fucoxanthin Inclusion complex 2-hydroxylpropyl-β-
cyclodextrin Amorphs

Solubility↑
Stability↑

Anti-tumor
activity↑

[81]

Fucoxanthin
Solid lipid

nanoparticle-
microcapsules

Palm stearin
Cholesterol Amorphs

Solubility↑
Stability↑

Bioavailability↑
[114]

Lutein Particles Polyvinylpyrrolidone
Tween® 80 Amorphs Stability↑ [101]

Lutein Nanoparticles Zein
Sophorolipid Amorphs Solubility↑

Bioaccessibility↑ [102]

Lutein Nanoemulsion

Blending plant oil
Mono- and di-glycerides

Lecithin
Whey protein

Amorphs Dissolution↑
Stability↑ [118]

Zeaxanthin Solid lipid
nanoparticles

Glycerol monostearate
Glycerol distearate Possible amorphs Dissolution↑ [116]

Zeaxanthin Nanostructured
lipid carrier

Glycerol monostearate
Glycerol distearate

Medium-chain triglyceride
Soy lecithin
Tween® 80

Possible amorphs Dissolution↑ [116]

↑: enhancement. ↓: reduction.

6. Conclusions

This review deals with the mechanisms of converting crystals into amorphs and
stabilizing the amorphs in terms of polymer- and lipid-based formulations. Factors such as
the types of excipients, manufacturing processes, and changes in particle size can transform
the crystalline forms of APIs into other polymorph or amorph statuses. This review also
provides representative and practical strategies for the delivery of carotenoids. These
pharmaceutical technologies related to crystalline status modification efficiently improve
the physicochemical properties of carotenoids, which amends their oral bioavailability and
biological effects.
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