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Abstract: Dacarbazine (DB) is an antineoplastic drug extensively used in cancer therapy. However,
present limitations on its performance are related to its low solubility, instability, and non-specificity.
To overcome these drawbacks, DB was included in β-cyclodextrin (βCD), which increased its aqueous
solubility and stability. This new βCD@DB complex has been associated with plasmonic gold
nanoparticles (AuNPs), and polyethylene glycol (PEG) has been added in the process to increase the
colloidal stability and biocompatibility. Different techniques revealed that DB allows for a dynamic
inclusion into βCD, with an association constant of 80 M−1 and a degree of solubilization of 0.023,
where βCD showed a loading capacity of 16%. The partial exposure of the NH2 group in the included
DB allows its interaction with AuNPs, with a loading efficiency of 99%. The PEG-AuNPs-βCD@DB
nanosystem exhibits an optical plasmonic absorption at 525 nm, a surface charge of −29 mV, and
an average size of 12 nm. Finally, laser irradiation assays showed that DB can be released from
this platform in a controlled manner over time, reaching a concentration of 56 µg/mL (43% of the
initially loaded amount), which, added to the previous data, validates its potential for drug delivery
applications. Therefore, the novel nanosystem based on βCD, AuNPs, and PEG is a promising
candidate as a new nanocarrier for DB.

Keywords: dacarbazine; β-cyclodextrin; gold nanoparticle; inclusion complex; drug delivery; laser
irradiation; triggered drug release

1. Introduction

Aging and exposure to pollutants make cancer one of the leading causes of death
in the world, with 10 million deaths occurring in 2020 and projected to reach 28 million
until 2040 [1,2]. Antineoplastic drugs have mechanisms of action based on interrupting
cell growth or destroying them; they affect both cancerous and healthy cells [3,4]. Dacar-
bazine (DB) is an alkylating agent used in the treatment of several types of cancer, such
as Hodking’s lymphoma, melanoma, pancreatic islet carcinoma, and sarcomas [4–7]. It
has an aggressive and non-selective behavior and is classified among the antitumor drugs
for which there is no exposure range considered safe; nevertheless, its consumption has
increased by around 12% annually since 2004 [8,9]. The drug is highly unstable, degrading
to carbene and aryl radicals, which are species involved in DNA damage, and inside the
human body it produces reactive and highly toxic oxygen species. These species are also
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suspected to be responsible for the pain experienced by patients and for the incidence of car-
cinogenic, teratogenic, and mutagenic effects [10,11]. This antineoplastic has a 5-h half-life
in the body and a 40% intact excretion rate in urine. Even from an ecological point of view,
after biodegradation processes in wastewater treatment plants, 98.2% remains, generating
a concentration of 0.1 ng/L in riverbeds, which is a serious environmental problem. [12,13].
Therefore, it is necessary to further advance the application of this drug, for example, by
improving its aqueous solubility, stability, and specificity for an intelligent therapy at the
site of action, ideally reducing the administered dose. In this sense, cyclodextrins (CD) and
gold nanoparticles (AuNPs) have emerged as promising tools for the development of novel
drug delivery nanosystems [2,14–17].

CDs are nontoxic cyclic oligosaccharides formed from 6, 7, or 8 glucopyranose
units bonded via α(1−4) bonds as a truncated cone, approved by the Food and Drug
Administration (FDA) for a wide range of pharmaceutical, food product, and cosmetic
applications [18–20]. They are characterized by a hydrophilic exterior and a hydrophobic
interior, working as a pocket or host for poorly soluble or reactive organic molecules,
forming inclusion complexes [21,22]. The βCD, composed of 7 glucose units, is highlighted
due to its appropriate dimensions to include aromatic cycle species. Hence, it has been
widely studied to optimize the performance of drugs by preventing decomposition and
increasing aqueous solubility [23,24]. Considering the molecular dimensions of DB and its
hydrophobic regions, this drug could be included inside the non-polar internal cavity of
βCD, forming a new inclusion complex [25,26]. Interestingly, some inclusion complexes
present an arrangement that exposes suitable drug functional groups to interact with other
materials, such as AuNPs, to add characteristics and properties that continue to contribute
to the optimization of the drug in therapy [27–31].

AuNPs have been extensively studied in therapy and the diagnosis of cancer [2,32–34].
The extensive study on chemical synthesis methods allowed a high degree of control
over the size and shape of the nanosystem obtained, resulting in simple, reproducible, and
scalable methodologies [35–37]. These nanoparticles demonstrate excellent biocompatibility,
interesting optoelectronic properties, and an easily functionalized surface, which leads to
a promising platform for drug delivery [38–41]. The use of polymers and proteins, such
as polyethylene glycol (PEG) and bovine serum albumin (BSA), are used to increase their
stability and avoid opsonization of AuNPs, thus increasing their circulation time in the
organism [42,43]. Due to their size and the size of blood vessels in fenestrated tissue, AuNPs
accumulate preferentially in tumors due to passive targeting enabled by the enhanced
permeation and retention effect (EPR) [44–46]. In this way, antineoplastic agents can be
targeted to their specific site of action, minimizing damage to healthy tissue. Furthermore,
drugs can be released in a controlled process utilizing the photothermal effect, which is the
generation of local heat on the surface of the plasmonic AuNP due to their interaction with
light at wavelengths close to the optical absorption maximum [47–50]. Currently, AuNPs
are independently used as a therapeutic agent by triggering hyperthermia to destroy tumor
cells [51]. Thus, the vectorization of DB on AuNPs could optimize its toxic profile and
synergize at the therapeutic level, while the solubility and stability in water could be
increased by formulating it in βCD, which allows the formation of a new nanosystem for
site-specific and controlled release [51–54].

This is the first study of the inclusion of DB in βCD in a solid state, and its subsequent
functionalization with AuNPs. Considering the exclusive use of biocompatible agents,
PEG was incorporated into the colloidal solution, forming the new PEG-AuNPs-βCD@DB
nanosystem. The understanding of the complex formation was performed using techniques
including powder X-ray diffraction, NMR of 1 and 2 dimensions, scanning electron mi-
croscopy, and molecular docking. The development of the nanosystem was characterized
using UV-Visible spectroscopy, DLS, Zeta potential measurements, Raman and SERS spec-
troscopy, and transmission electron microscopy. Validation of this nanosystem as a new
nanocarrier candidate was performed by obtaining relevant pharmaceutical parameters
such as the association constant, loading capacity and efficiency, and size and surface
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charge of functionalized nanoparticles. As a proof of concept, the release of DB was demon-
strated by laser irradiation assays. Figure 1 shows a scheme of the different stages of the
nanosystem’s development and its proof of concept.
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Figure 1. Schematic representation of the development of the PEG-AuNPs-CD@DB nanosystem: (a) formation
of the CD@DB complex by drug inclusion into the cyclodextrin cavity, (b) coating of the AuNPs
surface with the CD@DB complexes, and (c) release of the DB from the nanosystem triggered by
laser irradiation.

We believe that the synergistic incorporation of βCD, AuNPs, and PEG could improve
the formulation of DB-optimized anticancer therapy by increasing the aqueous solubility,
stability, and local concentration of the drug, in addition to triggering its release at the site
of action by laser irradiation.

2. Materials and Methods
2.1. Materials

Dacarbazine (C6H10N6O)≥ 99%, molar weight: 182.18 g/mol; β-cyclodextrin (C42H70O35)
≥ 97%, molar weight: 1134.98 g/mol; tetrachloroauric acid (HAuCl4*3H2O) ≥ 99.9%, molar
weight: 393.83 g/mol; sodium citrate (Na3C6H5O7)≥ 99%, molar weight: 294.10 g/mol; and ni-
tric acid (HNO3) 70%, molar weight: 63.01 g/mol were provided by Sigma Aldrich (Saint Louis,
MO, USA). Hydrochloric acid (HCl) 37%, molar weight: 36.46 g/mol; ethanol (C2H5OH)
≥ 99.9%, molar weight: 46.07 g/mol; hexane (C6H14) ≥ 99.7%, molar weight: 86.18 g/mol;
and water (nanopure) were provided by Merck (Darmstadt, Germany). Methoxy PEG Thiol
(CH3O-PEG5000-SH)≥ 95%, molar weight: 5 kDa was provided by JenKem Technology (Plano,
TX, USA).

2.2. Formation of the Inclusion Complex

To form the βCD@DB complex, the saturated solutions of method [55] were used with
minor modifications. A total of 96 mg of DB were dissolved in a 1:2 water ethanol solution
with constant stirring at 25 ◦C for 1 h. In addition, 400 mg of βCD were dissolved in water
with constant stirring for 2 h at room temperature. Then, both solutions were mixed with
gentle and constant stirring for 1.5 h. The mixture was covered and kept motionless under
a hood for 2 weeks. Crystals precipitated at the bottom of the solution and were extracted,
washed, and dried before the complete evaporation of the solvents.

2.3. Loading Capacity of β-Cyclodextrin

Loading capacity was calculated from the weights of βCD and drug obtained, using
Equation (1) [56].

Loading capacity =
Weight o f DB in βCD

Weight o f βCD
× 100 (1)
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2.4. Association Constant of β-Cyclodextrin@dacarbazine

For the βCD@DB complex, the association constant was obtained following the
Higuchi and Connors method [57]. The βCD concentration versus the loaded DB concen-
tration (calculated by the Beer–Lambert law) was plotted. The value of the slope of the
graphs related the amount of βCD added to the amount of solubilized drug, indicating the
degree of solubilization (DS). DS was used in Equations (2) and (3) to finally calculate the
association constant (Ka1:1) and complexation efficiency (CE) of the βCD@DB.

Ka(1:1) =
DS

[Co](1−DS)
(2)

CE = Ka(1:1)[Co] =
DS

(1−DS)
(3)

[Co] corresponds to the concentration of the free drug in absence of βCD.

2.5. Stability and Modeling of β-Cyclodextrin@dacarbazine

Conformational searches were calculated by Autodock Vina 1.1.2 software (2014) [58]
(Lo Jolla, CA, USA) with the Lamarckian Genetic Algorithm (LGA), using βCD as the re-
ceptor and DB as the ligand. The structure of βCD was extracted from the crystallographic
data reported in the Cambridge Crystallographic Database Nº 210,892 [59]. The parameters
used for the global search were consistent with previous similar works [27,60,61], where
an initial 300 individuals, 2000 maximum energy evaluations, and 10,000 maximum gen-
erations were used as a final criterion. An elitism value of 1 mutation rate of 0.02 and a
crossover rate of 0.8 were used. The vacuum permittivity was set up. The amine groups
were considered rotable, thus producing the flexible docking scheme. The modeling grid
measures were 4 × 4 × 4 nm to cover the entire surface of βCD, which calculated the most
favorable complexation positions for the system. The obtained structures of the βCD@DB
complex were employed to rationalize the experimental results.

2.6. Synthesis of Gold Nanoparticles

A synthesis of plasmonic AuNPs was performed using the Turkevich method [62].
All glassware were carefully washed with aqua regia before use. A reflux system was
used, and 100 mL of HAuCl4*3H2O 1.0 mM was added. An amount of 114.1 mg of sodium
citrate was dissolved in 10 mL of water and heated at 60 ◦C for approximately 5 min. When
reflux was achieved, a citrate solution (at 60 ◦C) was added under constant agitation (72 g)
over 30 min. Later, the solution was cooled slowly to room temperature. The obtained
AuNPs were filtered and stored at 4 ◦C. The concentration of AuNPs was obtained using
the reported molar extinction coefficient and the Beer–Lambert equation [63,64].

2.7. Functionalization of Gold Nanoparticle with the Complex

AuNPs were functionalized with the βCD@DB complex via the exchange of citrate,
which was the original stabilizer. In addition, thiolated polyethylene glycol (CH3O-PEG-SH)
was incorporated. For this, 2 mL of a 20 mg/mL aqueous solution of βCD@DB were mixed
with 2.5 mL of a 9 nM aqueous solution of AuNPs and agitated for 10 min at room tempera-
ture, completely protected from light sources. Subsequently, 500 µL of a 0.420 mM aqueous
solution of CH3O-PEG-SH were added and agitated for 1 h under the same conditions. The
PEG-AuNPs-βCD@DB solution that formed was dialyzed to facilitate the removal of excess
citrate. For this purpose, a Spectrum™ brand cellulose exchange membrane with a pore
size of 5000 d and solutions of decreasing citrate concentration down to pure water were
used. The process took 2 days. Finally, the resulting colloidal solution was centrifuged at
3200 rpm and resuspended in water fixed at pH 6.5. The AuNPs-βCD@DB-PEG solution
was stored at 4 ◦C.
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2.8. Loading Efficiency of Gold Nanoparticles

Loading efficiency is the maximum amount of drug that the nanosystem can carry. To
calculate it, the amount of DB detected in the supernatant after functionalizing the AuNPs
with the βCD@DB complex was subtracted from the amount of DB initially available, using
Equation (4) [56].

Loading e f f iciency =
Weight o f DB in βCD@DB loaded to the AuNP

Weight o f DB in βCD@DB added
× 100 (4)

2.9. Equipment and Methodology for the Characterization

A crystallographic analysis was performed by the powder X-ray diffraction tech-
nique (PXRD) using a Siemens D-5000 diffractometer (Munich, Germany) with graphite-
monochromated Cu K-α radiation at 40 kV and 30 mA with a wavelength of 1.540598 Å.

SEM micrographs were obtained using a LEO 1420 VP (Oberkochen, Germany) with
a coupled energy dispersive analysis instrument, model Oxford 7424, at an accelerating
voltage of 25 kV. For FE-SEM imaging, a Zeiss Leo Supra 35-VP model (Oberkochen,
Germany) was used with accelerating voltages of 15 kV and 20 kV. A coating with gold
using magnetron sputtering in high vacuum was necessary to improve the conductivity
of the samples and avoid their polarization. For βCD and DB, 100s of metallization were
performed and for βCD@DB, 20s of metallization were performed.

Nuclear magnetic resonance of 1 and 2 dimensions (1H and ROESY, respectively) was
performed using Bruker Advance 400 MHz equipment (Billerica, MA, USA) at 300 K, with
TMS as the internal reference and DMSO-d6 as solvent. Specifically, the ROESY technique
was performed using the pulsed field selected gradient method for 24 h. The processing of the
data obtained was performed using the MestRec software (Santiago de Compostela, Spain).

For UV-visible spectrophotometry measurements, PerkinElmer Lambda 25 UV equip-
ment (Waltham, MA, USA) was used with 1-cm-diameter quartz cuvettes in a wavelength
range between 200 and 800 nm.

To determine the average particle size and its distribution, high-resolution transmis-
sion electron microscopy (HRTEM) was performed using a JEOL 2000FX TEM microscope
(Akishima, Tokyo, Japan) at 200 kV, and transmission electron microscopy (TEM) was per-
formed using a JEOL JEM 1200 EX (Akishima, Tokyo, Japan) with an accelerating voltage
of 80 kV. The samples were prepared by depositing 10 µL of solution on a copper grid with
a continuous formvar film and were slowly dried by exposure from an IR lamp.

Dynamic light scattering (DLS) and Zeta potential techniques were performed using
Malvern ZetaSizer Nano ZS equipment (Malvern, Malvern, United Kingdom) with a
capillary cell with gold electrodes.

Raman spectra were obtained from the direct measurement of the samples in the
solid and aqueous states, using a Renishaw Ramanscope 1000 (Wotton-under-Edge, United
Kingdom), excited with a 632.8 nm He-Ne laser. IR spectra were obtained using a Perkin
Elmer 2000 (Waltham, MA, USA) with KBr pills. To interpret the results of the IR and
Raman spectra, calculations with the PhEA molecule were performed using Gaussian 09,
revision D.01 [65], using density functional theory at the B3LYP/6- 311 + G(d,p) level of
theory in the gaseous state. Geometry optimization and frequency calculations, including
Raman activity, were requested.

2.10. Drug Release Studies Using Laser Irradiation

The laser used was provided by Power Technology, Inc. The wavelength was 532 nm,
with a beam diameter of 1 mm and 45 mW of power. In a quartz cuvette, an aqueous
phase and an organic phase were disposed of, adding 300 µL of hexane and 300 µL of the
PEG-AuNPs-βCD@DB nanosystem in water, isolated from external light sources. First,
the passive diffusion of the drug from the nanosystem into the organic phase was studied.
Then, the aqueous phase is irradiated for 15, 30, 45, and 60 min, measuring the absorbance
of DB in hexane at each interval. After calculating of the molar extinction coefficient
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(ε = 10.93 mM·cm−1 at 237 nm), the maximum absorbance obtained in the characteristic
region of DB in an organic medium in each assay was converted into mass by using the
Lambert–Beer law. The mass released by diffusion was subtracted from the total loaded
mass to obtain the mass susceptible to being released by laser irradiation.

3. Results and Discussion
3.1. Dacarbazine Loading into β-Cyclodextrin Forming the New β-Cyclodextrin@dacarbazine Complex

The drug loading in native βCD was performed using the saturated solutions method,
obtaining a precipitate that corresponds to the βCD@DB complex, which was characterized
using PXRD and SEM. Figure 2 shows the diffractograms and micrograph for βCD, DB,
βCD@DB, and the diffractogram of the physical mixture between βCD and DB.
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Figure 2. Powder X-ray diffractogram of crystalline powder of βCD, DB, βCD@DB, and βCD-DB
physical mixture (a). SEM micrograph of βCD (b), DB (c), βCD@DB (d,e), and FE-SEM micrography
of βCD@DB (f).

Peaks at 4◦, 6◦, 8◦, 9◦, 13◦, and 20◦ (2θ) of βCD associated with a P-type monoclinic
conformation [66], and peaks at 11◦, 17◦, 22◦, 26◦, and 27◦ (2θ) of DB associated with a
monoclinic structure of a P21/n group [67,68], disappeared when the βCD@DB complex
was formed. Instead, in the diffractogram of the βCD@DB system appear new peaks,
specifically at 10◦, 15◦, 19◦, 23◦, and 25◦ (2θ), that are characteristics of aromatic rings
included in βCD matrices [69,70]. The permanence of other peaks corresponding to βCD,
in the diffractogram of βCD@DB, reveal the influence of this matrix on the crystalline
packing of the complex, while the defined peaks of the DB pattern that disappear in
the complex reveal the effective inclusion of the drug. Therefore, crystalline packing
arrangement of the complex was different compared to the pure species and represents a
new crystalline phase. The physical mixture corresponds to a superposition between the
traces of the pure species, confirming that this procedure does not generate interactions
that disturb the crystal lattice of any of them (more details in Figure S1, in Supplementary
Materials, Section S1).

Different morphologies ofβCD, DB, andβCD@DB were observed in SEM micrographs,
which reveal that the inclusion phenomenon generates a new crystalline arrangement of the
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βCD units when the drug is housed in its cavity. Considering that SEM imaging requires
the metallization of organic compounds, the complex was covered by gold for 20 s, being a
substrate with a higher affinity for this metal than the pure species, which require 100 s of
metal deposition. Added to the above, the crystal length analyses show that the βCD@DB
complex formation method allows obtaining solid structures that are 13 and 10 times larger
compared to the sizes of pure βCD and DB, respectively (additional SEM micrographs,
together with size analyses, are detailed in Figure S2 and Table S1 in the Supplementary
Materials, Section S1).

Subsequently, a study about the host-guest interactions and stoichiometric ratio of the
βCD@DB complex in solution was performed using proton nuclear magnetic resonance
(NMR) spectroscopy. Table 1 shows the chemical shifts of βCD and DB protons resulting
from the inclusion process. 1H-NMR spectra of all species, along with proton assignment,
are shown in Figure S3 in the Section S2 of the Supplementary Material.

Table 1. Proton assignments and 1H-NMR chemical shifts of βCD, DB, and βCD@DB.

Proton δβCD (ppm) δβCD@DB (ppm) ∆δ (ppm) Proton δDB (ppm) δβCD@DB (ppm) ∆δ (ppm)

-H3 3.648 3.657 0.009 -NH 12.617 12.591 −0.026
-H5 3.555 3.561 0.006 -CH3′ 3.518 3.504 −0.014
-H6 3.617 3.623 0.006 -CH3′ ’ 3.131 3.126 −0.005
-OH2 5.735 5.711 −0.024 -CH 7.527 7.520 −0.007
-OH3 5.680 5.662 −0.018

-NH2a,b
7.451 7.416 −0.035

-OH6 4.479 4.436 −0.043 7.307 7.294 −0.013

Protons that are oriented towards the interior of the βCD cavity (H3, H5, and H6) and
those close to its openings (OH2, OH3, and OH6) can present chemical shifts due to the
inclusion phenomenon [21,71]. Shifts towards lower fields of the H3, H5, and H6 proton
signals were observed due to interactions with the highly electronegative atoms of DB. In
turn, shifts towards higher fields of the proton signals present in all the hydroxyl groups
were observed, probably due to the shielding effect produced by the inclusion of the drug.
On the other hand, the shift of the DB proton signals towards higher fields is due to an
increase in nearby electron density. This confirms the effective inclusion of the drug in
βCD [17,27–29]. The stoichiometry of the complex was obtained by comparing the integrals
for H1 of βCD regarding CH3

′, CH3
′ ′, CH, and NH of DB, obtaining a stoichiometric ratio

of 1:1 (see the details in Figure S4 and Table S2 in the Supplementary Materials, Section S3).
Rotational Overhauser Enhancement Spectroscopy (ROESY) complemented with

theoretical molecular docking were used to study the interactions and geometry of DB
loading [72]. Zoom sections of the two-dimensional spectrum of the βCD@DB complex
(a and b) and the most stable conformation obtained by docking (c and d) are shown in
Figure 3 (full spectrum in Figure S5 in the Section S4, Supplementary Materials).

Figure 3a–c reflects the interactions between the protons of DB with the internal
protons (H3, H5, and H6) and with the protons of the secondary hydroxyls (OH2 and
OH3) of βCD. Crossed peaks between CH3

′ and CH3
′ ′ with H5 and H6, together with

crossed peaks between NH2 and CH with H5 mainly, corroborate the effective inclusion
of the drug. The orientation of the guest molecule could be elucidated by the interactions
observed between CH and the secondary hydroxyl groups, which would indicate that
the region of the imidazole ring is included and oriented towards the wider opening;
therefore, the region of the primary amide and methyl groups are oriented toward the
narrower opening of βCD. In this sense, molecular modeling is frequently used to support
the structural elucidation of inclusion complexes [61,73]. Figure 3d,e corresponds to a
theoretical arrangement of DB in the matrix; here the complete inclusion of the drug was
observed, with specific interactions between the protons of the CH3 groups with H5 and H6,
and the protons of the CH groups with H3, H5, and secondary hydroxyl groups, confirming
a dynamic inclusion of DB, which is oriented towards the narrower opening of βCD.
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Finally, to determine the pharmaceutical parameters of relevance, DS, CE, and Ka, the
phase solubility method was used [57]. The solubility graph indicates that the formation
kinetics correspond to an AL type diagram, confirming a 1:1 stoichiometry inclusion
compound, which represents a βCD loading capacity of 16% for DB (see the details in
Figures S6 and S7 in the Supplementary Materials, Section S5). An increase in the aqueous
solubility of the drug was observed with increasing concentrations of βCD. The DS value
for the complex was 0.023; the CE was 0.024; and Ka was 80 M−1. These data constitute
the basis for evaluating the feasibility of a future pharmaceutical formulation. In general,
values greater than 2000 M−1 indicate a limitation in the pharmaceutical formulation, such
as poor pharmacokinetics, since the drug release rates can be affected. Meanwhile, Ka with
lower values of 50 M−1 also present limitations since they have low stability and do not
release the drug at its site of action [74]. In this sense, to ensure the permanence of the
drug in the transport system, the use of AuNPs becomes relevant. It has previously been
reported that the presence of AuNPs interacting with the βCD-drug complex can decrease
the degree of dissociation of the drug in solution, controlling its release by means of a
stimulus such as laser irradiation [29].

It is known that AuNPs can absorb the energy emitted by an external source, such
as a laser, which is subsequently released in the form of heat together with the molecules
that are close to its surface as another consequence of this photothermal effect [34,75,76].
Notably, this has been demonstrated for a drug included in AuNPs- andβCD-based systems
using laser irradiation [29,31]. Therefore, in addition to generating localized hyperthermia,
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AuNPs are therapeutic agents, especially in cancer, where they also act as nanocarriers for
the antitumor drug, which can be released if localized energy is irradiated.

3.2. Functionalization of Gold Nanoparticle Surface with β-Cyclodextrin@dacarbazine Complex

To form the nanocarrier based on AuNPs, they were synthesized following the Turke-
vich method [62], and then, the citrate ligand was exchanged for the βCD@DB complex.
To increase the colloidal stability of the system, CH3O-PEG(5000)-SH molecules were in-
corporated, forming the new PEG-AuNPs-βCD@DB nanosystem. The AuNPs obtained
and functionalized in their different stages were characterized by UV-vis spectroscopy, dy-
namic light scattering (DLS), Zeta potential, and transmission electron microscopy (TEM).
Figure 4 shows the UV-VIS spectra of AuNPs-citrate, AuNPs-βCD@DB, and PEG-AuNPs-
βCD@DB, and HR-TEM micrographs of AuNPs stabilized with PEG and βCD@DB system.
In addition, Table 2 shows the results obtained from the different techniques used in
these nanosystems.
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Figure 4. (a) UV-vis spectra of AuNPs stabilized with citrate: βCD@DB and PEG-βCD@DB. HR-TEM
of the PEG-AuNPs-βCD@DB system: (b) wide view and (c) zoom-in.

Table 2. Wavelengths of the maximum absorbance (λmax), hydrodynamic diameter (DH), polydisper-
sity index (PDI), surface charge, and diameter according to TEM for AuNPs with different stabilizers.

Nanosystem λmax (nm) DH (nm) PDI Surface Charge (mV) TEM Diameter (nm)

AuNPs-citrate 523 45 ± 11 0.33 −43 ± 4 12 ± 4
PEG-AuNPs-βCD@DB 525 65 ± 25 0.41 −29 ± 4 12 ± 3

A bathochromic displacement at 525 nm of the plasmon of the AuNPs was observed
when citrate was replaced by the PEG-complex as stabilizer due to the new interaction of
the electrons of the nanoparticles with functional groups SH (from PEG) and NH2 (from DB
in βCD), as has been reported [28,45,77]. In addition, an increase in hydrodynamic diameter
from 45 to 65 nm and PDI from 0.3 to 0.4 for the PEG-AuNPs-βCD@DB system comparing to
AuNPs-citrate was observed using DLS. This increase in the solvation sphere was attributed
to the replacement of citrate by PEG and βCD@DB, which have greater size and mass. In
this sense, the change in surface charge from −43 mV to −29 mV corroborates the effective
exchange of the stabilizer. HR-TEM images of the PEG-AuNPs-βCD@DB nanosystem
show the spherical shape of the nanoparticles with an average diameter of 12 nm, which
is the same as for the as-synthesized AuNPs using citrate. These results confirm that
the plasmonic and superficial properties’ changes can be attributed to the replacement
of the stabilizer without a process of aggregation or interparticle coupling occurring (see
the details in Supplementary Materials, Section S6). After the PEG-AuNPs-βCD@DB
purification process, the drug content of the extracted supernatant was analyzed to evaluate
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the loading efficiency of the AuNPs. According to this, 99% of the initial mass of DB
remains in the βCD@DB complex loaded to the nanosystem. This reaffirms that the drug,
previously included in βCD, is interacting with the surface gold atoms of the nanoparticles
(see Table S3 in Supplementary Materials, Section S6).

The inclusion phenomenon of DB in βCD and its interaction with AuNPs generate
changes in the vibrational modes of the constituting molecules, which are associated with
modifications in the intensity or spectral position of their signals in the Raman spectrum.
Next, the Raman and SERS techniques were used to study the disposition and interaction
of the drug loaded in the nanosystem. Figure 5 shows the Raman spectra of DB, βCD,
βCD@DB, and PEG-AuNPs-βCD@DB. The DB vibrational mode assignments in the Raman
spectra are attached in Table S4 in Section S7, Supplementary Materials.
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In the DB spectrum, signals at 325, 540, 1210, 1547, and 1592 cm−1 associated with
vibrational modes of azide and amide can be observed. These signals were also observed in
βCD@DB spectra. The signal at 1372 cm−1 in the DB spectra, associated with the imidazole
bending and azide stretching, shows a splitting in βCD@DB spectra, suggesting that the
chemical environment was different for both sections, probably because the imidazole was
found interacting with the βCD interior while the azide was arranged outward. The loss of
the remaining DB signals in the βCD@DB spectrum was due to the vibrational restraint
caused by the inclusion phenomenon. This effect was also supported by the IR spectroscopy
analysis (see the details in Figure S12 in Section S7, Supplementary Materials).

On the other hand, in the SERS spectrum of PEG-AuNPs-βCD@DB, amplified signals
of DB were observed at 713 and 754 cm−1, associated with N-C-O scissoring and C-N azide
in-plane bending, as well as signals at 1286 and 1314 cm−1, associated with imidazole
in-plane vibrations. In particular, the C=O stretching signal at 1712 cm−1 appears in
PEG-AuNPs-βCD@DB but not in the DB spectrum. The decrease of signals at 1372, 1492,
and 1527 cm−1, associated mainly with imidazole, azide, and N-(CH3)2 out-of-plane
vibrations regarding DB spectra, was observed in conjunction with the loss of signals at
1210 and 1592 cm−1, associated principally with NH2. These changes suggest that the
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dynamic inclusion of DB in βCD, discussed in ROESY and docking, allows its mobility
and orientation to suit its interaction with the gold surface. A perpendicular arrangement
regarding the molecular plane of DB on the AuNPs’ surface through its interaction via the
NH2 group was proposed [17,78]. Notably, the signal in the 130 cm−1 sector suggests the
formation of the thiol-gold bond of the PEG used as a stabilizer [79,80].

3.3. Dacarbazine Controlled Release Using Laser Irradiation

The photothermal effect of AuNPs has been widely studied for controlled drug release
and to produce hyperthermia, which effectively and locally kills cancer cells [29,31,32,47,81,82].
This effect can be generated by the application of energy from an external light source with
a suitable wavelength and intensity, such as a laser. As a proof of concept, the controlled
release of DB triggered by laser irradiation onto AuNPs present in the nanosystem was
tested. Figure 6 shows the amount of DB mass released at different time intervals and the
total using a continuous laser at 532 nm.
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Figure 6. (a) A schematic representation of the setup used to irradiate the nanosystem using a laser at
532 nm. (b) Average mass of DB released at different time intervals and in total using laser irradiation
on the PEG-AuNPs-βCD@DB nanosystem.

A two-phase system consisting of an aqueous phase with PEG-AuNPs-βCD@DB and
an organic phase was developed. In the latter, the drug is expected to diffuse almost
freely after its release from the nanosystem due to its mainly non-polar character. First, a
passive diffusion of 2 µg was observed. This was subtracted from the total to highlight
only the stimulated release. Then, laser irradiation triggers the release of DB from the
nanosystem, reaching 3.4 µg after 15 min. A tendency to increase the amount of DB
released as a function of time was established, achieving a maximum release of 4.8 µg
from 45 to 60 min of laser irradiation. Subsequently, a total release of 16.7 ± 3.9 µg
was obtained after 60 min of irradiation, which corresponds to 42.9 ± 4.1% of the total
DB loaded in the nanosystem; this represents a concentration of 55.7 µg/mL (see the
details in Table S5 in Section S8, Supplementary Materials). The release profile and the
times involved were equivalent to previous reports on molecules released from systems
based on cyclodextrins and AuNPs [29,31]. Considering the cytotoxicity of DB expressed
in terms of IC50 (the drug concentration required for killing 50% of the B16F1 mouse
melanoma cancer cell line), the value that has been reported is 0.48 mg/mL [83], hence the
amount released from the nanosystem may be adequate. Accordingly, the laser-triggered
controlled release of DB from the PEG-AuNPs-βCD@DB nanosystem could reach optimized
concentrations at the site of action compared to free DB. Thus, it is proposed that the
PEG-AuNPs-βCD@DB system may be a promising candidate for use in cancer therapy.

4. Conclusions

The new inclusion complex between DB and βCD in a solid-state was successfully
obtained. DB presents a dynamic inclusion into βCD, remaining stable in solution in a
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1:1 ratio. Notably, βCD shows a loading capacity of 16% with a suitable association constant
and an increase in its aqueous solubility. These pharmaceutical parameters facilitate its
projection and comparison with other possible complexations of DB.

In turn, citrate-coated AuNPs with an average diameter of 12 nm were obtained, which
are suitable for applications in biological systems. Subsequently, the citrate molecules were
effectively exchanged by the βCD@DB complexes and PEG, resulting in a new nanosystem
that was stable over time and had a high loading efficiency.

Laser irradiation assays showed that the PEG-AuNPs-βCD@DB nanosystem is able
to release drug in a controlled manner through the excitation caused by an incident elec-
tromagnetic wave, confirming the generation of the surface plasmon resonance effect and
having a total average release amount corresponding to 43% with respect to the mass of DB
contained in the nanosystem. According to the above, it is understood that the DB loading
in this new nanocarrier based on βCD and AuNPs has the potential to be tested in biological
systems as an alternative improvement to current cancer treatments. Studies of DB loaded
to the new nanosystem, such as evaluation of cytotoxicity, membrane permeability, and
therapeutic potential in in vitro and in vivo cancer models, are considered necessary to
continue with the validation of this strategy for drug delivery applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics15020458/s1, Figure S1: Powder X-ray diffractogram zoom
of the β-cyclodextrin@dacarbazine complex (black) and physical mixture between β-cyclodextrin
and dacarbazine (orange). Figure S2: SEM micrograph of β-cyclodextrin (a), dacarbazine (b),
and field emission SEM micrography of β-cyclodextrin@dacarbazine (c). Figure S3: (a) Molecu-
lar structure of dacarbazine in its two tautomeric forms; (b) Cone-type model of β-cyclodextrin
indicating the orientation of its protons, which are represented for a unit of glucose. 1H-NMR
spectra of: (c) β-cyclodextrin; (d) dacarbazine; and (e) β-cyclodextrin@dacarbazine complex, ob-
tained in DMSO-d6. Figure S4: Integrated signals of dacarbazine and β-cyclodextrin protons in
the 1H-NMR spectrum of the β-cyclodextrin@dacarbazine complex. Figure S5: ROESY spectra
of the β-cyclodextrin@dacarbazine complex. Figure S6: Graph of maximum absorbance at 237
nm versus dacarbazine concentration. Figure S7: Graph of concentrations of: solubilized dacar-
bazine versu β-cyclodextrin used. Figure S8: Hydrodynamic diameter distribution by intensity
of gold nanoparticles stabilized with: citrate (red) and PEG-β-cyclodextrin@dacarbazine (purple).
Figure S9: TEM of gold nanoparticles stabilized with citrate. Figure S10: Size histogram of gold
nanoparticles stabilized with citrate. Figure S11: Size histogram of gold nanoparticles stabilized with
β-cyclodextrin@dacarbazine and PEG. Figure S12: FT-IR spectra of β-cyclodextrin, dacarbazine, and
the β-cyclodextrin@dacarbazine complex. Table S1: Average length values of the complex and its pure
species, obtained from the SEM images. Table S2: Values of the integrated signals of dacarbazine and
β-cyclodextrin using the 1H-NMR spectrum of the complex formed. Table S3: Mass of dacarbazine in
the supernatant, amount of dacarbazine loaded on gold nanoparticles, and efficiency of dacarbazine
included in β-cyclodextrin and loaded on gold nanoparticles. Table S4: Theorical Raman shift, Raman
shift observed in the dacarbazine spectrum and the corresponding vibrational mode. Table S5: Mass
released of dacarbazine at each time interval, sum of all mass released, and percentage of average
cumulant released mass.
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