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Abstract: Electrospinning is the simplest and most widely used technology for producing ultra-thin
fibers. During electrospinning, the high voltage causes a thin jet to be launched from the liquid
polymer and then deposited onto the grounded collector. Depending on the type of the fluid, solution
and melt electrospinning are distinguished. The morphology and physicochemical properties of
the produced fibers depend on many factors, which can be categorized into three groups: process
parameters, material properties, and ambient parameters. In the biomedical field, electrospun
nanofibers have a wide variety of applications ranging from medication delivery systems to tissue
engineering scaffolds and soft electronics. Many of these showed promising results for potential use as
medical devices in the future. Medical devices are used to cure, prevent, or diagnose diseases without
the presence of any active pharmaceutical ingredients. The regulation of conventional medical devices
is strict and carefully controlled; however, it is not yet properly defined in the case of nanotechnology-
made devices. This review is divided into two parts. The first part provides an overview on
electrospinning through several examples, while the second part focuses on developments in the
field of electrospun medical devices. Additionally, the relevant regulatory framework is summarized
at the end of this paper.

Keywords: electrospinning techniques; electrospun medical devices; face mask; healthcare; melt
electrospinning; regulation; solvent electrospinning; tissue engineering; wound dressing

1. Introduction

Nanofibers are unidirectionally elongated polymer-based solid structures with a nano-
sized diameter. The fabrication of nanofibers is possible in numerous ways, e.g., self-
assembly, melt blowing, and drawing, although electrospinning is the most common.
Electrospun nanofibers have various applications under investigation, such as functional
textiles, functional clothing, skincare and cosmetics, electronics, acoustics, composites,
filters, and biomedical uses [1]. The latter category includes drug delivery systems, wound
dressings, and cell scaffolds. This field of research is very intense, with more and more
scientific articles being published every year (Figure 1). The advantages of nanofibers
in biomedicine are the wide range of suitable polymers, the possibility of loading and
controlled release, as well as the small diameter, the large surface area, and the controllable
pore structures. With electrospinning, the 3D structure of the nanofiber mat can be tailored,
creating an architecture very similar to the extracellular matrix, which is desirable in chronic
wound healing and tissue engineering.
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Figure 1. Number of research and review papers published in the previous 5 years according to 
PubMed database. The keywords used in the field Title/Abstract were: “electrospinning” or “elec-
trospun”. 

Chronic or non-healing wounds develop when any acute wound fails to heal in the 
expected time frame for that type of wound, which might be a couple of weeks or up to 
six weeks. Ulcers are the most common type of chronic wound, which may be caused by 
constant pressure (decubitus ulcer), venous or arterial circulatory problems, or diabetic 
angio-neuropathy. These wounds need special care and innovative dressings to promote 
the healing process [2]. The wound surface is frequently covered by necrotic tissue and 
bacterial biofilm, necessitating debridement and local disinfection. Electrospun wound 
dressings not only provide a suitable environment for cell growth, they can also be loaded 
with antibiotics or disinfectants [3]. 

Tissue engineering involves the implantation of a natural, semi-synthetic, or syn-
thetic implant to repair damaged tissue. The closer the implant’s properties are to the 
original tissue, the more successful the operation. As a result, while autograft is the best 
option in this case, it is not always feasible. Scaffolds primarily comprised of polymeric 
biomaterials provide structural support for cell adhesion and subsequent tissue formation 
when synthetic or semi-synthetic implants are required. One suitable way to create differ-
ently designed scaffolds is electrospinning [3]. 

The COVID-19 pandemic spotlighted the importance of personal protective equip-
ment, such as face masks. Face masks proved to reduce the human-to-human transmis-
sion of the virus by stopping the spread of virus-containing saliva and respiratory drop-
lets [4]. Typically, these masks have a filter layer, which can be an electrospun nanofiber 
mat. Several of these masks entered the market in the last few years, e.g., the Bio Hygienic 
Mask and Inofilter® 95/99. 

The regulation of substances and devices used to maintain and restore health is re-
ceiving particular attention worldwide. The two bodies that have a significant influence 
on other countries’ national agencies are the US Food and Drug Administration (FDA) 
and the European Medicines Agency (EMA); however, the World Health Organization 
(WHO) also regularly gives guidelines and publishes various tools for national health sys-
tems. Generally, the regulation of conventional medical devices is well-defined, although 
it is not harmonized between countries [5]. However, regarding nanomedicines and 
health-related nanomaterials, the number of guidelines is not satisfactory, which can af-
fect the attitude of the industry negatively [5]. 
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Chronic or non-healing wounds develop when any acute wound fails to heal in the
expected time frame for that type of wound, which might be a couple of weeks or up to
six weeks. Ulcers are the most common type of chronic wound, which may be caused by
constant pressure (decubitus ulcer), venous or arterial circulatory problems, or diabetic
angio-neuropathy. These wounds need special care and innovative dressings to promote
the healing process [2]. The wound surface is frequently covered by necrotic tissue and
bacterial biofilm, necessitating debridement and local disinfection. Electrospun wound
dressings not only provide a suitable environment for cell growth, they can also be loaded
with antibiotics or disinfectants [3].

Tissue engineering involves the implantation of a natural, semi-synthetic, or synthetic
implant to repair damaged tissue. The closer the implant’s properties are to the original
tissue, the more successful the operation. As a result, while autograft is the best option in
this case, it is not always feasible. Scaffolds primarily comprised of polymeric biomate-
rials provide structural support for cell adhesion and subsequent tissue formation when
synthetic or semi-synthetic implants are required. One suitable way to create differently
designed scaffolds is electrospinning [3].

The COVID-19 pandemic spotlighted the importance of personal protective equipment,
such as face masks. Face masks proved to reduce the human-to-human transmission of
the virus by stopping the spread of virus-containing saliva and respiratory droplets [4].
Typically, these masks have a filter layer, which can be an electrospun nanofiber mat.
Several of these masks entered the market in the last few years, e.g., the Bio Hygienic Mask
and Inofilter® (Lille, France) 95/99.

The regulation of substances and devices used to maintain and restore health is
receiving particular attention worldwide. The two bodies that have a significant influence
on other countries’ national agencies are the US Food and Drug Administration (FDA) and
the European Medicines Agency (EMA); however, the World Health Organization (WHO)
also regularly gives guidelines and publishes various tools for national health systems.
Generally, the regulation of conventional medical devices is well-defined, although it is not
harmonized between countries [5]. However, regarding nanomedicines and health-related
nanomaterials, the number of guidelines is not satisfactory, which can affect the attitude of
the industry negatively [5].

The healthcare industry is regulated by strict rules, so considering regulatory require-
ments at the development stage can be worthwhile. To the best of the authors’ knowledge,
there is no published review of the regulatory aspects of nanofibers developed as potential
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medical devices in the literature. In the first part of this review, the basic principles of
electrospinning, the effects of the different parameters on the process and the produced
fibers, and the types of solvent and melt electrospinning techniques are discussed. In the
second part, the focus is on electrospun medical devices. After a summary of the possible
areas of application, their regulatory approach is described.

2. Electrospinning
2.1. Principles of Electrospinning

The most common production method for nanofibers is electrospinning due to its sim-
plicity and industrial scalability. Electrospinning is an electrohydrodynamic phenomenon
in which the fibers are formed by drawing out a polymer jet under a high electric field.
To accomplish this, a fluid polymer is required at the starting point, which can be either
a polymer solution/emulsion or a melted polymer. Accordingly, solution, emulsion, and
melt electrospinning methods can be distinguished. The methods are described in greater
depth later.

Generally, electrospinning is driven by the electrostatic potential characterized by high
voltage (some tens of kV) and very low current (10−7–10−3 mA) [6]. The most common
way to generate electrostatic potential is to apply a positive voltage to the polymer solution
(typically onto the spinneret), while the metal collector is either grounded or negatively
charged on the other side (Figure 2A). Nanofibers can also be electrospun with the inverse
method when the collector is charged positively (Figure 2B); however, it was found to be
an inferior method in terms of both fiber properties and productivity [7]. The potential
difference between the charged liquid polymer and collector plays a key role in nanofiber
production as it generates the electric field.
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Figure 2. Types of charging systems in electrospinning. (A) In a spinneret charging system, a positive
voltage is applied to the needle while the collector is grounded. (B) In a collector charging system,
the needle is grounded while a positive voltage is applied to the collector.
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In all cases, the initial step in electrospinning is the formation of the Taylor cone. The
surface tension always attempts to reduce the surface area of a liquid, the polymer droplet
tends to be spherical in the absence of a strong voltage (Figure 3A). However, when a high
voltage appears, the electric field acts on the polymer and deforms its shape (Figure 3B).
The so-called Taylor cone is an elongated droplet that is formed when the surface tension
is balanced by the localized charges generated by the electrostatic force (Figure 3C). The
cone is named after Sir Geoffrey Taylor, who first modeled the phenomenon in 1964 [8].
When the electrostatic force can overcome the surface tension, a fine, charged polymer jet is
ejected from the tip of the Taylor cone [9–11] (Figure 3D). The jet tends to discharge itself,
so it travels in the air toward the grounded or oppositely charged collector where the fiber
deposition occurs. The sufficient cohesive force that exists in the polymer stabilizes the jet
and allows it to elongate, stretch, whip, and thin while traveling.
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Figure 3. Schematic illustration of the Taylor cone formation as the high voltage increases.
(A) Without the electric field, the pendant droplet is spherical in shape. (B) Localized charges
are induced by the electrical force and elongate the droplet. (C) The formation of the Taylor cone
occurs when the surface tension is balanced by the localized charges. (D) Ejection of the charged
polymer jet from the Taylor cone due to the additional increase of the high voltage.

2.2. Effects of Different Electrospinning Parameters

The factors that determine the properties of nanofibers are usually grouped into three
categories (Figure 4):

1. Process parameters (high voltage, flow rate, and distance between the Taylor cone
and the collector);

2. Material properties (viscosity—related to the molecular weight and concentration of
the polymer, surface tension, conductivity, and volatility of the solvent);

3. Ambient parameters (temperature and humidity).
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2.2.1. Process Parameters

Among the process parameters, the applied high voltage has the greatest influence on
the mechanism of electrospinning and thus the morphology of the formed fibers. Generally,
a higher applied voltage stretches the polymer liquid more, resulting in thinner fibers
[12,13]. However, Wu et al. described a point where increasing the voltage had the opposite
effect, resulting in fibers with a larger diameter [7]. Furthermore, there are even reports
showing an increase in fiber diameter with increasing voltage [14,15]. It is also notable that
applying too high of a voltage forces the primary jet to emerge into several secondary jets,
forming multiple jets that lead to beads and non-uniform fibers [16].

In addition to the high voltage, other factors may influence the electrospinning pro-
cess. Certainly, it can be influenced by the equipment itself and the process parameters.
The equipment can have three different orientations depending on the initial and target
positions of the jet. The electrospinning setup can be horizontal or, in the case of a vertical
arrangement, top-down or bottom-up. The degree to which the electrical force and gravita-
tional force contribute differs among the different setups. Although this is often overlooked,
the gravitational force could influence the shape of the Taylor cone, jet trajectory, fiber
diameter, distribution, and overall spinning efficiency according to Suresh et al. [17].

Additionally, to obtain uniform nanofibers on the collector, complete drying of the
jet, meaning evaporation of the solvent or solidification of the melted polymer, is required.
Therefore, the jet requires an appropriate flight time in the air while whipping toward
the collector. With a longer distance, the flight time increases, and thinner fibers will be
formed. In this way, the flight distance of the jet (tip-to-collector distance in the case of
nozzle electrospinning) affects the fiber morphology [3,18]. However, with the increase
of the distance, the strength of the electric field drastically decreases since it is inversely
related to the square of the distance. Hence, the proper distance for each electrospinning
process depends on the voltage and other parameters, usually ranging from 10 cm to 25 cm.

During production, the electrospun nanofibers are deposited on the collector, forming
the nanofiber mat on its surface. The orientation of the fibers is affected by the type of collec-
tor. The random fiber orientation is sufficient for the majority of drug delivery applications.
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Nevertheless, some fields (mainly tissue engineering) require structured scaffolds with
aligned fibers [19]. The basic collector is a flat metal plate, often wrapped in aluminum foil,
on which the nanofibers are randomly arranged. However, as electrospinning continues,
the fiber mat thickens and insulates the collector, causing a decrease in the electric field and
incomplete solvent evaporation [20]. To increase the deposition area, a rotating mandrel
collector is widely used. Alfaro De Prá et al. compared a rotating drum, a pair of 6 mm
grounded copper wires in parallel positions at a distance of 1 cm from each other, and
a rotating mandrel with a diameter of 1 mm. With the rotation of the drum, the fibers
stretched, aligned, and thinned. In the case of the parallel wires, the fibers formed a thick
mat with nanofibers orientated perpendicular to the wires. The mandrel collector enables
the production of tubular scaffolds, which might be applied to the engineering of nerves
and blood vessels [21]. Another collector type is the liquid bath collector, which can be
used to obtain special three-dimensional electrospun fiber mats collected in a non-solvent,
mainly water, ethanol, or methanol [22,23].

In nozzle-based electrospinning, the liquid polymer is fed continuously from a syringe
through a nozzle into the electric field by a pump. The process is influenced by the feeding
rate. If the feeding rate is increased while the voltage remains constant, the diameter of the
collected fibers will increase [24,25]. Too high of a feeding rate, on the other hand, results
in beaded fibers due to a lack of appropriate drying time before reaching the collector. Zuo
et al. measured the size of the beads on the improper fibers and found that if the feeding
rate was increased from 2 mL/h to 3.5 mL/h, 5.6 mL/h, and 9 mL/h, holding all other
parameters constant, then beads were observed with an average size of 8 µm, 14 µm, and
23 µm, respectively [26].

2.2.2. Material Properties

Among the material properties, the type of polymer affects the charge of the electro-
spinning liquid. According to the paper of Tong et al., electrospinning of cationic polymers
(e.g., chitosan) is only achievable with a positively charged spinneret [12]. The number
of charges in the liquid determines its conductivity. Electrospinning cannot take place in
polymer solutions with very low conductivity, as there is no charge on the surface of the
liquid droplet for the electric field to act on. In this case, neither the Taylor cone nor the jet
is formed. On the other hand, solutions with very high conductivity have the disadvantage
that they tend to form a multi-jet.

Angammana et al. investigated different poly(ethylene oxide) (PEO) nanofibers by
varying conductivity in electrospinning solutions by dissolving sodium chloride. By
increasing conductivity, the results showed three phases. In the first phase (0–200 µs/mm),
the average jet current increased and the average fiber diameter decreased. However, in
the second phase (200–2000 µs/mm), the average jet current slightly decreased, while the
fiber diameter kept decreasing. A further increase in conductivity resulted in intermittent
or no jet [27].

The polymer’s molecular weight should also be taken into account. In general, a
higher molecular weight is preferable because longer polymer chains facilitate the forma-
tion of nanofibers by entangling better [28]. Furthermore, the diameter of the fibers is also
influenced by molecular weight. Colmenares-Roldán et al. studied the electrospinning of
different polycaprolactone solutions and found that the diameter of the fibers decreased
with the reduction in the molecular weight of the polymer. Proper fibers were made from
80 kDa and 45 kDa polycaprolactone; however, with 14 kDa, fiber formation was not possi-
ble [28]. If higher molecular weight polymers cannot be used in solution electrospinning,
the concentration should be increased [11]. Optimizing the concentration of the polymer
solution is critical since both too high and too low a concentration will result in imperfect
electrospinning [28,29]. Too much of a high molecular weight polymer can get stuck in the
nozzle, clogging it and preventing it from spinning, while low concentrations of polymer
can break the jets into droplets. As the viscosity of the polymer solution is related to the
concentration and molecular weight of the polymer used, both higher molecular weight
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and higher concentration can lead to the increased viscosity of the fluid [30]. Consequently,
the viscosity of the electrospinning solution or the melted polymer should be optimized as
well. Feng et al. produced beadless electrospun mats of four different molecular weights of
chitosan (50 kDa, 100 kDa, 200 kDa, and 400 kDa) by decreasing the viscosity of the solution
by PEO copolymer formation. A certain range of viscosity and polymer concentration
could be determined within adequately prepared nanofibers for all molecular weights, and
defects occurred above and below this range [31].

The effect of surface tension was also studied in the same article by Feng et al. In
their case, it was necessary to reduce the surface tension with the use of ethanol to form
beadless fibers of chitosan [31]. In general, water has a high surface tension, so for a stable
and continuous jet, a substantially strong electrical force is needed. Therefore, adding
surfactants or replacing water may result in smoother and more uniform fibers.

In the case of solvent electrospinning, the type of solvent also influences the structure
and properties of the nanofibers formed. Song et al. investigated the effects of different
deionized water–ethanol solvent mixtures as solvents of PEO. The results revealed that
the type and volatility of the solvent mixture determine many properties of the nanofibers.
In brief, with the increase in ethanol, the average fiber diameter significantly increased,
the diameter distribution widened, the surface of the nanofibers became rough, and the
productivity decreased. Furthermore, as the ethanol content increased, the molecular chain
orientation and crystallinity degree decreased [32].

2.2.3. Ambient Parameters

Aside from material attributes and process parameters, ambient parameters such as
temperature and relative humidity also affect the electrospinning process and the properties
of the obtained nanofibers. The solvent appears to evaporate faster in a warmer environ-
ment. Moreover, the environmental temperature affects such properties of the polymer
solution or melt as viscosity, surface tension, and conductivity as well [30]. Vrieze et al.
demonstrated that temperature has an influence on the morphology of polyvinylpyrroli-
done (PVP) nanofibers by both affecting solvent evaporation rate and viscosity. At both
low and high temperatures, thinner fibers were more obtainable than at the intermediate
temperature. At lower environmental temperatures, the solvent evaporation rate decreased,
so the jet elongated more. Meanwhile higher temperatures resulted in lower viscosity,
which also facilitated the formation of thinner nanofibers. However, this phenomenon is
material-specific so different polymers may act differently [33]. The majority of papers
showed a significant indirect influence of temperature on fiber diameter and morphol-
ogy, concluding that the inverse connection between temperature and viscosity may be
exploited to modify nanofibers [34,35].

Relative humidity can have a significant impact on the electrospinning process [19].
At very low humidity, the solvent evaporates rapidly and may cause needle clogging. On
the other hand, at extremely high humidity, the polymer jet breaks and electrospraying
occurs. Moreover, the relative humidity can affect the fiber morphology, which is related
to the hydrophilic or hydrophobic nature of the polymer. In the case of water-soluble,
hydrophilic polymers, the fiber diameter can be tailored by varying the humidity. As with
low temperature, high humidity slows the evaporation of the solvent, resulting in longer
flight times, increased elongation of the jet, and consequently smaller fiber diameters.
Additionally, vice versa, lower humidity promotes faster drying, which results in thicker
fibers [36,37]. Furthermore, high humidity can block the evaporation of the aqueous solvent,
which facilitates the formation of beads. Feng et al. could prepare uniform and beadless
chitosan nanofibers with a relative humidity of up to 40%; however, the electrospinning
was problematic at higher humidity levels [31].

On the contrary, in the case of hydrophobic polymers, greater humidity leads to the
formation of porous nanofibers as a consequence of the complex interaction between water
as a non-solvent, the hygroscopic solvent of the polymer, and the polymer itself [38,39].
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2.3. Electrospinning Methods

As already mentioned above, solution, emulsion, and melt electrospinning can be
distinguished. The three methods follow the same main principles, although there are
notable differences. Solution and emulsion electrospinning processes are very similar
regarding their equipment, advantages, and limitations. The main difference is the type of
polymer liquid, as their names imply.

On the other hand, for melt electrospinning, heating is required to melt the polymer.
For this reason, an additional heating component is needed, which causes a more complex
electrospinning setup. Additionally, both the nanofiber-forming polymer and the active
ingredient must be thermally stable, which limits the choice of materials. However, some
polymers (e.g., PP or PET) cannot be dissolved, only melted before spinning. Moreover,
the absence of solvent makes the melt method environmentally friendly. Finally, melt
electrospinning is comparable to additive manufacturing techniques and thus can be
utilized to create special three-dimensional electrospun nanofiber scaffolds for regenerative
medicine applications [40].

2.3.1. Solution Electrospinning

As mentioned above, solution and melt electrospinning are the two major types of
the electrospun nanofiber production process. Despite the fact that more articles on the
topic are published each year, the vast majority of them are about solution electrospinning.
According to Calori et al., approximately 90% of the ultrafine-based scaffolds were produced
by solvent electrospinning in 2020 [41]. The popularity of the method is due to its simplicity,
cost-effectiveness, and compatibility with a wide range of polymers. As a drug delivery
system, it is advantageous that nanofibers can be loaded not only with small molecules
but also with macromolecules or other nanostructures (e.g., liposomes, nanoparticles)
[42,43]. The material properties influencing the process can be tailored relatively easily
by modifying the solution. The micro- and macrostructure of the resulting nanofiber mat
can thus be controlled. In addition, the whole process occurs at room temperature, which
protects thermally degradable materials.

Nozzle-Based Methods

Generally, the basic solution electrospinning setup contains a high-voltage supply
and a polymer container, practically a syringe, a pump, a spinneret (needle or nozzle),
and a collector. A single-needle or single-nozzle configuration is the simplest and most
common, where the Taylor cone is created on the top of the capillary. It can provide uniform
nanofibers from a single-polymer solution or polymer blend [44]. Even if the polymers
are not miscible in a common solvent, it is still possible to achieve nanofiber construction
from two or more separate solutions that are filled into separate syringes and usually
connected to separate pumps, resulting in variable feeding rates. The solutions contact
at the tip of the spinneret and form a common Taylor cone. For this, modification of the
needle was required, and two distinct configurations, namely side-by-side and coaxial,
were developed. The nanofibers produced by the side-by-side configuration show two
different sides; hence, they are commonly referred to as Janus fibers [20]. The coaxial
spinneret is constructed from two or more concentric needles placed inside each other;
thus, the produced nanofibers have a core–shell structure [45]. This structure allows the
separate encapsulation of multiple active ingredients, thereby eliminating incompatibility,
protecting the active substance from the environment, and controlling the drug release.
Furthermore, coaxial electrospinning can be used to produce hollow nanofibers. If the core
polymer solution has a very low concentration, then once the solvent evaporates, only a
film layer of the polymer remains on the inner surface of the shell polymer, while the rest
is an empty core [35]. Additionally, hollow fibers can be obtained by selective removal of
the core polymer [46,47]. Hollow nanofibers have a broad range of applications, from drug
delivery systems to tissue engineering and optical waveguides [48].
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Normally, a single Taylor cone appears at the tip of the spinneret, from which a single
jet is ejected. Hence, scaling up the process requires several spinnerets connected in parallel.
This so-called multi-nozzle electrospinning method combines the benefits of nozzle-based
electrospinning in addition to the ability to produce nanofibers in industrially relevant
volumes. Nonetheless, the method is challenging because the presence of several jets at
the same time modifies the electric field and the charged jets interact with each other,
which increases the difficulty in collecting nanofibers [49]. In this field, Tan et al. recently
collected numerous nozzle types and setup designs [20]. Hence, only the categorization
is highlighted here to illustrate the variety of the method. Multi-nozzle electrospinning
consists of three types: single nozzle with multiple jets, multiple nozzles with a single jet
at each nozzle, and multiple nozzles with multiple jets at each nozzle. In addition, there
are stationary and rotary techniques, as well as combined methods (e.g., blowing-assisted
multi-jet electrospinning).

Nozzle-Free Methods

The main drawback of single-nozzle electrospinning is the limited production capacity
(0.01–0.1 g/h) [50]. This critical issue prompted intensive research, and in addition to
multi-nozzle electrospinning, another possibility seems promising. Nozzle-free methods,
also known as free surface electrospinning, offer the potential to produce nanofibers on
an industrial scale. In this case, several Taylor cones are formed simultaneously on the
surface of the solution, from which nanofibers are drawn. Additionally, by omitting the
nozzle, clogging can be avoided, which solves another disadvantage of needle-based
electrospinning [49]. However, nozzle-free methods have limitations as well, including the
wide range of fiber diameters and the incompatibility with volatile solvents.

Nozzle-free electrospinning can be divided into two groups depending on whether
the set-up is equipped with a stationary or a rotating spinneret [20]. Simple polymer
solution reservoirs, such as bowls [51], stepped pyramids [52], or plate-edge spinnerets [53],
can be used as stationary spinnerets. Moreover, the method can be supplemented with
different external forces, such as magnetic force (ferromagnetic liquid electrospinning or
magnetic-field-assisted electrospinning), high-pressure gas flow (bubble electrospinning),
or acoustic radiation force generated by an ultrasound transducer (ultrasound-enhanced
electrospinning) [54]. On the other hand, rotating spinnerets are half immersed in the poly-
mer solution, and the multiple Taylor cones are formed on the surface of the cylinder [55],
disc [56], wire [57], or ball [58], while the rotation ensures a continuous solution supply.

2.3.2. Emulsion Electrospinning

During emulsion electrospinning, the homogenous mixtures of two or more immiscible
liquids are electrospun. The method is very similar to single-needle solution electrospin-
ning; however, the obtained nanofibers have a core–shell structure [59]. The advantages
of the core–shell structure are that it protect the biologically active material located in the
core and to ensure its controlled release. In addition, emulsion electrospinning allows the
possibility to omit the coaxial needle, which simplifies the production. Nevertheless, it
can be considered a green method, since water can be used in the continuous phase and
organic solvents can be reduced or avoided [60]. Indeed, the avoidance of toxic solvents is
particularly important for nanofibers intended for biomedical use.

2.3.3. Melt Electrospinning

The other large group of electrospinning methods is melt electrospinning, in which
the charged jet is drawn out of a polymer melt. The active ingredient and/or excipients can
be dissolved in the molten polymer if not only the pure polymer nanofiber is desired. As
there is no solvent to evaporate in melt electrospinning, only heat transfer occurs during
the travel of the jet. The absence of residual solvent is desirable for some biological applica-
tions [61]. Henceforth, solvent-free methods are advantageous in terms of sustainability [62].
Otherwise, melt electrospinning requires the heating of the fiber-forming polymer, which
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necessitates a more complex apparatus. Additionally, the utilization of nanofibers as drug
delivery devices is limited since most active ingredients are not thermally stable at higher
temperatures [63]. It should be noted that polymer melts are generally highly viscous;
therefore, high extrusion and a sufficiently large electric field are required [59]. Yet, the
higher viscosity provides higher stability of the jet compared with the polymer solution jet,
which results in better control of the fiber deposition on the collector [64].

The setup for melt electrospinning generally consists of a high-voltage power supply, a
polymer container, a heating device, a spinneret, and a collector. The type of melt electrospin-
ning depends on whether the polymer container is a syringe or something else [61].

Syringe-Based Method

A plastic or glass syringe reservoir and a metal needle spinneret are major parts of melt
electrospinning systems. The main advantages of this setup are the standardized holding
capacity and nozzle sizes, the standard polymer delivery, and the interchangeability [61].
The syringe is usually filled with pre-treated, uniformly sized pastilles of the polymer,
which are melted in the syringe itself. For melting, various methods are available. The wall
of the syringe can be heated by an electric heater or circulating water, but if an even higher
temperature is required, so-called heat guns can be used [61,62].

Zhou et al. pointed out that the temperatures at the spinneret and in the spinning
region are critical to producing sub-micron-sized fibers. If the environmental temperature
was below the glass transition temperature of the polymer, the too fast solidification of the
jet led to an increased fiber diameter [65].

Syringe-Free Methods

The two main disadvantages of syringe-based melt electrospinning are the potential
degradation of the polymer or active ingredient at high temperatures and the larger fiber
diameter with less controllable morphology compared with solvent electrospinning [66].
To overcome this, various syringe-free procedures have been developed.

Li et al. reported promising results using laser melt electrospinning, a technique that
is similar to commercial fused deposition modeling (FDM). In this setup, a solid polymer
rod is fed into the heating zone of the CO2 laser. Rapid and uniform laser heating can
minimize polymer degradation and facilitate the production of tissue engineering nanofiber
scaffolds [67].

There are various articles about reducing fiber diameter, some of which are provided
here. Malakhov et al. used a screw extruder instead of a syringe to deliver a constant
supply of polymer to the spinneret [68]. Morikawa et al. were able to produce PLC
nanofibers with a 5.67 ± 1.51 µm average diameter, which meant a reduction of more
than 75% by using a wire electrospinning setup. Instead of a syringe, a Joule-heated
wire that is coated with the polymer of choice was used to deliver and melt the PLC [69].
Balogh et al. compared the average fiber diameters of nanofiber mats produced by solvent
electrospinning, melt blowing, and syringe-based melt electrospinning and found them
increasing in this order. Melt blowing is a gas-assisted method that is composed of a melt
extruder and a high-speed gas stream. Except for the spinneret, the setups for melt blowing
or melt electrospinning in this investigation (syringe, heater, collector, and other parts)
were identical and easily interchangeable [70]. Um et al. took it a step further and used
the technique of electroblowing, which combines melt blowing with melt electrospinning.
Compared with solution electrospinning, the hot air blown onto the jet improved the spinning
of the hyaluronic acid fibers. The nanofiber formation was consistent and uniform at 57 ◦C
blown-air temperature [71]. Furthermore, Zhmayev et al. developed so-called gas-assisted melt
electrospinning (GAME), which is similar to electroblowing except that the major attenuation
driving force in GAME is the electric field, whereas in electroblowing it is the air. Compared
with melt electrospinning, a drastic decrease in fiber diameter was observed [72].
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3. Biomedical Applications of Electrospun Nanofibers

Electrospun nanofibers have a broad range of potential biomedical applications, in-
cluding drug delivery systems, wound dressings, tissue engineering scaffolds, various
diagnostic tools, in vivo models, and filters, which can be produced via electrospinning.
As drug delivery systems, nanofibers can increase the solubility and permeability of BSC
II/IV active pharmaceutical ingredients, improve the therapeutic effect, reduce the side
effects and toxicity, and facilitate alternative administration. Additional benefits are the
tailorable release profile, the high loading capacity, the high encapsulation efficiency, the
ease of operation, and the cost-effectiveness [73].

As in wound dressings and tissue engineering, the ability of nanofibers to produce
aligned scaffolds capable of mimicking the extracellular matrix is exploited [74,75]. The
fiber diameter, the pore size, and the alignment of the nanofibers are important to mimic the
nano-sized features of human tissues. These features may play an active role in regulating
cell activities, such as orientation, migration, proliferation, and differentiation. Ferraris
et al. published an article about nanofiber topography and cell behavior [76].

Nanofibers offer the benefits of flexibility and/or stretchability, conductivity, and
transparency, as well as a large surface area and diverse fiber morphology for biosensors
and other soft electronics [77]. It is also feasible to develop in vivo models by implanting
cells into nanofiber scaffolds, which can then be used, e.g., in oncology research [61]. Finally,
the large surface area and small pore size of electrospun nanofiber mats are favorable within
different filters, e.g., respiratory mask filters [78].

4. Nanofibers as Medical Devices

Indeed, it is useful to distinguish between pharmaceuticals and medical devices when
considering the use of nanofibers in biomedicine. The two categories are similar in that
both are used to cure, prevent, or diagnose diseases. The difference is that pharmaceuticals
contain active substances, which are chemicals in nature and actively interact with the
human body. Thus, drug-loaded nanofibers belong to this category. In contrast, medical
devices do not contain any active substance, so they do not achieve their purpose through
chemical action. The exact definition of medical devices by the WHO is: “An article, instru-
ment, apparatus or machine that is used in the prevention, diagnosis or treatment of illness
or disease, or for detecting, measuring, restoring, correcting or modifying the structure or
function of the body for some health purpose. Typically, the purpose of a medical device is
not achieved by pharmacological, immunological or metabolic means” [79]. According to
the WHO, there are approximately 2 million different kinds of medical devices worldwide,
with varying degrees of complexity. They range from everyday consumer products, such
as wound patches and dentures, to more complex devices, including pacemakers. Based
on this, a large number of electrospun nanofibers developed for biomedical use has the
potential to become a future medical device. However, classification can be challenging for
some nanofiber products (e.g., loaded wound dressings), which is further complicated by
the fact that classifications differ across global regulators. Thus, what is deemed a medical
device in one country might be considered medicine in another [3].

In addition, medical equipment is a large, special group within medical devices. The
WHO definition is the following: “Medical devices requiring calibration, maintenance,
repair, user training, and decommissioning—activities usually managed by clinical engi-
neers. Medical equipment is used for the specific purposes of diagnosis and treatment
of disease or rehabilitation following disease or injury; it can be used either alone or in
combination with any accessory, consumable, or other piece of medical equipment. Medical
equipment excludes implantable, disposable, or single-use medical devices”. Electrospun
nanofibers provide a wealth of opportunities in the area of soft electronics, such as elec-
trodes, conductors, different kinds of sensors, and batteries. Wang et al. recently released
a comprehensive review of this field [77]. This article focuses on medical devices that do
not meet the requirements of medical equipment, i.e., wound dressings, tissue engineering
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scaffolds, and respiratory masks. Table 1 summarizes some recent scientific results on
nanofibers that might become medical devices.

Table 1. Recent studies on electrospun nanofibers as potential medical devices.

Type of Use Type of
Production Polymer Solvent Bioactive

Agent Excipients Cell
Line/Animal Ref.

Wound
dressing

Single-needle
solution ES Starch-TPU DMSO, DMF - -

NHDFs,
Sprague

Dawley rats
[80]

Wound
dressing

Single-needle
solution ES

Functionalized
CS 80% AcOH -

PEO (sacrificial
polymer),

2-formylphenyl-
boronic acid (imination

reactant/reagent)

NHDFs [81]

Wound
dressing

Single-needle
solution ES

Alginate/dextran
and

alginate/PEO

DW,
pH 5.5 PBS -

PBS (conductivity);
P407 and TX100
(surface tension)

NHDFs [82]

Wound
dressing

Single-needle
solution ES

PVDF,
zP(S-r-4VP)
zwitterionic
copolymer

DMF,
acetone - -

L929 mouse
fibroblast cells,

mice
[83]

Wound
dressing

Single-needle
solution ES SF/PCL HFIP - CS and COL type I

(coat) NHDFs [84]

Wound
dressing Coaxial ES DMF, DW - -

L929 mouse
fibroblast cells,
Albino Wister

rats

[85]

Wound
dressing

Single-needle
solution ES CS/PEO 80% AcOH - HA (coat) NHDFs [86]

Wound
dressing

Single-needle
solution ES CS/PEO 80% AcOH - - NHDFs [87]

Wound
dressing

Single-needle
solution ES GEL/PCL HFIP Ag and Mg

ions -

NHDFs,
HUVECs,
Sprague

Dawley rats

[88]

Wound
dressing

Single-needle
solution ES PVA/CS/starch DW, AcOH - - L929 mouse

fibroblast cells [89]

Wound
dressing

Single-needle
solution ES

CS/PCL—
HA/PEO
bilayered
scaffolds

Formic acid,
acetone, DW - -

Vero cell
(monkey

epithelial cell
line)

[90]

Wound
dressing

Single-needle
solution ES CS/PEO AcOH, DW -

Benzophenone
(photoinitiator for

photo-crosslinking)
- [91]

Wound
dressing

Single-needle
solution ES PCL/COL HFIP - -

Human
foreskin

fibroblasts,
Sprague

Dawley rats

[92]

Wound
dressing

Single-needle
solution ES CS/PVA 80% AcOH,

DW -
NaBH4 solution (3D
layered NF sponge

creation)

3T3 mouse
fibroblasts, JB6
epidermal cells,
C57BL/6 mice

[93]
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Table 1. Cont.

Type of Use Type of
Production Polymer Solvent Bioactive

Agent Excipients Cell
Line/Animal Ref.

Wound
dressing

Single-needle
solution ES

VDF-
TeFE/PVP

Acetone,
isopropanol,

DMF
ZnO - Wistar rats [94]

Wound
dressing or

implant
coating

Single-needle
solution ES PET TFA, DCM Ag nanopar-

ticles - AFSCs,
CD1 mice [95]

Skin tissue
scaffold

Co-ES +
electroblowing

Soy protein
isolate/PEO—

PEO
HFIP, ethanol - -

HDFBs, RAW
264.7 murine
macrophage

cell line

[96]

Skin tissue
scaffold

Hierarchical
construction

ES (Sandwich
mode)

PLGA/SF THF, DMF,
formic acid - - Human skin

stem cells [97]

Skin tissue
scaffold

Single-needle
solution ES

PCL/silk
sericin

TFE, formic
acid -

3D-printed CS/sodium
alginate hydrogel

(bottom layer)
NHDFs [98]

Skin tissue
scaffold

Single-needle
solution ES PCL DCM, DMF - Poloxamer 407

BMSCs
(C57BL/6

mice)
[99]

Tissue
engineering

scaffolds

Single-needle
solution ES EPU/SF TFA - -

Fibroblast cells
from human

neonatal
foreskin

[100]

Tissue
engineering

scaffolds

Single-needle
solution ES PLA/CS Chloroform,

AcOH - -
GM07492

human
fibroblast cells

[101]

Tissue
engineering

scaffolds

Single-needle
solution ES PCL HFIP - Neutralized COL (coat)

C57BL/6 mice,
de-identified
healthy small

intestine
tissues from

discarded
surgical

samples of
infant,

teenager or
adult

[102]

Tissue
engineering

scaffolds

Wet ES
(+CO2

foaming)
PLA Chloroform,

DMF - - NIH 3T3
fibroblasts [103]

Tissue
engineering

scaffolds
Coaxial ES PU/CS THF, DMF - PEO (co-spinning

polymer of CS) - [104]

Tissue
engineering

scaffolds

Single-needle
solution ES PCL Acetone

Y2O3
nanoparti-

cles
-

L-929 mouse
fibroblast cells,
UMR-106 rat

osteoblast-like
cells, Sprague
Dawley rats

[105]
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Table 1. Cont.

Type of Use Type of
Production Polymer Solvent Bioactive

Agent Excipients Cell
Line/Animal Ref.

Tissue
engineering

scaffolds

Single-needle
solution ES PCL DCM, DMF - -

Green
fluorescent

protein
(GFP)-labeled
fibroblasts, rat

neural
progenitor
cells, rats

[106]

Tissue
engineering

scaffolds
Coaxial ES

PCL—core;
PEG-NB—

shell
HFIP -

Irgacure 2959
(photoinitiator for UV

polymerization)

Bovine
pulmonary

artery
endothelial

cells, Sprague
Dawley rats

[107]

Tissue
engineering

scaffolds

Single-nozzle
solution ES

combined with
extrusion-

based
3D-printing
technology

PS DMF, THF - 85% phosphoric acid
solution (doping agent) - [108]

Tissue
engineering

scaffolds

Single-needle
solution ES

PU/carbon
nanotube

composites
DMF _ _ HUVECs [109]

Bladder tissue
engineering

scaffolds
Coaxial ES PLCL—core;

HA—shell
HFIP,

formic acid - -

Rat bladder
smooth muscle
cells, Sprague
Dawley rats

[110]

Bladder tissue
engineering

scaffolds

Single-needle
solution ES PLCL HFIP - COL type I (coat)

hADSCs,
Sprague–
Dawley

rats

[111]

Dura mater
substitute

Near-field
solution ES

n-octyl-2-
cyanoacrylate - - - Harvested

dura [112]

Dura mater
substitute Coaxial ES

Tetramethylpyrazine—
core;

PLGA—shell
Ethanol, HFIP - CS (PLGA/CS graft)

SH-SY5Y
human

neuroblastoma
cells,

fibroblasts

[113]

Dura mater
substitute

(triple-layered)

Single-needle
solution

ES—inner and
middle layer;
melt-based

electrohydro-
dynamic

printing—
outer
layer

PCL HFIP

Gentamicin—
inner layer;

nano-
hydroxyapatite—

outer
layer

-
NHDFs,

MC3T3-E1
cells

[114]

Interface tissue
engineering

scaffolds

Single-needle
solution ES PCL Chloroform,

DMF - - - [115]

Oral hard- and
soft-tissue

engineering
scaffolds

Melt ES
writing PCL - - -

MG63 human
osteoblast-like
cells, HaCaT
keratinocyte
cells, L929

fibroblast cells

[40]
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Table 1. Cont.

Type of Use Type of
Production Polymer Solvent Bioactive

Agent Excipients Cell
Line/Animal Ref.

Bone tissue
engineering

scaffolds

Single-needle
solution ES +

melt ES
writing

GEL—solution
ES; PCL—melt

ES writing
AcOH - - Saos-2 cells [116]

Bone tissue
engineering

scaffolds

Modified free
surface

(bubble) ES
PVA DW -

Sodium dodecyl
benzene sulfonates

(surfactant)
- [117]

Bone tissue
engineering

scaffolds

Single-needle
solution ES HA/PEO, PVA DW TGF-β 2,

Baicalein - - [118]

Bone tissue
engineering

scaffolds

Single-needle
solution ES CA/PCL HFIP - CS (aerogel)

MC3T3-E1
murine

osteoblast cells
[119]

Artificial blood
vessels

Single-needle
solution ES dPCU HFIP - - Sprague

Dawley rats [120]

Artificial blood
vessels

Multi-nozzle
solution ES
and co-ES

Bovine
GEL/PCL

20% AcOH,
DMF, DCM - - 3T3 mouse

fibroblasts [121]

Artificial blood
vessels

Single-needle
solution

ES—inner
layer;

co-ES—outer
layer

RHC/PCL—
inner layer;
PCL—outer

layer

HFIP,
ethanol - PEO (sacrificial

polymer)

HUVECs—
inner layer;

A7r5 rat
smooth muscle

cells—outer
layer

[122]

Artificial blood
vessels

Single-needle
solution ES PEUU HFIP Heparin

PEG (to earn
PEUU@PEG-Hep

grafts)

HUVECs,
rats and New
Zealand white

rabbits

[123]

Artificial blood
vessels Coaxial ES COL DW - PVP (sacrificial

polymer) HUVECs [124]

Artificial blood
vessels

Single-needle
solution ES +

magnetic
environment—

inner layer;
double-nozzle

ES—middle
layer;

single-needle
solution

ES—outer
layer

PLCL/COL–
PLGA/SF–
PLCL/COL

tri-layer graft

HFIP - -

HUVECs,
smooth muscle

cells,
male nude

mice

[125]

Cardiovascular
stent coating Coaxial ES PU—core;

PECA—shell

THF, DMF,
acetone,
DMSO

- -

NIH-3T3
mouse

fibroblasts,
platelet

[126]

Cardiovascular
stent coating

Single-needle
solution ES

Co-recombiner
silk-elastin TFE - - HUVECs [127]

Drug-eluting
stent coating

Single-needle
solution ES PCL/HSA HFIP Paclitaxel Triethylamine

Rabbit iliac
artery

(drug-release
study)

[128]

Drug-eluting
stent coating

Single-needle
solution ES CS/PEO/HPβCD 90% AcOH Simvastatin - HPMEC [129]

Drug-eluting
stent coating

Single-needle
solution ES PLGA HFIP Vildagliptin -

HUVECs,
New Zealand
white rabbits

[130]
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Table 1. Cont.

Type of Use Type of
Production Polymer Solvent Bioactive

Agent Excipients Cell
Line/Animal Ref.

Drug-eluting
stent coating Microfluidic ES

GelMA/PEGDA—
inner layer;
PCL—outer

layer

DW,
methanol,

DCM

Heparin,
VEGF

Polydopamine
(adherence enhancer),

2-hydroxy-2-
methylpropiophenone

(photoinitiator for
photocrosslinking)

HUVECs,
HUASMCs,

New Zealand
white rabbits

[131]

Respiratory
mask

Nozzle-free ES
(NTP120

setup)
PAN DMF Tea tree

essential oil

Polyamidoamine
dendritic polymers

(drug delivery)
- [132]

Respiratory
mask Corona ES PVDF DMF,

acetone - - - [133]

Respiratory
mask

Single-needle
solution ES PCL Acetone - - - [134]

Abbreviations: AcOH—acetic acid, AFSC—human amniotic fluid stem cells, BMSCs—bone marrow mes-
enchymal stem cells, CA—cellulose acetate, COL—collagen, CS—chitosan, DCM—dichloromethane, DMF—N,
N-dimethylformamide, DMSO—dimethyl sulfoxide, dPCU—degradable polycarbonate urethane, DW—deionized
water, EPU—elastomeric polyurethane, ES—electrospinning, GEL—gelatin, GelMA—methylacrylated
gelatin, HA—hyaluronic acid, hADSCs—human adipose-derived stem cells, HAS—human serum albumin,
HDFBs—primary human dermal fibroblasts, HFIP—1,1,1,3,3,3-hexafluoro-2-propanol, HPβCD—2-hydroxypropyl-
beta-cyclodextrin, HPMEC—human pulmonary microvascular endothelial cells, HUASMCs—human um-
bilical arterial smooth muscle cells, HUVECs—human umbilical vein endothelial cells, NF—nanofiber,
NHDFs—normal human dermal fibroblasts, P407—Kolliphor P407 poloxamer, PAN—polyacrylonitrile,
PBS—phosphate-buffered solution, PCL—polycaprolactone, PECA—Poly(ethyl2-cyanoacrylate), PEG-NB—
polyethylene glycol norbornene, PEGDA—polyethylene glycol diacrylate, PEO—poly(ethylene oxide), PET—
polyethylene terephthalate, PEUU—poly(ester urethane)urea, PLA—polylactic acid, PLCL—poly(l-lactide)/poly(e-
caprolactone), PLGA—poly(lactic-co-glycolic acid), PS—polystyrene, PU—polyurethane, PVA—poly(vinyl alcohol),
PVDF—poly(vinylidene fluoride), PVP—polyvinylpyrrolidone, RHC—recombinant human collagen peptides, Saos-2—
human osteosarcoma cells, SF—silk fibroin, TFA—trifluoroacetic acid, TFE—tetrafluoroethylene, THF—tetrahydrofuran,
TPU—thermoplastic polyurethane, TX100—Triton X-100, VDF-TeFE—vinylidene fluoride-tetrafluoroethylene copoly-
mer, VEGF—vascular endothelial growth factor, Y2O3—Yttrium oxide, ZnO—zinc oxide.

The COVID-19 pandemic has recently led to an increased need for face masks, which
has boosted research as well. Because the face mask serves as a barrier, the vast surface area
and small pore size of electrospun nanofiber mats are preferable. Leung and Sun charged
the produced nanofiber filter after electrospinning due to the hypothesis that the negatively
charged coronavirus adheres more strongly to positively charged nanofibers. Even at an
ultralow pressure drop, the produced filters attained 90% efficiency [133].

For chronic wound management, nanofiber dressings have great potential as they
provide most of the properties of the ideal dressing, such as protection against bacteria
and external aggression, absorption of excess exudates, adequate gas exchange, providing
a moist environment, being painless for the patient, and easily removable. Moreover,
electrospun nanofibers can mimic the extracellular matrix; regulate skin cell responses,
including proliferation, migration, and differentiation; and thus reduce wound healing
time radically; therefore, chronic wounds that are not-healing (e.g., diabetic ulcer) can be
closed. Wound healing nanofibers are the subject of extensive research, and the results
have been provided in various review publications [135–138].

The scientific debate over tissue engineering nanofibers is also heated. Figure 5
presents an up-to-date graph of the proportion of articles related to certain tissues or organs.
Although the number of articles has multiplied, the percentage distribution remained very
similar to the end of 2017, as presented by Maurmann et al. [139]. This means that all areas
have continued to be vigorously researched over the past 5 years. Tissue engineering is
a quite broad topic, so for those who wish to delve deeper, it is recommended to have
a closer look at each area separately. The following review articles have recently been
published about bone [140–142], vascular [143], neural [144], cartilage [145], cardiac [146],
and urologic [147] tissues.



Pharmaceutics 2023, 15, 417 17 of 27

Pharmaceutics 2023, 15, 417 17 of 27 
 

 

 
Figure 5. Major application areas of electrospun nanofibers developed for tissue engineering ac-
cording to research realized in the PubMed database, until October 2022. The keywords used in the 
field Title/Abstract were: “tissue engineering” and “electrospinning” or “electrospun” and the fol-
lowing tissues or organs: “bone”, “vascular” or “vessels”, “soft tissue” or “tendon” or “valve” or 
“muscle”, “skin” or “wound healing” or “wound dressing”, “neural” or “nervous”, “cartilage” or 
“trachea”, “heart” or “cardiac”, “suture”, “bladder”, “corneal”, “liver” or “hepatic”, “incontinence”, 
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“cartilage” or “trachea”, “heart” or “cardiac”, “suture”, “bladder”, “corneal”, “liver” or “hepatic”,
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In general, nanofiber scaffolds have several beneficial properties to provide adequate
tissue replacement, such as high porosity, large surface area, biodegradability, biocompati-
bility, and tailorable 3D architecture. They can provide excellent support for cell adhesion,
proliferation, and differentiation due to their ability to mimic the required extracellular
matrix in biological and mechanical features, such as alignment, nano-topography, stiffness,
and tensile strength. By choosing the right method and collector, similar structures to the
original tissue can be achieved. With the use of co-electrospinning, coaxial electrospinning,
or other switched techniques, the structure possibilities are even wider. Wakuda et al. used
coaxial electrospinning to produce non-water-soluble collagen hydrogel nanofibers without
using any cross-linkers. The electrospinning resulted in collagen core and PVP shell fibers,
which were immersed in ethanol to wash away the PVP shell and gel the collagen. They
obtained promising results using human umbilical vein endothelial cells as a potential
vascular scaffold [124]. Wang et al. developed a hierarchical scaffold for bone tissue en-
gineering, where the bottom layer was a random gelatin mat, on top of which PCL fibers
were built utilizing a melt electrospinning writing technique. PCL microfibers could guide
cell orientation, while the gelatin nanofibers promoted cell adhesion and proliferation [116].

In addition to developing new implantable scaffolds, electrospinning is a suitable
technique to innovate existing medical devices, e.g., to coat vascular stents or orthopedic
implants. The aim could be to prevent neointimal hyperplasia through the local delivery of
selective pleiotropic drugs [129].
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5. Regulatory Aspects

As previously stated in paragraph 5, pharmaceuticals and medical devices are dis-
tinguished by the presence or absence of pharmacological effects on the human body.
According to the Global Harmonization Task Force’s definition, which is used by the WHO,
a medical device, “does not achieve its primary intended action by pharmacological, im-
munological or metabolic means, in or on the human body, but which may be assisted
in its intended function by such means” [79]. However, it is highlighted in the definition
that the tissue-containing devices may be medical devices according to some jurisdictions
but not according to others, which confirms the observation of Foulkes et al. that the
classification is not consistent at the global level [3]. Additionally, EMA has created a
group dedicated to “borderline products” and left the task of classification to the national
competent authorities [148]. In this paper, the regulatory approaches in the USA and the
EU are overviewed.

All medical devices in the USA are regulated by the FDA under the Center for Devices
and Radiological Health (CDRH). It differentiates three regulatory classes based on the
level of control required to assure the safety and efficacy of the device [149]. Class I includes
devices with the lowest risk and is regulated only by general control. In the case of Class II
medical devices, special controls combined with general controls are necessary. Class III
devices are those that support or sustain human life, so they have the highest risk level and
require premarket approval from the FDA to obtain marketing. The premarket approval
includes a non-clinical laboratory studies section and a clinical investigations section [150].
Similarly to medicines, the clinical evaluation for Class III devices, such as implantable or
other high-risk devices, must be based on evidence gathered through clinical investigation.
Moreover, clinical investigations must fulfill the requirements of Good Clinical Practice
(GCP) regarding both data quality and integrity and ethical standards [151].

The regulatory process for medical devices in the EU is at the member-state level;
however, the EMA is also involved. For example, drug-eluting stents belong to the group
“medical devices with an ancillary medicinal substance”, so the EMA plays a role in their
assessment—they must meet the requirements of the medical device legislation and be CE
marked [148]. The manufacturer can place the CE (Conformité Européenne) mark on a
medical device if it meets the safety, health, and environmental protection criteria of the
EU, and has also passed a conformity assessment.

The classification of medical devices in the EU is according to the Regulation (EU)
2017/745 and contains four levels: Class I, Class IIa, Class IIb, and Class III [152]. The risk
is increasing from Class I to III. Class IIb refers to surgically invasive or active devices,
which are partially or completely implanted into the body. The regulation states that
all implantable devices and Class III devices must undergo a clinical investigation that
follows GCP.

Furthermore, Special Rule 19 applies to all nanomaterial-associated devices; however,
they belong to Class IIa, IIb, or III according to the potential for internal exposure [152]. If
the risk of internal exposure is higher, the device is placed in a higher class. Accordingly, it
is necessary to evaluate nanofibrous medical devices from this point of view as well. If the
electrospun device becomes Class 3, it must undergo a clinical investigation.

Clinical investigation of a medical device can be any systematic investigation involving
one or more human subjects, undertaken to assess the safety or performance of a device.
It is regulated by the ISO 14155:2020 (clinical investigation of medical devices for human
subjects—good clinical practice) standard [153]. In general, clinical investigations require
clinical-grade material and an authorized manufacturing site to produce it. ISO 13485
(Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes)
is an internationally agreed standard that helps the medical device industries to fulfill the
requirements of quality management systems accepted by the regulatory authorities. The
ISO 13485:2016 standard is the only quality management system standard in the EU list of
harmonized standards, so most manufacturers attempt to obtain the ISO 13485 certificate.
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Electrospun nanofibers are nanomaterials because of their nano-sized diameter. At
present, the regulation of nanomedicine is not clear, and the number of specific regulatory
guidance documents is poor. Different definitions of nanomaterials have been made
by different bodies, such as the US National Institute of Health, the European Science
Foundation, and the European Technology Platform. Despite that, over 50 nanomedicines
(mainly anti-cancer medicines) have been approved and are currently available on the
market [3]. Recently, in April 2022, the FDA published guidance titled “Drug Products,
Including Biological Products, that Contain Nanomaterials—Guidance for Industry”. It
defines nanomaterials, the absence of which has previously been criticized. However, it
does not deal with medical devices.

Specifically related to medical devices, the European Commission published the
“Guidance on the Determination of Potential Health Effects of Nanomaterials Used in
Medical Devices” in 2015. The guidance draws attention to the use of the ISO 10993-1
(Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing Within a Risk
Management Process) standard. Moreover, this guidance describes examples that could be
produced by electrospinning, namely:

• Free nanomaterials added to a medical device (e.g., nano-silver in wound dressings);
• Fixed nanomaterials form a coating on implants to increase biocompatibility

(e.g., nano-hydroxyapatite) or to prevent infection (e.g., nano-silver);
• Embedded nanomaterials to strengthen biomaterials (e.g., carbon nanotubes in a

catheter wall) [154].

Face masks have recently received increased attention due to the COVID-19 pandemic.
In March 2020, the FDA issued emergency use authorizations for personal respiratory
protective devices [155]. There are two groups of face masks: surgical face masks and
respirator masks. The former is classified as a Class I medical device, while the latter is con-
sidered personal protective equipment by both the FDA and EMA. In both cases, the masks
must satisfy certain tests, such as the particle filtration efficiency test. Detailed information
on mask types, structure, testing standards, and the types of masks recommended in each
situation can be found in the review published by Naragund and Panda [156].

Concerning nanofibrous medical devices, some early birds are on the market or in the
pipeline (Table 2).

Table 2. Examples of commercially available electrospun medical devices.

Brand Name Intended Use Approved

Bio Hygienic Mask Compostable mask with FFP2-like
filtration capacity Spain

Bioweb™ Stent coating composite In the pipeline

Cerafix® Dura Substitute Regenerative dural repair patch USA

Covora™ Soft-tissue engineering matrix USA

EktoTherix™ Soft-tissue scaffold Completed clinical trial

Inofilter® 95/99 Face mask USA

PK Papyrus Covered stent USA

ReBOSSIS-J Absorbent bone regenerated
material Japan

ReDura™ Regenerative dural repair patch Unknown status clinical trial

Restrata® Wound Matrix Absorbable wound dressing USA

Rivelin® plain patches Wound patches Completed clinical trial
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When developing nanofibers as a potential medical device, there are a few things
that should be considered in the early stages of research that could be important from a
regulatory perspective. First, the materials used must satisfy the safety requirements. It
is recommended to choose a polymer that is considered safe and has been approved by
the authorities. Biocompatible and biodegradable polymers are generally preferred. A
good strategy could be the innovation of an already authorized device by electrospinning.
Campbell et al. made nanofibers from an FDA-approved cyanoacrylate polymer for clos-
ing endonasal surgical defects and compared them with Adherus®, an FDA-approved
common dural sealant [112]. Second, attention should be given to the toxic residue of
the solvent used in the electrospinning process. It is advisable to analyze the residual
solvent content and, if necessary, execute post-drying. The use of non-toxic solvents is
preferable to aggressive and toxic ones, such as chloroform and HFIP. The latter also can
be used if the residual solvent is proven to be below the level of acceptance. Another
option can be melt electrospinning, since the solvent is not used in this technique. Third,
both the electrospinning process and the equipment itself must be suitable for precisely
controllable and reproducible production, which can be demonstrated by validation. In
this regard, nozzle-based electrospinning is better than nozzle-free because, in the lat-
ter, simultaneous jets lead to a non-uniform fiber diameter [29]. Moreover, cellular and
in vivo experiments may require nanofibers produced in a cleanroom environment. Finally,
following the encouraging in vitro results, in vivo animal studies are crucial, especially
for wound dressings and tissue scaffolds, where nanofibers will interact with living cells.
Fortin et al. published promising in vitro results followed by negative in vivo results with
electrospun tubular vascular conduits. In vitro, the conduits significantly reduced protein
absorption and enhanced the adhesion, proliferation, and retention of endothelial cells
seeded on the surface. Therefore, an end-to-end common carotid bypass was performed
in 10 sheep, although there was no improvement in endothelialization compared with the
controls [157].

6. Conclusions

Electrospinning is the easiest and most common method for nanofiber fabrication. The
number of polymers that can be used is extensive; however, the material properties have a
significant impact on the fibers produced, e.g., the viscosity of the liquid polymer is crucial.
Additionally, process and ambient parameters affect the electrospinning process and the
properties of the fibers. Voltage is considered to be the most influential factor; however, it
should be pointed out that the type of collector determines the arrangement of the fibers
within the mat.

Electrospun nanofibers have unique physical characteristics that make them suitable
for the development of various medical devices, such as dressings for chronic wounds,
tissue engineering scaffolds, filters, and soft electronics. Each of these requires different
morphologies, physicochemical properties, and architectures of nanofiber mats, all of
which can be achieved using various electrospinning techniques. The two major types
are solution and melt electrospinning. The previous can be subdivided according to the
presence and type of the nozzle. Various nozzle-free techniques have been developed to
increase productivity and prevent needle clogging; however, they have not overtaken the
popularity of nozzle-based techniques. Side-by-side and coaxial nozzles can provide the
controlled location of different polymers within the fiber, creating Janus and core–shell
nanofibers, respectively. Melt electrospinning can be subdivided into syringe-based and
syringe-free methods and has two main advantages. First of all, it is considered a green
technique due to the absence of solvent, which is beneficial in the production of medical
devices. Secondly, melt electrospinning drawing enables the building of mats with more
complex structures, which can be applied to the fabrication of tissue regeneration scaffolds.

The potential biomedical applications of electrospun nanofibers differ from drug deliv-
ery systems to various medical devices, such as filters, soft electronics, tissue engineering
scaffolds, and wound dressings. Generally, the large surface area, the tailorable morphology,
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and the large range of polymers that can be used are the common advantages. Moreover,
nanofibers have additional benefits in every field of application, for example, small pore
size and flexibility as face masks or biocompatibility and similarity to the extracellular
matrix as wound care and implantable devices. In the field of tissue engineering, the
most investigated tissues and organs are the bones, the blood vessels, the skin, and other
soft tissues (muscle, tendon, valve), but the research is also intensive on cardiac, neural,
and cartilage replacements. The challenges and future direction of electrospinning-based
biomedical scaffolds are the development of the capability for reproducible, industrial-scale
production and extensive pre-clinical and clinical testing before commercialization [4].

In the case of nanofibrous medical devices, basic research is very intensive, but only a
few products have received marketing approval so far. Despite the well-defined regulatory
approach of medical devices in general, the regulation of nanomaterial-containing ones is
unclear. It is agreed that caution is necessary and that nanomaterial-containing medical
devices should be classified into higher-risk categories. The guidelines published by the
EU and the relevant ISO standards are certainly good cornerstones, and on specific issues,
consultation with the authorities might also help. After classification, the rules applicable
to the class must be followed.
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