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Abstract: Self-double emulsifying drug delivery systems have the potential to enhance the intestinal
permeability of drugs classified under the Biopharmaceutics Classification System (BCS) class III.
One such example is the antiviral agent zanamivir, exhibiting suboptimal oral absorption (with a
bioavailability range of 1–5%). To address this challenge, we have developed an innovative oral
formulation for zanamivir: a self-double nanoemulsifying Winsor delivery system (SDNE-WDS)
consisting of the microemulsion, which subsequently yields final double nanoemulsion (W1/O/W2)
upon interaction with water. Two distinct formulations were prepared: SDNE-WDS1, classified as a
W/O microemulsion, and SDNE-WDS2, discovered to be a bicontinuous microemulsion. The inner
microemulsions displayed a consistent radius of gyration, with an average size of 35.1 ± 2.1 nm.
Following self-emulsification, the resultant zanamivir-loaded nanoemulsion droplets for zSDNE-
WDS1 and zSDNE-WDS2 measured 542.1 ± 36.1 and 174.4 ± 3.4 nm, respectively. Both types of
emulsions demonstrated the ability to enhance the transport of zanamivir across a parallel artificial
membrane. Additionally, in situ rat intestinal perfusion studies involving drug-loaded SDNE-
WDSs revealed a significantly increased permeability of zanamivir through the small intestinal
wall. Notably, both SDNE-WDS formulations exhibited effective permeability (Peff) values that were
3.5–5.5-fold higher than those of the low/high permeability boundary marker metoprolol. This
research emphasizes the success of SDNE-WDSs in overcoming intestinal permeability barriers and
enabling the effective oral administration of zanamivir. These findings hold promise for advancing
the development of efficacious oral administration of BCS class III drugs.

Keywords: oral drug absorption; bioavailability; intestinal permeability; microemulsion; nanoemul-
sion; self-double emulsifying drug delivery system; zanamivir

1. Introduction

Nearly half of the antiviral drugs are classified under the biopharmaceutical clas-
sification system (BCS) as class III [1]. Active agents falling into this classification are
characterized by high solubility but low permeability across the intestinal lumen, resulting
in poor bioavailability [2]. Prominent antiviral drugs in BCS class III include abacavir,
didanosine, maraviroc, and zidovudine, approved for the treatment of HIV (Human Im-
munodeficiency Virus). Additionally, ganciclovir and valganciclovir are prescribed for
HCMV (human cytomegalovirus) infections, while trifluridine inhibits viral infections
caused by HSV (herpes simplex virus) [3]. HBV (hepatitis B virus) and HCV (hepatitis C
virus) are treated with adefovir dipivoxil and sofosbuvir, respectively. Furthermore, some
of these agents are utilized in clinical practice to treat multiple human infectious diseases.
For instance, lamivudine and tenofovir are indicated for the medical treatment of HIV
and HBV. Acyclovir, valacyclovir, and vidarabine are used to treat various members of the
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herpesviridae family, including HSV and VZV (Varicella–Zoster Virus) [3]. It is not surpris-
ing that viruses replicating through similar mechanisms (RNA, DNA, or retroviruses) are
often susceptible to the same antiviral agents. For example, ribavirin efficiently inhibits
HCV and RSV (Respiratory Syncytial Virus), both of which are RNA viruses. Consequently,
with the emergence of new viral infections, such as Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), some of these medications may prove effective if the viruses
share similar replicating mechanisms. Regardless of the mechanism of action, improving
the oral absorption of these antiviral drugs enhances compliance and hinders the further
spread of viral diseases.

Influenza virus is one of the major viral diseases that can erupt into epidemics or even
pandemics. In the United States, the average number of influenza patients over the past five
years was 32 million, with an approximate 0.1% death rate. The appearance of SARS-CoV-2
led to a decrease in influenza virus incidence during the 2021–2022 season. However, in the
subsequent 2022–2023 season, the number of infected individuals increased dramatically
by 4.5-fold compared to the previous season [4].

The first-line treatment for the influenza virus typically involves the use of neu-
raminidase inhibitors, which target and inhibit the neuraminidase enzyme found on the
viral envelope. By employing this mechanism of action, neuraminidase inhibitors effec-
tively impede the release of new virions from infected cells, leading to a reduction in
the severity and duration of influenza symptoms. Neuraminidase inhibitors, such as os-
eltamivir, peramivir, zanamivir, and laninamivir octanoate (currently only approved in
Japan), are highly effective and widely used for the treatment of both influenza A and
influenza B viruses [5]. However, all these drugs (except oseltamivir) fall under BCS class
III, indicating challenges in their oral administration. Accordingly, they are administered
through inhalation or intravenous routes [6–9]. Nevertheless, such non-oral administration
methods can negatively impact patient compliance and increase the overall cost of the treat-
ment. To address these limitations, it becomes crucial to enhance the intestinal permeability
of peramivir, zanamivir, and laninamivir octanoate.

Zanamivir (MW 332.31 g/mol; Log P 4.13), the first discovered neuraminidase inhibitor,
has demonstrated higher resistance to influenza mutations compared to oseltamivir [10]. This
can be attributed to its hydrophilic nature, which is a result of the presence of a guanidino
group and its structural similarity to sialic acid. The unique molecular structure of zanamivir
facilitates stronger interactions with the active site of the influenza virus, thereby increasing
its overall effectiveness [11]. Currently, zanamivir is administered via inhalation, with an
absorption rate ranging from 4% to 17% [12]. Common side effects associated with zanamivir
usage include sinusitis and dizziness, while more severe effects, such as bronchospasm (which
can be fatal), allergic reactions, and neuropsychiatric events, are particularly observed in
children [13,14]. By increasing its ability to be absorbed through the gastrointestinal (GI) tract,
oral administration of zanamivir could become a viable option, offering a more convenient
and cost-effective treatment approach for influenza.

Numerous drug-delivery emulsion systems have been developed to improve the
bioavailability of drugs through the GI tract [15]. These systems not only improve drug
solubility but also provide protection and prolong the stability of non-chemically stable
drugs [16]. Upon reaching the target tissue, drug activity is enhanced while minimizing
side effects. Additionally, drug-delivery emulsion systems have the potential to reduce
treatment duration and frequency, which is particularly important in antiviral therapies that
may require prolonged or high-dose regimens, resulting in increased treatment costs [17].
Moreover, since emulsions typically consist of an oil phase and an aqueous phase, they
can be formulated and customized to accommodate both hydrophilic and lipophilic ac-
tive substances [18]. Among these systems, oil-in-water (O/W) emulsions are the most
commonly utilized in oral administration [19–21]. O/W emulsion systems are specifically
beneficial for improving the solubility of drugs classified as Biopharmaceutics Classifica-
tion System (BCS) class II (low solubility, high permeability) and class IV (low solubility,
low permeability) [21]. On the other hand, double emulsion systems can augment the



Pharmaceutics 2023, 15, 2518 3 of 19

permeability of drugs classified as BCS class III by dissolving the drug in the inner aqueous
phase and increasing its lipophilicity through the oil phase. Nonetheless, double emulsion
systems may suffer from thermodynamic instability over time, limiting their practical
applications [22].

In our previous laboratory research, we investigated double emulsion systems en-
capsulating the active ingredient zanamivir [10]. In this present study, we developed a
novel self-emulsifying double emulsion system that holds promise for enhanced intestinal
permeability and ultimately improved effectiveness.

Self-double emulsifying drug delivery systems (SDEDDS) are assembled using two dis-
tinct primary emulsion types: water-in-oil (W1/O) or oil-in-water (O1/W). These primary
emulsions are combined with an external continuous phase to produce final double emul-
sions, resulting in water-in-oil-in-water (W1/O/W2) and oil-in-oil-in-water (O1/W/O2)
configurations, respectively. The former is the prevalent choice for oral administration
since the external phase of the W1/O/W2 system consists of water. In this type of double
emulsion, small aqueous droplets are encapsulated within oil droplets within the continu-
ous water phase. The incorporation of hydrophilic emulgators within the oil phase of the
primary W1/O emulsions is responsible for enabling the self-emulsification process within
these delivery systems. Consequently, when the primary emulsion encounters the aqueous
environment under GI motility, it self-emulsifies into the final W1/O/W2 double emulsion
structure [23,24]. Considering the inherent instability of double emulsions, the utilization of
SDEDDSs, which undergo spontaneous emulsification facilitated by GI movements, proves
to be a more effective approach. This is mainly owing to the superior stability achieved
by the primary emulsions, transforming SDEDDS into an ideal choice for the delivery of
BCS class III drugs [22,25–27]. Furthermore, the size of the final droplets of the emulsion
systems is a critical factor that significantly influences their stability. Hence, the deliberate
reduction in the final SDEDDS following self-emulsification to approximate the dimensions
of a nanoemulsion becomes an intriguing strategy. This approach holds the potential to
enhance not only the stability but also the permeability of zanamivir, potentially facilitating
its absorption and bioavailability within the GI tract.

Microemulsions are a specialized class of emulsions characterized by droplet sizes
typically ranging from 5 to 50 nm. These unique emulsions classically comprise water, oil,
surfactants, and co-surfactants, while the specific composition and ratios of these compo-
nents play a crucial role in determining their formation and stability [28]. Microemulsions
exhibit distinct advantages, including thermodynamic stability and isotropic clarity [29].
Importantly, these emulsions possess the ability to spontaneously form without the need
for vigorous mechanical energy processes such as sonication or homogenization, a feature
not shared by nanoemulsions or macroemulsions [30].

Gordon Winsor introduced a classification system for microemulsions, categorizing
them into four distinct types [31]: Type I microemulsion is characterized as an O/W
microemulsion, where a portion of the oil component is solubilized by the emulsifier, and it
achieves equilibrium with an excess of the oil phase. In contrast, Type II microemulsion is
classified as a W/O microemulsion, where a fragment of the water component is solubilized
by the emulsifier, and it reaches equilibrium with an excess of the aqueous phase. Type
III microemulsion is unique in that it involves the solubilization of both oil and water
constituents by the emulator. This type of emulsion is commonly named a bicontinuous
microemulsion since it maintains an equilibrium state with an excess of the oil and water
phases. Winsor Type IV is specifically referring to a single-phase micellar solution [28,32].

Our hypothesis employs the utilization of SDEDDSs, which involve the formulation
of primary (W1/O) microemulsions that transform into final W1/O/W2 double emul-
sions upon mixing with water. The incorporation of hydrophilic emulsifiers within the
oil phase of the primary microemulsions facilitates the self-emulsification process within
these delivery systems. Consequently, when these microemulsions encounter aqueous
environments during GI motility, they culminate in the formation of final double nanoemul-
sions. This novel class of SDEDDS has been termed Self-Double Nanoemulsifying Winsor
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Delivery System or SDNE-WDS. Our research focuses on exploring the potential of SDNE-
WDSs to enhance the intestinal permeability of the antiviral drug zanamivir through oral
administration.

2. Materials and Methods
2.1. Materials

All organic solvents were of HPLC grade and acquired from Carlo Erba (Milan, Italy).
Polysorbate 80, 9,10-diphenyl anthracene, and sorbitan laurate were purchased from Merck
KGaA (Darmstadt, Germany). Sucrose stearate was obtained from Sisterna (St. Paul,
MN, USA), and zanamivir was obtained from Glentham Life Sciences (Corsham, UK).
Rhodamine B, sodium lauryl sulfate (SLS), sodium phosphate dibasic dihydrate, sodium
phosphate monobasic dehydrate, and uranyl acetate were acquired from Sigma Aldrich
(St. Louis, MO, USA). Carboxymethyl cellulose (CMC) and mineral oil were purchased
from Ziv Chemicals Ltd. (Holon, Israel).

2.2. Methods
2.2.1. Preparation of SDNE-WDSs with or without Drug Cargo

Two formulations were selected based on appropriate material ratios for creating
SDNE-WDSs. The oil phase of the formulations was comprised of mineral oil and various
surfactants, while the internal aqueous phase (W1) contained carboxymethyl cellulose
(CMC) as a gelling agent. The difference in the emulsions lies in the utilization of dis-
tinct emulgator systems: SDNE-WDS1 employed sorbitan laurate, whereas SDNE-WDS2
contained sucrose stearate. In the context of drug-loaded dispersed systems, a zanamivir
solution was incorporated into the W1 phase, yielding zanamivir-loaded systems referred
to as zSDNE-WDSs. Following homogenization, the resulting primary W1/O emulsions
were rapidly cooled in an ice bath to room temperature. The self-emulsification process was
carried out using a modified technique that was described in prior publications [33,34]. In
brief, the final SDNE-WDSs were attained by adding 1 part of W1/O emulsions to 6.67 parts
of the continuous aqueous phases W2, followed by stirring over 30 min at 1000 RPM (as
depicted in Scheme 1).
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2.2.2. Visualization by Electron Microscope

The morphological examinations of SDNE-WDS1 and SDNE-WDS2 were conducted
using transmission electron microscopy (TEM) (Thermo Fisher Scientific (FEI) Talos F200C
transmission electron microscope operating at 200 kV, San Jose, CA, USA). A droplet of the
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specimen was deposited onto a copper grid coated with a carbon film, facilitating a thin
film on the grid’s surface. Subsequently, this film underwent negative staining through
exposure to a 2% (w/v) uranyl acetate solution. After drying at ambient temperature,
micrographs were captured using a Ceta 16M CMOS camera (Costa Mesa, CA, USA).

2.2.3. Confocal Laser Scanning Microscope (CLSM) Imaging

To visualize the inner aqueous phase in comparison to the outer aqueous phase, the
hydrophilic fluorescent probe rhodamine B was dissolved in the W1 of the emulsions as
a probe for the inner aqueous droplets. Additionally, 9,10-Diphenyl anthracene (DPhA)
was dissolved in the oil phase as a fluorescent marker for the oil phase. Fluorescent CLSM
images of the double-labeled SDNE-WDSs were obtained using the Zeiss LSM META
microscope (Jena, Germany), with rhodamine B parameters set at λex 553 nm and λem
580 nm and DPhA parameters set at λex 373 nm and λem 426 nm.

2.2.4. Analysis of Mean Droplet Size and Surface Charge

The mean droplet sizes and zeta potentials of freshly prepared W1/O/W2 emulsions
derived from SDNE-WDSs were ascertained employing a dynamic light scattering instru-
ment (Zetasizer Nano ZS by Malvern, UK). The particle size distribution of the double
emulsions was evaluated subsequent to dilution with water.

2.2.5. Small-Angle X-ray Scattering (SAXS)

SAXS patterns of the mean particle size of the inner aqueous droplets in both SDNE-
WDSs were obtained using a SAXSLAB GANESHA 300-XL instrument (Skovlunde, Den-
mark). The specimen preparation method was carried out according to a procedure detailed
elsewhere [35]. The radius of gyration (Rg) was calculated from the Guinier plot using
Equation (1).

ln(I0) = ln(I)− 1
3

q2Rg
2 (1)

where I0 represents the initial scattering intensity, I is the scattering intensity depending on
the scatter vector (q) in cm−1, and Rg is the radius of gyration in nm.

2.2.6. Determination of Winsor Emulsion Type Using Conductivity Investigation

We utilized conductivity measurements to determine the type of Winsor emulsion of
the SDNE-WDS formulations. We employed the ExStik® EC500 instrument (Waltham, MA,
USA), which features a stainless-steel electrode optimized for measurements across a wide
conductivity range, from 0 to 2000 µs/cm. Additionally, this measurement was performed
at a controlled temperature of 25 ◦C. To identify the type of microemulsion present in
SDNE-WDS2, we introduced various concentrations of water into the formulations. A
change in the slope of the conductivity measurement of each preparation was indicative of a
transition in the microemulsion type, shifting from W/O to bicontinuous and subsequently
to O/W [36].

2.2.7. High-Pressure Liquid Chromatography (HPLC) Analysis of Zanamivir

The analysis of zanamivir was conducted using High-Pressure Liquid Chromatogra-
phy (HPLC) on a Waters 2695 HPLC system (Alliance, Milford, MA, USA). A Hypersil®

BDS C18 column with dimensions of 150 mm × 4.6 mm and a particle size of 5 µm was
used for chromatographic separation. Data analysis was performed using the Empower
Pro software (EMP 2 Feature release 5, Built 2154).

A gradient elution method was applied to identify zanamivir, involving a transition
from 10% acetonitrile (v/v) to 90% acetonitrile (v/v) in water over a 10-minute period. The
flow rate was maintained at 0.5 mL/min, and 10 µL of the sample was injected for analysis.
Zanamivir concentration was quantified at a wavelength of 242 nm using a UV detector.
This HPLC analysis provided an accurate determination of zanamivir concentration [8].
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2.2.8. Quantification of Encapsulation Efficiency

To calculate the entrapment efficiency (EE) of zanamivir within SDNE-WDSs, we
employed an ultrafiltration technique. Following the self-emulsification process, 300 µL of
the resulting double emulsions were mixed with 300 µL of a 10% SLS solution. Subsequently,
these double emulsions were subjected to centrifugation at 14,000 RPM and 40 ◦C for
15 min to completely disrupt the formulations. The clarified solutions obtained post-
centrifugation were subjected to HPLC analysis to quantify the quantity of free zanamivir.
The calculation of entrapment efficiency involved determining the percentage (w/w) of the
encapsulated drug relative to the total zanamivir content within the SDNE-WDSs, as per
Equation (2) [37,38]. This entrapment efficiency assessment was conducted in triplicate for
robust and accurate results.

EE[%] =
W initial amount of drug−W untrapped free drug

W initial amount of drug
× 100% (2)

2.2.9. In Vitro Release Studies

Experiments evaluating the invitro release profiles of the self-emulsified SDNE-WDSs
in comparison to the zanamivir solution were conducted in an aqueous buffer adjusted
to match the pH of the small intestine. These experiments utilized dialysis bags with a
molecular weight cut-off ranging from 12–14 kDa (Sigma Aldrich, St. Louis, MO, USA).
Dialysis techniques are commonly employed for the examination of molecule release from a
dispersed drug system due to their ability to isolate the droplets, enabling the active moiety
to diffuse into the release medium through a membrane that does not restrict its passage.
Accordingly, the pores of the membrane should possess a considerably greater size than
that of the released substance. Next, 15 mL of the zanamivir-loaded SDNE-WDSs were
placed within the dialysis bag and introduced into 200 mL of phosphate buffer solution
(PBS) at pH 6.8, ensuring the presence of a significantly higher volume of media compared
to the saturation point at which dissolution would slow (commonly referred to as “sink
conditions”). Under continuous magnetic stirring, we extracted 150 µL samples from the
dialysis bag at predetermined time intervals (0, 0.33, 0.67, 1, 2, 3, and 4 h). Subsequently,
the drug concentration within these samples was determined using an HPLC method after
disrupting the SDNE-WDSs [38].

2.2.10. Parallel Artificial Membrane Permeability Assay (PAMPA) for Assessing Passive
Diffusion of Encapsulated Zanamivir

The evaluation of the in vitro passive diffusion of encapsulated zanamivir across artificial
membranes was carried out using a Pre-coated PAMPA (BD Gentest™, San Jose, CA, USA) [39].
The donor wells were loaded with 300 µL of the respective test groups, which included the free
drug, zSDNE-WDS1, and zSDNE-WDS2. The resulting PAMPA sandwich configuration was
incubated at 25 ◦C, during which zanamivir concentrations in both the donor and acceptor
plates were quantified using the HPLC technique. The calculation of the effective permeability
coefficients, denoted as Papp, was performed according to Equation (3), which is adapted from
the Corning® (Tewksbury, MA, USA) Gentest guidebook:

Papp =
−ln

[
1− CA(t)/Cequilibrium

]
A× (1/VD+1/ VA)× T

(3)

where:
CD(t) represents the compound concentration in the donor well at time t [mM]; CA(t)

denotes the compound concentration in the acceptor well at time t [mM]; VD represents
the volume of the donor well; VA represents the volume of the acceptor well; Cequilibrium
is calculated as [CD(t)×VD + CA(t)×VA]/(VD + VA); A signifies the filter area; T is the
incubation time.
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2.2.11. In Situ Single-Pass Intestinal Perfusion (SPIP) Studies

To assess the effective permeability coefficients of zanamivir-loaded zSDNE-WDSs
within the proximal jejunal segment, we employed the in situ single-pass rat intestinal
perfusion model. All animal procedures adhered to the guidelines set by the Ben-Gurion
University of the Negev Animal Use and Care Committee (Protocol IL-30-04-2019). Male
Sprague Dawley rats, approximately 300 g in weight (Harlan, Israel), were utilized in this
study and were housed and managed in accordance with the Ben-Gurion University of the
Negev Unit for Laboratory Animal Medicine Guidelines. The rats underwent an overnight
fast (lasting 12–18 h) while having access to water. Random assignments to different
experimental groups were produced for each animal. The procedure closely followed the
established protocol, as was previously reported [8,39,40]. Briefly, the rats were anesthetized
via intramuscular injection with 100 mg/kg of ketamine and 5 mg/kg of xylazine. A midline
abdominal incision, approximately 3 cm in length, was made. Permeability measurements
were focused on an 11 cm proximal jejunal segment, commencing 2 cm below the ligament
of Treitz. The intestinal segment was cannulated at both ends, with an initial perfusion
consisting of normal saline solution at 37 ◦C to establish a steady state, followed by
subsequent perfusion involving the collection of samples at 8-min intervals. All perfusion
solutions underwent incubation in a water bath at 37 ◦C and were subsequently pumped
through the intestinal segment. Samples from the perfusate were immediately subjected to
HPLC analysis. Upon the conclusion of the experiment, the exact length of each perfused
jejunal segment was measured. The net water flux during the single-pass rat jejunal
perfusion investigations, signifying water absorption within the intestinal segment, was
calculated utilizing Equation (4).

C′out = Cout ×
Vout

VoutT
(4)

where Cout is the drug concentration experimental value in the outlet sample, while the
calculated C′out represents the corrected concentration of the drug. Vout is the volume of
the outlet sample, and VoutT is the theoretical volume that was expected to emerge. The
actual absorption rate coefficient across the rat gut wall in the SPIP studies was calculated
using Equation (5).

Pe f f =
−Qln

(
C′out/ Cin)

2πRL
(5)

where Q signifies the perfusion buffer flow rate and C′out/Cin denotes the ratio of the outlet
concentration (as calculated by Equation (4)) to the inlet concentration of the test drug. R
represents the radius of the intestinal segment (set at 0.2 cm), and L signifies the length of
the intestinal segment.

2.2.12. Data and Statistical Analysis

Data are presented as means ± standard deviation (means ± SD) or means ± stan-
dard error (means ± SE). Statistical analysis to determine significant differences among
the experimental groups involved a one-way ANOVA test, followed by Tukey’s test for
comparisons between all groups. For pairwise comparisons between the two groups, an
unpaired t-test was conducted. Significance was established at p < 0.05.

3. Results
3.1. Preparation and Characterization of Stable Zanamivir-Loaded SDNE-WDSs

Numerous formulations were developed to determine the optimal experimental con-
ditions for creating stable SDNE-WDSs. In an attempt to ensure the future feasibility of this
delivery system, consideration was given to selecting components from materials already
approved for oral administration. The composition of both the oil phase and the gelling
agent were similar to those employed in double emulsions previously developed in our
laboratory [10]. The choice of hydrophobic emulsifiers, specifically sucrose stearate and
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sorbitan laurate, was predicated on their demonstrated ability to construct stable double
emulsions [41,42]. Furthermore, owing to its favorable physicochemical properties enabling
incorporation into the oil phase, polysorbate 80 was the obvious selection as the hydrophilic
self-emulsifying agent. Ultimately, two formulations exhibiting robust stability were se-
lected: SDNE-WDS1 and 2. Both primary systems initially existed as microemulsions and,
upon dilution with water, transformed into nanoemulsions.

The CLSM images presented in Figure 1 provide a visual representation of freshly
prepared SDNE-WDSs following spontaneous emulsification. Figure 1 (i) represents the
inner W1 phase (blue channel), while Figure 1 (ii) depicts the oil phase of the nanoemulsions
(red channel). The superimposed images in Figure 1 (iv) demonstrate the co-localization
of the red and blue fluorescent signals, signifying the presence of inner aqueous droplets
within the oil phase. Moreover, there was no significant detection of red or blue fluorescent
signals in the external aqueous phase W2, underscoring the effective encapsulation of the
hydrophilic cargo within the inner aqueous phase of the oil droplets.
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Figure 1. Confocal Laser Scanning Microscopy images of W1/O/W2 emulsions following self-
emulsification of SDNE-WDS1 and SDNE-WDS2: (i) Blue marker DPhA in the oil phase; (ii) Red
probe rhodamine B in W1; (iii) Optical microscopy images; (iv) Superimposition of images (i,ii),
illustrating merged fluorescent signals (blue and red). Magnification ×63.

Predominantly, SDNE-WDS1 yielded larger final nanodroplets compared to SDNE-
WDS2. This difference in droplet size can be attributed to the distinct oil phase emulsi-
fiers employed, as outlined above. The mean diameters of the W1/O/W2 droplets were
542.1 ± 36.1 nm and 623.9 ± 53.2 nm for SDNE-WDS1 with and without zanamivir, re-
spectively. For SDNE-WDS2, the mean droplet size was 174.4 ± 3.4 nm, while that of
zSDNE-WDS2 was 170 ± 2.3 nm. Remarkably, the presence of zanamivir in the inner
aqueous phases of the systems did not result in a substantial difference in the size of the
final double emulsion droplets. Additionally, the mean diameter measurements of the
SDNE-WDSs aligned with the findings in Figure 2.

Both formulations exhibited a notable negative surface charge. Particularly, the
zeta potential of SDNE-WDS1 was −43.9 ± 19.5 mV, while that of zSDNE-WDS1 was
−56.93 ± 1.26 mV. For SDNE-WDS2, the zeta potential values were −62.43 ± 0.75 mV and
−68.3 ± 17.5 mV, with and without zanamivir, respectively.
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zSDNE-WDS2. Specimens were negatively stained using a 2% uranyl acetate solution.

It is worth highlighting that comparable drug encapsulation efficiencies were achieved
for the resultant diluted double emulsions despite their differences in droplet sizes and zeta
potentials. In particular, the encapsulation efficiencies for zSDNE-WDS1 and zSDNE-WDS2
were found to be 77.12 ± 3.98% and 75.66 ± 3.79%, respectively.

Figure 2 depicts the TEM images of zSDNE-WDS1 and zSDNE-WDS2 subsequent to
their emulsification, forming W1/O/W2 double nanoemulsions. Markedly, the outer oil
droplets in the W1/O/W2 structure of zSDNE-WDS2 appeared visibly smaller compared
to those in zSDNE-WDS1. Upon closer examination in higher magnification micrographs,
zSDNE-WDS2 exhibited a more concentrated presence of smaller droplets, which might be
attributed to its mean droplet size. These observations suggest that the choice of formulation
and particularly emulsifying agents can influence the size and distribution of droplets
within these drug carriers, stressing the importance of fine-tuning these parameters for
specific drug delivery applications.

The average size of the inner aqueous phases within both Winsor systems was as-
sessed by means of SAXS, as illustrated in Figure 3. Impressively, all the inner microemul-
sions exhibited a consistent radius of gyration, measuring at an average droplet size of
35.1 ± 2.1 nm. The size of these aqueous droplets remained distinctly stable, showing no
considerable variation regardless of the type of oil phase emulsifier employed. Furthermore,
the averaged radii of the microemulsions prepared with 60 µg/mL of active agent were
comparable to those with zanamivir concentrations exceeding six-fold. This observation
implies that the dosage of the active agent can be modified while preserving the structural
integrity of the delivery system.
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Figure 3. Radii of gyration of the inner aqueous droplets of SDNE-WDS1 and SDNE-WDS2 comprised
varying zanamivir concentrations.

The primary microemulsion type was deduced from conductivity measurements of the
continuous phase. SDNE-WDS1 exhibited negligible values, confirming its microemulsion
type as W/O (Winsor system type II). Conversely, SDNE-WDS2 obtained a conductivity of
82 µs/cm, suggesting either an O/W or bicontinuous primary microemulsion. To clarify
the exact nature of this Winsor system, conductivity measurements were conducted on a
series of SDNE-WDS2-based formulations with increasing water content. In this experi-
ment, a significant positive shift in the slope of the conductivity measurements indicates a
transition from W/O to bicontinuous and subsequently to O/W [36]. In accordance with
the conductivity study illustrated in Figure 4, three distinct slopes were identified, each
indicative of a distinct Winsor system configuration (the initial slope corresponds to Type II,
the middle slope to Type III, and the final slope to Type I). With a water content of 27%,
SDNE-WDS2 clearly demonstrated a bicontinuous character (Winsor type III).
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The mean diameters of the drug-loaded SDNE-WDSs were monitored over time, and
the results are presented in Figure 5. Interestingly, SDNE-WDS1 exhibited instability at
elevated temperatures. On the other hand, this formulation remained stable for at least
5 weeks at 4 ◦C, with slight fluctuations in averaged diameter following incubation at
ambient temperature for 9 weeks (Figure 5A). Outstandingly, SDNE-WDS2 maintained
long-term stability for a minimum of 10 weeks, following incubation at room temperature
(RT), 4 and 40 ◦C (Figure 5B). The surface charge of colloidal carriers significantly influences
their physicochemical stability. Overall, the zanamivir-loaded systems (excluding SDNE-
WDS1 at 40 ◦C) consistently exhibited substantial and coherent negative zeta potential
values throughout the study period, irrespective of incubation conditions (as shown in
Figure 6).
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3.2. In Vitro Release Studies

Figure 7 explores the results of the in vitro release experiments involving zanamivir-
loaded SDNE-WDSs conducted in a phosphate-buffered saline (PBS) solution at pH 6.8 and
compares them to a solution of the free drug. When examining the initial 20-minute interval,
unformulated zanamivir displayed an abrupt burst release, amounting to approximately
59% of the total payload, with the entire quantity being released within the first hour.
In contrast, the two distinct types of zanamivir-loaded SDNE-WDSs exhibited a more
controlled release pattern. After a duration of 4 h, the cumulative release of zanamivir from
SDNE-WDS1 and SDNE-WDS2 reached 86.1% and 81.6%, respectively. These findings
accentuate the potential of SDNE-WDSs to modulate the release kinetics of zanamivir,
providing a more sustained delivery compared to the unformulated drug solution.
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Figure 7. Release profiles of 400 µg/mL zanamivir from SDNE-WDS1, SDNE-WDS2, and a zanamivir
solution. All formulations were tested in PBS at pH 6.8 while maintaining a temperature of 37 ◦C.
The presented data represents the means ± SD; n = 9.

3.3. Parallel Artificial Membrane Permeability Assay

We conducted an in-depth investigation into the passive transport of zanamivir across
an artificial membrane. Both unformulated and zanamivir-loaded double emulsions from
SDNE-WDSs were subjected to this study. Following 24 h, zanamivir concentrations at
the donor side were sampled, and the permeability was subsequently calculated using
the acquired data (as shown in Figure 8). The results reveal the facilitated transport of
encapsulated zanamivir across the artificial membrane, as demonstrated by the notice-
able enhancement in the apparent permeability coefficients (Papp) of this antiviral agent.
ZSDNE-WDS1 and zSDNE-WDS2 exhibited significantly increased Papp values, measuring
at 5.14 × 10−6 ± 3.85 × 10−7 and 9.63 × 10−6 ± 4.41 × 10−6 cm/s, respectively. Remark-
ably, the permeability efficiency of these two formulations exhibited no marked statistical
variation. These findings underline the efficacy of zanamivir-loaded SDNE-WDSs in
promoting the permeation of the antiviral agent across the studied artificial membrane,
potentially improving its bioavailability and therapeutic effectiveness.
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Figure 8. In vitro effective permeability values (Papp) of 400 µg/mL zanamivir loaded SDNE-WDSs
following self-emulsification, as calculated from the results obtained through the PAMPA studies
conducted at pH 7.4. The results are provided as means ± SE; n = 4.

3.4. In Situ Single-Pass Intestinal Perfusion Studies

We investigated the in situ effective permeability coefficients of free zanamivir, as well
as when encapsulated within SDNE-WDSs by means of the single-pass intestinal perfusion
rat model. This study was conducted within the proximal jejunum segment of the intestine
and provided insights into the effective permeability coefficients of final nanoemulsions
perfusate in comparison to those of the unformulated drug. The results presented in Figure 9
confirmed the inherently low permeability of zanamivir. Noticeably, the flux of zanamivir,
when encapsulated within SDNE-WDSs, exhibited a significant increase in comparison to the
free antiviral drug. The Peff values for zSDNE-WDS1 and zSDNE-WDS2 were determined
to be 2.19 × 10−4 ± 1.26 × 10−4 and 1.40 × 10−4 ± 4.52 × 10−5 [cm/s], respectively. This
signifies that our emulsions displayed more than a 71-fold increase in permeability compared
to the free drug (p < 0.0004). Remarkably, our in situ model did not discover any statistical
difference in the effective permeability between these two SDNE-WDS formulations.
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Figure 9. In situ effective permeability values (Peff) of 400 µg/mL zanamivir solution and zanamivir
encapsulated within SDNE-WDSs, determined by perfusion of emulsions in the jejunum of rats.
The results are shown as means ± SD; n = 6 for the zanamivir solution and n = 8 for SDNE-WDSs.
Statistical significance is indicated as follows: ** p < 0.001; *** p < 0.0001.
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4. Discussion

BCS Class III compounds are characterized by their hydrophilic nature, which trans-
lates to high aqueous solubility, but they exhibit low permeability across biological mem-
branes. Despite their pharmacological effectiveness, their poor absorption due to low
permeability becomes the limiting factor in achieving sufficient bioavailability [43]. No-
tably, several antiviral agents, such as adefovir, lamivudine, ribavirin, zanamivir, and
zidovudine, fall into this Class III category. While these agents effectively combat some of
the most prevalent viruses known to afflict humans, unfortunately, their inherently low
oral bioavailability of these agents restricts their administration via the oral route.

Prior research has highlighted that the bioavailability of Class III drugs can be en-
hanced through their encapsulation within drug delivery systems. In numerous instances,
nanocarriers have demonstrated a remarkable ability to significantly improve the efficacy
of these drugs [17]. For example, the utilization of a liposomal system for tenofovir led to a
10-fold increase in drug permeability compared to the free drug in Caco-2 cultures [44]. In
another study, a self-nanoemulsifying drug delivery system (SNEDDS) that incorporated
adefovir dipivoxil exhibited a considerable enhancement in the oral absorption of this drug
when tested in rat models [45] These findings emphasize the potential of innovative drug
delivery systems to overcome the challenges posed by Class III compounds and enhance
their therapeutic impact.

In this study, our strategy involved encapsulating zanamivir within innovative col-
loidal carriers that integrate the distinctive characteristics of self-double emulsions, mi-
croemulsions, and nanoemulsions delivery systems. Consequently, we introduced two
novel self-double nanoemulsifying Winsor delivery systems, namely SDNE-WDS1 and
SDNE-WDS2. These systems vary in the composition of surfactants present in the oil phase,
with SDNE-WDS1 containing sorbitan laurate and SDNE-WDS2 incorporating sucrose
ester. When incorporating zanamivir into these SDNE-WDSs, we achieved the formation of
microemulsions through conventional emulsion preparation methods, all while avoiding
the necessity for high surfactant concentrations. In typical microemulsion preparations,
surfactant concentrations often surpass nearly 50%; however, our innovative approach
allowed us to create microemulsions with significantly lower surfactant concentrations [46].

While the inner aqueous droplets of the primary microemulsions remained unchanged
(as illustrated in Figure 3), it is important to note that the choice of oil phase emulsifiers
had a significant impact on the initial Winsor system (as depicted in Figure 4). It is particu-
larly noteworthy that sorbitan laurate promoted the formation of a W/O microemulsion,
whereas sucrose stearate resulted in a Winsor type III system, as demonstrated in Figure 4.
This outcome is probably attributed to the differing Hydrophilic–Lipophilic Balance (HLB)
values of these emulgators, which stand at 8.7 and 11, respectively. Considering that both
of our formulations had an equal overall calculated HLB, this observation is uniquely
intriguing.

As depicted in Figure 4, the water content range suitable for forming bicontinuous
microemulsions with SDNE-WDS2 falls within the range of 24–37%. In a study by Tamhane
et al., they explored the water content range required for bicontinuous microemulsions
that encapsulated a plant protease inhibitor. In their research, the water content for their
Winsor type III systems was determined to be in the range of 52–58% [36]. Predominantly
to date, there have not been any investigations focusing on the use of bicontinuous mi-
croemulsions for oral administration, which could open promising approaches for potential
pharmaceutical applications.

The selection of different emulsifiers incorporated within the oil phase of the mi-
croemulsions also had a considerable impact on the final average sizes of the double
nanoemulsions obtained (as shown in Figure 5). In particular, the mean droplet size of
zSDNE-WDS2 was three times smaller than that of zSDNE-WDS1 (as shown in Figure 5).
This observation possibly contributes to the significantly enhanced stability of zSDNE-
WDS2, incubated in RT, 4 and 40 ◦C over time.
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Accelerated stability studies, which involve subjecting a pharmaceutical preparation
to elevated temperatures for a specific duration, can provide insights into the preparation’s
shelf-life stability, often indicating a longer shelf life than the actual measured time [47]. As
seen in Figure 5B, zSDNE-WDS2 demonstrated remarkable stability throughout the investi-
gation, even under an elevated temperature environment. This extended stability can be
attributed to the inherent thermodynamic stability of microemulsions, a characteristic that
promotes their prolonged shelf life. The sustained long-term stability of the microemulsions
developed in this study can be attributed to their small droplet size (Figure 3) and the
relatively high surface charges of the final nanoemulsions (Figure 6) that collectively inhibit
droplet coalescence [48].

SNEDDSs are initially composed of a single-phase oil that, upon exposure to gastric
fluids and peristaltic movements, transforms into nanosized emulsion droplets. These
minuscule droplets possess the capability to traverse the intestinal barrier, thereby en-
hancing the absorption of lipophilic drugs characterized by low bioavailability [45]. An
illustrative instance involves chlorpromazine, classified as a BCS class II drug, which has
been successfully loaded into SNEDDSs. The deployment of such systems has yielded a
notable 2 to 6-fold increase in the area under the curve (AUC) values of chlorpromazine,
surpassing the performance of the free drug in pharmacokinetic assessment [49]. However,
while SNEDDSs are extensively employed for improving the bioavailability of predom-
inantly lipophilic drugs, our investigation represents a pioneering effort. To the best of
our knowledge, there has been no prior exploration into the utilization of self-emulsifying
nanoemulsions for encapsulating hydrophilic drugs.

CLSM provides a powerful tool for visualizing fluorescently labeled compounds with
exceptional optical microscopy resolution. In our study, we utilized rhodamine B to stain
the internal aqueous phase and DPhA to stain the outer oil phase. This strategic staining
allowed us to investigate whether the encapsulated hydrophilic fluorescent probe had
permeated into the surrounding aqueous continuous phase or, more desirably, remained
confined within the internal aqueous droplets. Figure 1 clearly indicates that rhodamine B
resided within the oil droplets and exhibited no signs of leakage into the external aqueous
phase. In another study, this phenomenon is further exemplified in self-double emulsions
containing epigallocatechin-3-gallate (EGCG) [50].

The release profiles of zanamivir from SDNE-WDS1 and SDNE-WDS2 revealed a
markedly slower release rate when compared to the rapid release observed with the free
drug, as illustrated in Figure 7. Comparable release patterns have been reported in previous
research involving other agents incorporated into SDEDDSs. For instance, an SDEDDS
loaded with EGCG exhibited a release of approximately 30–55% of the active compound
within 2 h, depending on the ratio between the oil and emulsifier used [50]. In our own
investigations, both formulations exhibited nearly identical drug release profiles over time
despite differences in their compositions. It is interesting to note that a similar phenomenon
was observed in the release kinetics of several pidotimod SDEDDSs, where researchers
explored varying phospholipid-to-cosurfactant ratios [24]. Nevertheless, Shi et al. explored
Solid Lipid Nanoparticles (SLNs) as a potential formulation for zanamivir encapsulation
with the aim of improving its oral delivery and enhancing its transport across the intestinal
epithelial layer. Their study revealed an initial burst release effect of zanamivir from SLNs,
with approximately 70% of the drug being released within the first 2 h. This burst release
phenomenon is probably attributed to the presence of free drug within the system, which
was not effectively encapsulated within the lipid nanoparticles [38]. The drug-loaded SLNs
exhibited relatively low entrapment efficiencies for the antiviral agent, ranging from 35% to
56%, ultimately resulting in a significant amount of unformulated zanamivir being rapidly
released [37,38]. A similar trend of relatively low encapsulation efficiency was observed in
liposomal systems, where zanamivir entrapment ranged from 28% to 35% [51].

In contrast, previous work conducted in our laboratory demonstrated markedly higher
encapsulation efficiencies for zanamivir in double emulsions, reaching levels of 96.6–98.9%,
indicating a substantial degree of drug entrapment within these systems [10]. In this current
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study, SDNE-WDSs achieved approximately 75% drug encapsulation. This high level of
drug encapsulation indicates their potential as effective carriers for zanamivir. These
results stress the promise of SDNE-WDSs as a robust platform for enhancing the delivery
of various hydrophilic drugs, offering potential advantages in terms of drug stability and
improved intestinal permeability.

To date and to the best of our knowledge, four publications have reported on in vitro
and/or in vivo attempts to enhance the oral bioavailability of zanamivir. In our previous
work, we widely discussed two of these publications that attained improved bioavailability
by means of prodrugs [8,33]. The remaining two papers explored zanamivir encapsulation
within drug delivery systems and examined permeation coefficients across Caco-2 mono-
layers. In one study, liposomal zanamivir increased drug permeation by 2.2 to 3.0-fold
compared to the unformulated drug [51]. In contrast, another investigation found that
zanamivir penetration was actually lower than that of the control solution when encapsu-
lated within SLNs [38]. In addition to the aforementioned studies, our recently published
research elucidated the superior apparent and effective permeability coefficients observed
upon the incorporation of zanamivir into double emulsion systems [10].

In the present study, the results from in vitro PAMPA studies demonstrated a signifi-
cant improvement in zanamivir membrane diffusion permeability upon emulsification of
SDNE-WDSs, as depicted in Figure 8. To further explore the enhancement of oral zanamivir
absorption facilitated by SDNE-WDSs, we conducted in situ studies utilizing the SPIP sys-
tem in rats. Notably, the transport of encapsulated molecules across the jejunum of humans
is remarkably predicted using this model [7]. Our findings, illustrated in Figure 9, revealed
highly promising Peff values, where SDNE-WDSs successfully converted zanamivir into a
highly permeable compound, superior to the unformulated drug.

It is worth noting that the permeability values obtained in the rat model exceeded
those observed in the in vitro studies. This observation is probably owing to the inher-
ent differences between the two methods. PAMPA is a model for assessing the passive
diffusion permeability across an artificial membrane. Conversely, the in situ SPIP system
encompasses passive as well as active pathways involved in the permeation of a molecule
through biological membranes [52–54].

Metoprolol offers a commonly accepted standard molecule for determining the BCS
permeability classification of various compounds. In previous work, we established the
permeability effective coefficient of metoprolol to be 4 × 10−5 cm/s, utilizing the SPIP
model in rats [55]. It is particularly interesting that in the present study, under similar
experimental conditions, the effective permeability values of zanamivir within SDNE-WDSs
were approximately 3.5–5.5-fold higher than that of metoprolol. This outcome is particularly
significant when considering the standard boundaries for low and high permeability classes.
Our SDNE-WDSs have effectively masked the inherent poor permeability of zanamivir,
successfully transforming this antiviral agent into a BCS class I compound characterized by
high solubility and high permeability. Furthermore, in comparison to alternative carriers
such as liposomes, SDNE-WDSs exhibit outstanding advantages due to their anticipated
low production costs and high potential for efficient drug encapsulation [56,57].

5. Conclusions

The current study was undertaken to optimize the formulation of Self-Double Na-
noemulsifying Winsor Delivery Systems (SDNE-WDSs) with the specific objective of aug-
menting the intestinal absorption of zanamivir, classified as a BCS class III compound.
These SDNE-WDSs represent microemulsions that, upon emulsification, transform into
colloidal carriers characterized by a high encapsulation efficacy. Results obtained from
both in vitro permeability studies and in situ intestinal perfusion experiments reveal that
zanamivir-loaded SDNE-WDSs exhibit enhanced intestinal membrane permeability com-
pared to the unformulated drug. While these findings are promising, further comprehensive
investigations are warranted to show pharmacokinetic analysis and to gain a deeper un-
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derstanding of the precise absorption mechanisms underlying the enhanced absorption
observed in the developed SDNE-WDSs.
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