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Abstract: Fungal keratitis (FK) is a corneal mycotic infection that can lead to vision loss. Furthermore,
the severity of FK is aggravated by the emergence of resistant fungal species. There is currently
only one FDA-approved formulation for FK treatment forcing hospital pharmacy departments to
reformulate intravenous drug preparations with unknown ocular bioavailability and toxicity. In the
present study, natamycin/voriconazole formulations were developed and characterized to improve
natamycin solubility, permanence, and safety. The solubility of natamycin was studied in the presence
of two cyclodextrins: HPβCD and HPγCD. The HPβCD was chosen based on the solubility results.
Natamycin/cyclodextrin (HPβCD) inclusion complexes characterization and a competition study
between natamycin and voriconazole were conducted by NMR (Nuclear Magnetic Resonance).
Based on these results, several eye drops with different polymer compositions were developed and
subsequently characterized. Permeability studies suggested that the formulations improved the
passage of natamycin through the cornea compared to the commercial formulation Natacyn®. The
ocular safety of the formulations was determined by BCOP and HET-CAM. The antifungal activity
assay demonstrated the ability of our formulations to inhibit the in vitro growth of different fungal
species. All these results concluded that the formulations developed in the present study could
significantly improve the treatment of FK.

Keywords: fungal keratitis; cyclodextrin; natamycin; voriconazole; PET/CT imaging; nuclear
magnetic resonance; cyclodextrin aggregates

1. Introduction

Fungal keratitis (FK) is a corneal mycotic infection mainly caused by corneal trauma
with contaminated plants or objects [1,2], the misuse of contact lenses [3,4], prolonged use
of topical antibiotics or corticosteroids [5], eye surgeries [6], or the immunocompromised
state of the patient [7,8], among others. FK is a severe disease that can lead to vision loss or
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even the complete loss of the eye. FK is usually caused by yeasts such as Candida albicans or
filamentous fungi such as Aspergillus spp. or Fusarium spp., but it can be caused by more
than 100 different species [3,8,9].

The prognosis of FK lies in early diagnosis and correct treatment. One of the biggest
problems of FK diagnosis is that the patient may be asymptomatic after the trauma, so
the diagnosis might be delayed for days or even weeks until the patient suffers some
symptom (ocular pain or sensitivity to light, among others) [10]. Furthermore, the non-
specific symptoms of FK can lead to erroneous diagnosis and treatment; for this reason, the
microbiological diagnosis must be mandatory to choose a suitable treatment.

There is currently only one formulation approved by the Food and Drug Admin-
istration (FDA) for the treatment of FK, Natacyn®, which is a conventional natamycin
suspension. Natamycin penetration through the cornea to the deeper structures of the
eye is hindered by its low aqueous solubility and high molecular weight. Therefore, to
achieve therapeutic concentrations, Natacyn® is administered every hour, leading to the
poor adherence of patients to the treatment.

Natamycin is a polyene drug of amphipathic nature, and it is practically insoluble in
water (30–50 mg/L). Natamycin has a broad spectrum of action against filamentous fungi
(e.g., Aspergillus spp., Fusarium spp.) [11] and yeasts (e.g., Candida albicans) [12]. However,
although in vitro studies showed natamycin to be effective against Fusarium spp., this did
not translate into favorable clinical outcomes, probably due to its poor penetration into the
deeper corneal layers [13].

In contrast, voriconazole (a fluconazole derivative) is a triazole with a broad spectrum
against Aspergillus spp., Candida spp., Fusarium spp., Scedosporium spp., and Paecilomyces spp.,
among other fungal species [14]. Voriconazole is widely used for the treatment of FK [6,15,16],
but there is still no commercial ophthalmic formulation approved by the FDA or the Euro-
pean Medicines Agency (EMA). Only formulations marketed and approved for oral and
intravenous routes are available [17,18]. For this reason, hospital pharmacy departments
must reformulate voriconazole formulations intended for other administration routes, usu-
ally intravenous. These formulations are reconstituted with ophthalmic buffers, but their
toxicity, bioavailability, and stability remain unknown in most cases. Moreover, the high
nasolacrimal drainage leads to short ocular permanence and to the systemic absorption of
the formulation that may trigger side effects.

The severity of FK is aggravated by the emergence of resistant fungal species. Anti-
fungal combination therapy is more useful than monotherapy in antifungal-resistant fungi
infections [19]. For this reason, several studies have been conducted to evaluate different
antifungals combinations [20] or combinations between antifungals and other drugs [21].
Previous studies have shown that the combination of natamycin and voriconazole may
be more effective, showing synergism or an additive effect in certain species such as
Fusarium spp. [20,22,23].

Ocular formulations must also be designed considering excipients that are safe for
ophthalmic administration and that enhance the formulation properties. The use of cy-
clodextrins might be considered a suitable approach to improve drug solubility [24]. More-
over, according to the EMA, some cyclodextrins, such as 2-hydroxypropyl-β-cyclodextrin
(HPβCD), have demonstrated ophthalmic safety, as well as improved drug permanence on
the ocular surface and transcorneal permeability [25].

The main goal of this work was to develop a new ophthalmic formulation for the
combination of natamycin and voriconazole based on the need to find an effective and non-
invasive treatment for FK. Natamycin and voriconazole formulations were characterized
by means of solubility, Nuclear Magnetic Resonance (NMR), pH, osmolality, and viscosity
studies. The in vitro release was evaluated to assess the release kinetics. Ocular safety
was evaluated by two different organotypic cytotoxicity models, Bovine Corneal Opacity
and Permeability (BCOP) assay and Hen’s Egg Test—Chorioallantoic Membrane (HET-
CAM). Bioavailability properties were evaluated using freshly excised bovine corneas.
Ocular permanence was assessed by a corneal mucoadhesiveness test and confirmed by an
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in vivo ophthalmic permanence assay using Positron Emission Tomography/Computed
Tomography imaging (PET/CT imaging). In addition, the antifungal susceptibility was
studied by a disc diffusion method.

2. Materials and Methods
2.1. Materials

Natamycin was purchased from LabNetwork® (Saint Paul, MN, USA); Voriconazole
was procured by Normon® (Madrid, Spain); Hyaluronic Acid (HA) (MW 1.4 × 106 Da) was
obtained from Acofarma® (Barcelona, Spain); 2-hydroxypropyl-β-cyclodextrin (HPβCD)
(Kleptose®, 0.65 molar substitution ratio, MW 1399 Da) was obtained from Roquette® Laisa
S.A. (Valencia, Spain); 2-hydroxypropyl-γ-cyclodextrin (HPγCD) (0.6 molar substitution
ratio, MW 1580 Da) was purchased from Sigma Aldrich® (Darmstadt, Germany); Liquifilm®

was obtained from Allergan® Pharmaceuticals Ireland (Mayo, Ireland); Poloxamer (P407)
and Polyvinyl alcohol (PVA) (Mw 30,000–70,000 Da) were procured by Sigma Aldrich; and
Methyl Cellulose (MC) (1500 cP) was procured by Shin-Etsu (Japan).

2.2. Phase Solubility Diagrams

Solubility diagrams of natamycin were obtained according to the Higuchi and Connors
methodology [26]. Natamycin complex stability constants were determined using the
solubility diagrams.

The solubility assay was based on the addition of an excess of the drug to different
solutions with increasing concentrations of two different cyclodextrins, 2-hydroxypropyl-
β-cyclodextrin (HPβCD) or 2-hydroxypropyl-G-cyclodextrin (HPγCD). Cyclodextrin so-
lutions were maintained for 7 days in an orbital shaker (VWR®) (25 ± 0.5 ◦C, 200 rpm)
to achieve the maximum solubility of natamycin. Afterwards, the resultant solutions
were centrifugated (Eppendorf® Centrifuge 5804R) at 12,000 rpm for 30 min and 25 ◦C.
Natamycin concentration was determined by UV-vis spectrophotometry (Agilent® Cary
UV 60, λ = 310 nm) after dilution of an aliquot in 0.1 M acetic acid. Each measurement was
performed in triplicate.

Solubility diagrams were obtained by representing the concentration of natamycin
(mM) against the concentration of cyclodextrins (mM). The slope obtained from the sol-
ubility diagrams, the natamycin water solubility (S0), and the natamycin solubility in
the intercept (S0 extrap) were used to calculate the apparent stability constant (K1:1 or
Kd) assuming the obtention of 1:1 ratio inclusion complexes. The equations described
by Loftsson et al. [27] were used to calculate the complexation efficiency (CE) and the
natamycin:cyclodextrin molar ratio (D:CD) values.

2.3. Morphological Analysis by Transmission Electron Microscopy (TEM)

The morphological analysis of the particles of the saturated solution of natamycin in
40% (w/v) HPβCD solution and the saturated solution of natamycin in 40% (w/v) HPβCD
solution and 1% (w/v) voriconazole solution were evaluated using a JEOL JEM-F200CF-
HR microscope (JEOL®. Peabody, MA, USA). Samples were placed on copper grids and
stained with 2% (w/v) phosphotungstic acid. Samples were dried and evaluated by TEM
observation using an accelerating voltage of 200 kV.

Particle size was measured using Image-Pro Plus Image Analysis Software Version
6.0.0.260 (Media Cybernetics, Inc., Rockville, MD, USA).

2.4. Natamycin Solubility with HPβCD and Different Hydrophilic Polymers

The solubility of natamycin was studied with 20% (w/v) HPβCD and different ratios
of hydrophilic polymers, these being the following: polyvinyl alcohol (PVA), hyaluronic
acid (HA), and poloxamer 407 (P407). This study was carried out to assess the differences
of natamycin in terms of solubilization efficiency.
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Solubility was determined by adding an excess of natamycin to solutions made up of
20% (w/v) of HPβCD and different concentrations of hydrophilic polymers (see Table 1).
The hydrophilic polymer concentrations were chosen based on previous studies [28,29].

Table 1. Composition of polymeric solutions to assess the potential increase in water solubilization
efficiency of natamycin.

Solution HPβCD % (w/v) Polymer % (w/v)

I 20 -
II 20 0.5% PVA
III 20 1% PVA
IV 20 0.4% HA
V 20 0.1% P407
VI 20 0.5% MC

2.5. Natamycin and Voriconazole Solubility with HPβCD

The solubility of natamycin was studied at different concentrations of HPβCD and
a fixed concentration of voriconazole. Three solutions were made at increasing concen-
trations of HPβCD (20%, 30%, and 40% (w/v)) and 1% (w/v) voriconazole. An excess of
natamycin was subsequently added to each solution. Similarly, voriconazole solubility
was also studied at different concentrations of HPβCD and a fixed concentration of 0.4%
(w/v) natamycin.

The resultant solutions were incubated for 7 days. Afterwards, the solutions were cen-
trifugated (Eppendorf® Centrifuge 5804R) at 12,000 rpm for 30 min and 25 ◦C. Natamycin
concentration was determined by UV-Vis spectrophotometry (Agilent® Cary UV 60 λ = 310 nm)
by previously diluting an aliquot in acetic acid 0.1 M. Each measurement was made in triplicate.

2.6. Nuclear Magnetic Resonance (NMR) Studies

Liquid-state NMR spectra were conducted at 25 ◦C on a Bruker NEO 17.6 T spectrom-
eter (proton resonance 750 MHz), equipped with a 1H/13C/15N triple resonance PA-TXI
probe and PFG shielded z-gradient that uses 5 mm standard OD tubes. The spectrometer
control software was TopSpin® 4.0. The chemical shifts are referenced to the lock deu-
terium solvent. Spectra were processed and analyzed with Mestrenova® software v14.0
(Mestrelab® Inc., Santiago de Compostela, Spain).

Samples containing natamycin, voriconazole, and/or HPβCD were prepared in 5 mm
standard tubes. The exact concentration of the compounds is indicated in each case.

A two-dimensional HSQC multiplicity edited 1H-13C spectrum was measured (pulse
sequence “hsqcedetgpsisp2.4” of the Bruker library) for a sample prepared with 10 mM
of natamycin in 0.6 mL of CD3OD. The INEPTs transfers were optimized for a nominal
value of the scalar coupling 1JCH of 145 Hz. The delay for multiplicity selection was set to
1/(2·1JCH) to detect with the same sign signals of CH3 and CH groups and with opposite
phase CH2 groups. The relaxation delay (d1) and the FID acquisition time (at) were 1.6 and
0.112 s, respectively. The spectrum was acquired with 2048 and 160 complex points in the
t2 and t1 dimensions, respectively. The number of scans per t1 increment was 16 and the
total measurement time was ~1 h.

One-dimensional Saturation Transferred Difference 1H spectra (STD) [30,31] were
measured for a sample prepared with 10 mM of natamycin and 10 mM of HPβCD in 0.6 mL
of D2O. The selective saturation consisted of a train of soft gaussian-shaped pulses of 50 ms
duration with a 1 ms interpulse delay. This saturation was applied during 2 s at a specific
frequency of the 1H spectrum and covers a region of the spectrum of ±125 Hz around the
chosen frequency (i.e.,±0.17 ppm in a 750 spectrometer). The STDoff saturation was applied
at 20 ppm. The STDon saturation was applied at the frequency of one specific aromatic
proton signal of natamycin and does not affect any of the signals of the cyclodextrin receptor.
The STDon and STDoff scans were measured in alternate scans and subtracted by the phase
cycling providing the subtracted STDoff-on spectrum. Two STD spectra were measured by
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placing the STDon saturation over a specific signal of natamycin at 6.79, 6.05, and 5.91 ppm
corresponding, respectively, to protons H3, H17-H22, and H2. Each spectrum was acquired
in 15 min with 128 scans and a 6.75 s per scan distributed as 2 s of pre-scan delay d1, 2 s of
STD saturation-time, and 2.75 s of FID acquisition time.

A 1H-NMR titration assay was carried out with the one-dimensional 1H spectrum
(pulse sequence “zg” of the Bruker library) with 32 scans and a relaxation delay (d1) of 2 s,
and a fid (free-induction decay) acquisition time (aq) of 2.75 s was measured. The titration
study was carried out at a constant concentration of voriconazole and HPβCD of 5.62 and
5.56 mM. The concentrations of natamycin explored during the titration were 0, 1.05, 2.10,
3.15, 4.21, 5.26, 6.31, 7.36, 8.41, 9.46, and 10.51 mM.

2.7. Preparation of Formulations

Based on the results of the previous sections, formulations with 40% (w/v) HPβCD,
1% (w/v) voriconazole, and 0.7% (w/v) natamycin were prepared.

The concentration of cyclodextrin (HPβCD) required to solubilize 1% (w/v) of voricona-
zole was established at 20% (w/v) in previous studies by using voriconazole solubility
diagrams [32].

An aqueous solution (SLV) was prepared by adding 40% (w/v) HPβCD to MilliQ®

water until complete solubilization. Then, 1% (w/v) voriconazole and 0.7% (w/v) natamycin
were added to the cyclodextrin solutions and subsequently dispersed by magnetic stirring
(200 rpm) at room temperature until complete solubilization.

Two types of hydrogels were prepared with the purpose of increasing the permanence
of the formulations on the ocular surface: hyaluronic acid hydrogel (AHNV) and polyvinyl
alcohol-based hydrogel (Liquifilm®) (LNV).

2.7.1. Preparation of the Hyaluronic Acid Hydrogel (AHNV)

The AHNV was prepared based on previous studies [33,34]. An amount of 0.4% (w/v)
HA was added to the aqueous solution (SNV) and dispersed by magnetic stirring (200 rpm)
at room temperature until complete solubilization.

2.7.2. Preparation of the Polyvinyl Alcohol-Based (Liquifilm®) Hydrogel (LNV)

The LNV was prepared based on previous studies where Liquifilm® was chosen as a
vehicle for the preparation of a topical ophthalmic formulation of tacrolimus [35]. In addi-
tion, Liquifilm® is used in ophthalmic pharmaceutical compounding for the preparation
of antibacterial eye drops in the hospital pharmacy department [36]. An amount of 40%
(w/v) HPβCD was added to 50% of the final volume of Liquifilm® and dispersed under
low-intensity magnetic stirring (50 rpm) until its complete solubilization for 12 h at room
temperature to avoid bubble formation. Afterwards, the formulation was made up to the
final volume, and 1% (w/v) voriconazole and 0.7% (w/v) natamycin were added under
magnetic stirring (200 rpm) until complete dissolution.

2.8. Transparency

The transparency of the formulations was measured by recording the transmittance in
a wavelength range from 800 to 200 nm, using a spectrophotometer (Agilent® Cary UV 60).
The wavelength range includes the infrared light band (780 nm onwards), the visible light
(380 to 780 nm), and the ultraviolet light band (100 to 380 nm) [37]. Maximum transparency
is considered when the transmittance values are 100% in the visible light range. Each
formulation was measured in triplicate.

2.9. Osmolality, pH, and Viscosity Measurements

Osmolality measurements were taken with a Micro-Osmometer (Fiske® Model 210).
The pH was measured using a pH meter (HI5221 HANNA®) at 25 ± 0.5 ◦C. Viscosity was
tested with a rotational viscosimeter (Visco QC 300 Anton Paar®) at 25 ◦C and 20 rpm. Each
determination was carried out in triplicate.
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2.10. Quantitative Analysis: Ultra-High-Performance Liquid Chromatography (UHPLC)

The concentrations of natamycin and voriconazole were determined using a UPLC
Waters HClass Plus (Waters, France) with an FTN injector and PDA detector. The column
used was a Waters Acquity BEH C18 (2.1 × 50 mm, 1.7 µm) thermostated at 25 ◦C. The
mobile phase was acetonitrile:ammonium acetate buffer (30:70 v/v) using a 0.5 mL/min
flow rate. The concentration determination was performed at a wavelength of 310 nm
for natamycin and a wavelength of 256 nm for voriconazole. The chromatographs were
analyzed using the software Empower 3 (Waters®). Amounts of 10 µL of samples were
injected and the retention time was 0.58 s for natamycin and 1.47 s for voriconazole.
Calibration curves were constructed and the R2 values obtained were 0.99 for both drugs.

2.11. In Vitro Release Studies

The in vitro release study of natamycin and voriconazole from the developed formula-
tions is useful for predicting their in vivo performance. Franz diffusion cells were used to
determine the release profile. Visking® dialysis membranes (Medicel® membranes Ltd.)
with a 12–14 KDa cut-off (0.784 cm2 available surface area) were placed between donor
and receptor compartments. An amount of 0.5 mL of formulation was added into the
donor compartment, while the receptor compartment was filled in with 6 mL of simulated
lacrimal fluid (SLF). The composition of SLF was described in a previous publication by
Ceulemans et al. [38]. The Franz cells were kept thermostated at 37 ◦C and homogenized
by magnetic stirring (200 rpm) in a bath during the assay.

The concentration of both drugs was determined by the UPHLC method previously
described (see the Ultra-High-Performance Liquid Chromatography section). Apparent
permeability (Papp) and flux across the membrane were calculated as described in previ-
ous studies [32].

2.12. Ex Vivo Corneal Permeability Studies

The ex vivo corneal permeability was carried out using fresh bovine eyes obtained
from the local slaughterhouse (Compostelana de Carnes S.L., Santiago de Compostela,
Spain). The corneas were excised with a scalpel and immediately placed between the
Franz cell donor and the receptor compartment with the outer side towards the donor
so that the outer part of the cornea was in contact with the formulation. The receptor
compartment was filled in with 6 mL of PBS, while 0.5 mL of formulation was placed in
the donor chamber. The Franz cells were kept thermostated at 37 ◦C and homogenized
by magnetic stirring (200 rpm) in a bath during the assay. The concentrations of both
drugs were determined by the UHPLC method previously described (see the Ultra-High-
Performance Liquid Chromatography section). Apparent permeability (Papp) and flux
across the membrane were calculated as described in previous studies [32].

2.13. Ocular Irritation Test

BCOP and HET-CAM assays were chosen to evaluate the potential irritation pro-
duced on the ocular surface. These methods comply with the 3Rs principles (replacement,
reduction, and refinement) as described in Directive 2010/63/EU of the European Par-
liament and of the Council of 22 September 2010 on the protection of animals used for
scientific purposes [39].

2.13.1. Bovine Corneal Opacity and Permeability Assay (BCOP)
Corneal Opacity

A variation of the method previously described in the Invittox Protocol nº 437 [40]
was carried out to detect potential ocular corrosives and severe irritants using fresh bovine
corneas. The assessment of ocular irritation was extensively described in previous stud-
ies [32]. Opacity (transmitted light (TL)) and corneal transparency (transmittance values)
were measured with a luxmeter (Gossen Mavolux 5032C USB) and a spectrophotometer
(Agilent® Cari 60 UV), respectively.
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First, the two parameters (opacity and transparency) were measured with fresh corneas.
Immediately, the corneas were placed in Franz cells as described in the “Ex vivo corneal
permeability studies” section. Then, the corneas were treated for 60 min by introducing
1 mL of PBS into the donor chamber and both parameters were subsequently measured.
Following this period, 1 mL of the formulation was added to the corneas and maintained
for 10 min, then the formulation was withdrawn, and 1 mL of PBS was added to the
corneas and maintained for 120 min. The previous parameters were measured again. Each
formulation was tested in triplicate.

Corneal Permeability

The corneas used in the “Corneal Opacity” section were placed back into the Franz cells.
The receptor chamber was filled in with 6 mL of PBS, while 1 mL of 0.4% (w/v) fluorescein
was placed into the donor chamber. A sample of each Franz cell was collected from the
receptor chamber to determine the amount of fluorescein that crossed the treated corneas
at 90 min. Fluorescein concentration was measured by a spectrophotometer (Agilent® Cary
60 UV) at a wavelength of 490 nm.

Hen’s Egg Test—Chorioallantoic Membrane (HET-CAM)

HET-CAM is described in The Interagency Coordinating Committee on the Validation
of Alternative Methods (ICCVAM) [41]. Fertilized broiler chicken eggs were placed in an
automatic rotation incubator and kept for 8 days at 38 ± 0.5 ◦C and 65% relative humidity
(RH). At 24 h before the test, the automatic rotation was stopped and on the 9th d of
incubation the test was conducted. Each egg was opened, and the inner membrane was
removed. Amounts of 0.3 mL of formulation, positive control (0.1% (w/v) NaOH solution),
or negative control (0.9% (w/v) NaCl solution) were administered onto the surface of the
chorioallantoic membrane (CAM). Hemorrhage, vascular lysis, or coagulation reactions
were assessed (if applicable) by direct observation of the CAM for 300 s.

2.14. Corneal Mucoadhesiveness

The corneal mucoadhesiveness method was designed and described in previous stud-
ies [32]. Fresh bovine corneas were excised and fixed to the upper probe of a Universal
Testing Machine (Shimadzu® AGS-X Precision Universal Tester). The formulations were
introduced into the weighing bottles. The corneas were immersed 2 mm into the formula-
tions for 30 s and then retired to register the force–displacement curve. The bioadhesion
work (J) was calculated from the area under the curve (AUC).

2.15. PET In Vivo Assay: Quantitative Ocular Permanence Study

The ocular permanence of natamycin/voriconazole on the ocular surface was evalu-
ated in Sprague–Dawley rats by a Positron Emission Tomography (PET) and Computed
Tomography (CT) combined system (PET/CT Albira® microPET/CT Bruker Biospin, Wood-
bridge, CN, USA). The procedure was described in previous studies [32,34,35,42]. All the
animal studies and their protocols were approved by the Galician Network Committee for
Ethics Research in accordance with the Spanish and EU applicable legislation (86/609/CEE,
2003/65/CE, 2010/63/EU, RD 1201/2005 and RD 53/2013). SNV, AHNV, and LNV were
radiolabeled with 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG). An amount of 7.5 µL of
formulation containing 0.25 MBq of radioactivity was administrated into each eye of the rat.
Immediately, a static PET frame was acquired at 0, 30, 75, 120, 240, and 300 min. Animals
were only anesthetized during the image acquisition. Rats were fitted with Elizabethan col-
lars to prevent them from touching their eyes and removing part of the formulation. ROIs
(Regions of interest) were manually obtained from the PET images to obtain the ocular
remaining formulation (%) curve. Then, data were corrected considering the radioiso-
tope decay (18F half-life: 109.7 min). Each formulation was evaluated in quadruplicate.
The results were analyzed using a non-compartmental model. The area under the curve
(AUC 0

∞), terminal half-life (t1/2), and mean residence time (MRT) were calculated.



Pharmaceutics 2023, 15, 35 8 of 26

2.16. Disc Diffusion Method by the Kirby–Bauer Method

Candida albicans ATCC 90231 (C.A 90231), Candida albicans ATCC 90028 (C.A 90028),
Paelomyces lilacinus ATCC 90028 (PL), Aspergillus fumigatus (AF), Paelomyces lilacinus (PL), and
Fusarium solanii (FS) were used to perform the diffusion disc method. Aspergillus fumigatus,
Paelomyces lilacinus, and Fusarium solanii isolates were obtained at the bank of the Uni-
versity Clinical Hospital of Santiago de Compostela from FK infections. The isolates were
morphologically, biochemically, and molecularly characterized prior to testing. Modified
Mueller–Hinton plates were inoculated with suspensions of fungal stock
(1 × 106–5 × 106 UFC/mL). The inoculated plates were incubated at 35 ◦C for 24 h. Then,
antifungals discs (containing 20 µL of different formulations (Table 2)) were placed on
the inoculated plates. The inhibition zone diameters were measured after incubating the
plates containing antifungal discs at 35 ◦C for 24 h for Candida Albicans species and 48 h for
Paelomyces and Aspergillus species.

Table 2. Composition of tested formulations in Kirby–Bauer Disc Diffusion Method.

Formulation Composition

SV 40% (w/v) HPβCD + 1% (w/v) voriconazole
SN 40% HPβCD + 0.7% (w/v) natamycin

SNV 40% HPβCD + 0.7% (w/v) natamycin + 1% (w/v) voriconazole
VFEND Vfend® (1% (w/v) voriconazole + 16% (w/v) SBEβCD)

NTC Natacyn® (5% (w/v) natamycin)

3. Results and Discussion
3.1. Phase Solubility Diagrams

Due to the low water solubility of natamycin (30–50 mg/L [43]), improving its aqueous
solubility was essential for the development of new ophthalmic formulations.

Solubility diagrams were created with HPβCD and HPγCD (Figure 1). The cyclodex-
trins were chosen based on their large size (1135 and 1761 g/mol, respectively) and the
volume of their cavities. In addition, both have been previously studied for the develop-
ment of ophthalmic formulations, demonstrating their compatibility with this route [44,45].
In addition, the literature prior to these studies has demonstrated the ability of cyclodextrins
to reduce ocular irritation, improve corneal permeability, and increase the bioavailability of
drugs with very low water solubility [46,47].
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The phase solubility diagrams for natamycin/cyclodextrin inclusion complexes (Figure 1)
were AN type. These data agree with the study of Koontz and Marcy [43]. They evaluated
the solubility of natamycin with three natural cyclodextrins (αCD, βCD, and γCD) and
with HPβCD, a βCD derivative. However, AN-type phase solubility diagrams occurred only
with γCD and HPβCD. In the solubility studies, an initial solubility of 0.0353 ± 0.014 mg/mL
was obtained for natamycin without cyclodextrin. Similar values were obtained in Koontz
and Marcy’s study (0.034 mg/mL) [43].

The AN-type phase solubility diagram shows the self-association of cyclodextrin
aggregates or their complexes, which can decrease the drug solubility [48].

The possible existence of cyclodextrin aggregates or their complexes was evaluated
for saturated solutions of natamycin in 40% (w/v) HPβCD solution (Figure 2b) and sat-
urated solution of natamycin in 40% (w/v) HPβCD solution and 1% (w/v) voricona-
zole solution (Figure 2a). The resulting Transmission Electron Microscopy (TEM) images
(Figure 2) showed the formation of nanometric spheric aggregates. The saturated so-
lution of natamycin in 40% (w/v) HPβCD solution showed an average particle size of
80.25 ± 35.81 nm. However, the saturated solution of natamycin in 40% (w/v) HPβCD
solution in the presence of 1% (w/v) voriconazole showed larger particles with an average
particle size of 148.96 ± 32.89 nm.
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The cyclodextrin aggregation occurs because of intermolecular hydrogen bonds among
cyclodextrin hydroxyl groups (OH). These hydrogen bonds lead to the assembly of the
dissolved CD molecules into CD aggregates. The resultant nanoparticles, formed by
drug/CD complexes, have demonstrated the ability to improve drug permeation across
corneal membranes better than the individual inclusion complexes. The CD aggregates
can behave in the same way as nanosystems, controlling drug release and increasing
residence time at the site of administration [49]. Loftsson and Stefansson (2007) described
a system based on dexamethasone/γCD complex aggregates intended for topical ocular
administration with sustained delivery and enhanced bioavailability of dexamethasone [50].
Other authors have described similar results for drugs like dorzolamide [51], irbesartan [52],
or cyclosporin A [53], among others.

Table 3 shows the apparent stability constant (K1:1), complexation efficiency (CE),
natamycin:cyclodextrin complex molar ratio (D:CD), coefficient of determination (R2), and
water natamycin solubility S0.
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Table 3. Values for K1:1, CE, and the D:CD ratio, obtained from the natamycin/cyclodextrin complex
in water at 25 ◦C.

Inclusion
Complex R2h K1:1

(M−1) *
CE
(M)

S0
(M) D:CD (mol:mol)

Natamycin/HPβCD 0.9717 1102.32 ± 89.09 0.061 5.50·10−5 ± 2.06·10−5 1:17.50
Natamycin/HPγCD 0.9943 891.08 ± 26.39 0.049 5.50·10−5 ± 2.06·10−5 1:21.41

* K1:1 calculated using S0 (free drug solubility).

K1:1 was calculated on the linear portion of the phase diagram due to the negative de-
viation previously shown [54]. The HPβCD showed a higher K1:1 than HPγCD, suggesting
that the natamycin/HPβCD interactions were stronger than those of natamycin/HPγCD.
Furthermore, HPβCD obtained the best solubilization properties for the natamycin and
showed higher CE values than HPγCD (0.061 and 0.049, respectively). D:CD values were
high for both cyclodextrins (1:17.50 and 1:21.41, respectively), but HPβCD showed the
lowest value, so its bioavailability would be better than that of HPγCD [55].

3.2. Natamycin Solubility with HPβCD and Different Hydrophilic Polymers

The drug solubility in the presence of hydrophilic polymers can be enhanced by
ternary complexation [56]. Natamycin solubility with 20% (w/v) HPβCD and different
hydrophilic polymers is shown in Table 4. Data were compared with natamycin solubility
in the absence of polymers. These data do not show significant differences in natamycin
solubility when the hydrophilic polymers were added to the system.

Table 4. Natamycin concentration in presence of 20% (w/v) HPβCD and different hydrophilic polymers.

HPβCD and Polymers Solutions Natamycin Concentration (mg/mL)

20% HPβCD 5.151 ± 0.206
20% HPβCD + 0.5% PVA 5.740 ± 0.867
20% HPβCD + 1% PVA 5.117 ± 0.484
20% HPβCD + 0.4% AH 4.625 ± 0.464
20% HPβCD + 0.1% P407 4.222 ± 0.574
20% HPβCD + 0.5% MC 4.181 ± 0.309

3.3. Natamycin and Voriconazole Solubility with HPβCD and Voriconazole

Figure 3a shows the natamycin concentration reached with 20%, 30%, and 40% (w/v)
of HPβCD and 1% (w/v) of voriconazole. The voriconazole concentration remained
stable in all HPβCD solutions. Natamycin concentration increased from 6.175 ± 0.658
to 7.951 ± 0.389 mg/mL with increasing HPβCD concentration. These data agree with
the data obtained by interpolation in the phase diagram (Table 5). Figure 3b shows the
voriconazole concentration reached with 20%, 30%, and 40% (w/v) of HPβCD and 0.4%
(w/v) of natamycin. Voriconazole concentrations obtained in the presence of 0.4% (w/v)
natamycin and 20%, 30%, and 40% (w/v) of HPβCD were 12.43 ± 4.71, 15.937 ± 5.05,
and 25.04 ± 1.44 mg/mL, respectively. The concentrations of voriconazole obtained in
the presence of natamycin are similar to those obtained without natamycin in previous
studies [32] (see Table 5).

Table 5. Concentration of natamycin and voriconazole in HPβCD solutions obtained from interpola-
tion in the phase diagrams (Figure 1). The HPβCD phase diagram of voriconazole was published in
previous studies [32].

Natamycin (mg/mL) Voriconazole (mg/mL)

20% HPβCD (w/v) 6.351 15.203
30% HPβCD (w/v) 7.639 22.252
40% HPβCD (w/v) 8.372 29.301
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These results suggest that the incorporation of natamycin into the voriconazole/HPβCD
complexes solution does not affect the solubility of voriconazole in the presence of cyclodex-
trin. To clarify this statement, a competition study of the two drugs for cyclodextrin was
performed using Nuclear Magnetic Resonance (NMR).

3.4. Nuclear Magnetic Resonance (NMR) Studies

Molecular interactions are essential for many biological processes. The binding process
is promoted by the establishment of a number of favorable non-covalent forces between
the molecules that interact and there is a dynamic equilibrium between association and
dissociation events. NMR is one of the methods for the screening of ligands that bind
to a receptor and detect the ligand binding epitope and/or receptor binding site with
quantitative results [57,58].

3.4.1. Detection of Binding Interaction between Natamycin and HPβCD

The 1H-NMR signal assignment of natamycin in CD3OD was obtained from the 1H
and 13C predicted spectrum at 800 MHz in the Human Metabolomic Database [59,60]
in concordance with the experimental 2D edited-HSQC spectrum obtained by us in
Figure S2. The comparison of the 1H spectrum of pure natamycin in CD3OD and the
mixture natamycin:HPβCD 1:1 in D2O denotes relevant changes in the chemical shifts
(i.e., CSPs) that could be due to either a change in the conformation due to the solvent
and/or its binding to HPβCD. To further investigate the possibility of binding interaction
between ligand natamycin and receptor HPβCD in water solution, it was tested by STD
experiments [30,31]. The STDoff reference 1H spectrum of the mixture natamycin:HPβCD
1:1 is shown in Figure 4aa. STDon-off spectra were measured to determine possible inter-
molecular contacts between the ligand and receptor in the mixture. A requisite for the
STDoff-on experiment is that the on-saturation should only affect the signal/s of one of
the two components in the mixture. In this case, placing the on-saturation in the region
where the majority of the protons of HPβCD appear in the 1H spectrum, between 3.2 and
4.6 ppm, should be avoided because in this region a few signals of natamycin are also
present (Figure S2). For this reason, the on-saturation was placed over specific aromatic
signal/s of the ligand natamycin that are well isolated in the 1H spectrum. The STDon-off

spectra (Figure 4aa–ad) show the STD responses; some of them are intramolecular NOE
contacts in natamycin while those that appear well extended and with broad features in
the region between 3.2 and 4.6 ppm were assigned to HPβCD. This result confirms that
there is binding affinity between natamycin and HPβCD.



Pharmaceutics 2023, 15, 35 12 of 26
Pharmaceutics 2023, 15, x FOR PEER REVIEW 13 of 28 
 

 

 

Figure 4. (a) NMR spectra of natamycin:HPβCD 1:1 in D2O showing the assignment of signals of 

natamycin (n) and HPβCD (h). (a) 1H reference spectrum. (b) STDoff-on spectrum with on-saturation 

at 6.79 ppm (H-3 signal of n). (c) STDoff-on with on-saturation at 6.05 ppm (H-17 to H-22 signal of n). 

(d) STDoff-on with on-saturation at 5.91 ppm (H-2 signal of n). The atom numbering used to identify 

the signals of voriconazole follows S1. (b) NMR titration competition assay with natamycin at a 

Figure 4. (a) NMR spectra of natamycin:HPβCD 1:1 in D2O showing the assignment of signals of
natamycin (n) and HPβCD (h). (a) 1H reference spectrum. (b) STDoff-on spectrum with on-saturation
at 6.79 ppm (H-3 signal of n). (c) STDoff-on with on-saturation at 6.05 ppm (H-17 to H-22 signal of n).
(d) STDoff-on with on-saturation at 5.91 ppm (H-2 signal of n). The atom numbering used to identify
the signals of voriconazole follows S1. (b) NMR titration competition assay with natamycin at a
constant molar ratio voriconazole:HPβCD 1:1. Stack of spectra showing the aromatic region of the
1H-NMR spectrum during the titration. The atom numbering used to identify voriconazole (v) and
natamycin (n) follows S1. Stripped lines were drawn to guide the eye for the changes in chemical
shift (i.e., CSPs) of certain signals of voriconazole.
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3.4.2. NMR Titration Competition Study of Natamycin and Voriconazole for Binding
to HPβCD

Having established the affinity between natamycin and HPβCD, the binding affinity
of natamycin was tested in a competition experiment with the ligand voriconazole in water.
The affinity of this later ligand for HPβCD was tested in our laboratory and showed the
formation of an inclusion complex of stoichiometry 1:1 with a dissociation constant KD of
250 mM [32].

Under conditions of weak binding equilibrium of a ligand to a receptor (typically for
KD in the 1 to 1000 mM range), a chemical shift titration is a feasible method to map a
ligand-binding site on a target receptor such as a protein [58] or a cyclodextrin [61] and
may serve to estimate the KD of the equilibrium. The basis of this method under weak
binding is that there is a fast exchange equilibrium between the free and bound species in
the NMR time scale, and the observed chemical shift dobs is a weighted average given by
Equation (1) [57]:

dobs = cfree · dfree + c bound · dbound (1)

where dfree and dbound are the chemical shifts in the free and bound states, respectively,
and cfree and cbound are the molar fraction of the species in the free and bound states,
respectively, with cfree + cbound = 1. Chemical Shift Perturbations (CSPs) can be quantified
as dobs − dfree (in units of Hz) for any signal in the spectrum at any point in the titration to
map the ligand-binding site.

The 1H-NMR spectra of the titration competition assay for the mixtures prepared
of natamycin, voriconazole, and HPβCD are shown in Figure 4b. The experiment was
carried out by the addition of natamycin to a sample containing equimolar concentrations
of voriconazole and HPβCD. It can be seen in Figure 4b that in the course of the titration
certain signals of voriconazole have CSPs, while all the signals of natamycin remain at
the same chemical shift and only increase their intensity. Qualitatively, this observation
strongly suggests that natamycin competes for the same binding site of HPβCD and has
a stronger affinity than voriconazole because as the concentration of natamycin is raised
in the titration the signals of voriconazole move towards their characteristic values in the
free state dfree, which can be explained by a higher molar fraction cfree in Equation (1). In
Table S1 are given the CSPs of several signals of voriconazole in this competition assay.
The data was fit to a competitive binding model (described in supplementary calculations)
and provided a KI = 0.334 mM, which is a value that represents a ca. 700 times higher
affinity of natamycin than voriconazole for binding to HPβCD. In our previous work, the
molecular model of the complex HPβCD:voriconazole [32] showed that voriconazole can
be inserted almost completely into the cavity of HPβCD. Natamycin is a larger molecule
than voriconazole and can only be incorporated partially inside the cavity of HPβCD as
can be seen in the optimized molecular mechanics model of Figure 5. In this model, the
double bonds of natamycin are disposed towards the most hydrophobic side of HPβCD
in proximity to the hydroxypropyl pendant chains and the two polar six-member rings of
natamycin disposed towards the most hydrophilic side of HPβCD.

3.5. Transparency

One of the problems that usually leads to a discontinuation of the FK treatment is
the number of required instillations (1 drop every 1–2 h). In addition, some eye drops
may cause blurred vision due to their organoleptic or physicochemical characteristics
(e.g., color, high viscosity, among other factors), increasing the treatment dropout. Natacyn®

is a cloudy white-to-yellow aqueous suspension containing natamycin particles that can
cause blurred vision after administration. For this reason, transparency measurements
were carried out.

Natacyn® showed transmittance values close to 0 in all light ranges. The results
obtained from transparency measurements are shown in Figure 6. All formulations (SLV,
AHNL, and LNV) were practically transparent (transmittance ' 100%) in the infrared
(780 nm onwards) and visible light range (from 380 to 780 nm). The decrease in trans-
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mittance values in the UV range for all the formulations was possibly associated with
the presence of molecules that absorb in the UV range, such as natamycin 310 nm or
voriconazole 256 nm.
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3.6. Osmolality and pH Measurements

Table 6 shows the pH, osmolality, and viscosity data of the ocular formulations. The
viscosity of AHNV (265.5 ± 37.56 mPa·s) is higher than the viscosity obtained for LNV
(54.292 ± 2.88). The viscosity data for Liquifilm® were 5.827 ± 0.284 mPa·s.
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Table 6. pH, osmolality, and viscosity results.

Formulation pH Osmolality
(mOsm/kg) Viscosity (mPa·s)

SNV 6.10 ± 0.16 304 ± 3.46 9.853 ± 0.326
AHNV 6.34 ± 0.08 344 ± 3.46 265.5 ± 37.56
LNV 7.09 ± 0.02 500 ± 3.46 54.29 ± 2.880

The osmolality data obtained for SNV and AHNV were lower than the osmolality data
for Liquifilm® formulation (LNV). The high osmolality value of LNV (500± 3.46 mOsm/kg)
is due to the osmolality values of the Liquifilm® vehicle (256.5 ± 8 mOsm/kg [62]) used
to formulate the LNV formulation. The osmolality values of all formulations are higher
than the physiological value (290 mOsm/kg); however, in an in vivo system, the high
precorneal clearance would protect the ocular surface from hyperosmolality by removing
the formulation from the corneal surface [63,64].

The new formulations (SNV, AHNV, and LNV) showed pH values within the tolerable
range of the eye (pH range 4 to 8) [46].

3.7. In Vitro Release Studies

The in vitro release profile of the resulting formulations is shown in Figure 7. Papp
(cm/s), flux (µg/min), and R2 are shown in Table 7. All profiles were fitted to a Korsmeyer–
Peppas model, and the R2 values were >0.96 for all tested formulations. The resulting n
values show that both drugs are released by a Fickian diffusion process (n ≤ 0.45) from all
the formulations (SNV, AHNV, and LNV), while natamycin in the Natacyn® formulation
presents an anomalous diffusion mechanism (0.45 < n > 0.89) [65]. However, this value of n
for Natacyn® (0.629) is due to the compensation of the amount of natamycin that diffuses
with the amount of natamycin that dissolves from the solid particles of the suspension in
the diffusion process.
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With respect to Natacyn®, the natamycin particles must be dissolved in the medium
to diffuse through the dialysis membrane, unlike the newly developed formulations
in which the natamycin was already dissolved. For this reason, Natacyn® Papp val-
ues (0.05·10−6 cm/s) were lower than SNV, HAV, and LNV release values (1.398·10−6,
1.010·10−6, and 1.810·10−6 cm/s, respectively).
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Table 7. In vitro release data from natamycin/voriconazole formulations.

Formulation Papp (cm/s) SE· · ·10−7 Flux (µg/min) SE R2 n

SNV Natamycin 1.398·10−6 0.8663·10−7 0.293 0.018 0.981 0.163
HAV Natamycin 1.010·10−6 0.5985·10−7 0.212 0.012 0.965 0.194
LNV Natamycin 1.810·10−6 0.8780·10−7 0.380 0.018 0.998 0.053

Natacyn® 0.050·10−6 0.0612·10−7 0.075 0.009 0.971 0.629
SNV Voriconazole 4.52·10−6 2.722·10−7 1.358 0.081 0.981 0.163

HANV Voriconazole 3.110·10−6 1.800·10−7 0.931 0.053 0.982 0.160
LNV Voriconazole 4.145·10−6 1.606·10−7 1.243 0.048 0.998 0.064

3.8. Ex Vivo Corneal Permeability Studies

The fungal infection, which usually occurs on the corneal surface, reaches the internal
ocular structures such as the aqueous or vitreous humor, causing endophthalmitis. The
corneal epithelium consists of a cell layer bound by tight junctions that resist the perme-
ability of large drug molecules such as natamycin (molecular weight of 665.75 g/mol),
preventing them from reaching the internal structures of the eye. For this reason, it is
common in clinical practice to carry out corneal scrapings to remove the epithelium and,
thus, favor the penetration of drugs. Overall, the infections usually lead to the epithelium
breakdown [66]. The corneal permeability of the developed formulations (SNV, HAV, and
LNV) and Natacyn® was studied to know the natamycin and voriconazole capacity to go
through the corneal structure with and without corneal epithelium.

The corneal permeation data for the epithelized and de-epithelized bovine corneas
are presented in Figure 8. Apparent permeability (Papp), flux, and lag time data were
calculated for both studies and are represented in Figure 9.
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of voriconazole of natamycin and voriconazole formulations across epithelized and deepithelized
bovine corneas. * Natacyn® permeability values are not shown because there was no permeability of
natamycin from this formulation.

Natamycin and voriconazole Papp values were higher in absence of corneal epithelium
than in the presence of corneal epithelium (see data details in Figure 9a,b). Natacyn®

did not show natamycin permeability in the presence of corneal epithelium but it was
improved in de-epithelized corneas (7.17·10−9 ± 8.90·10−9 cm2/s). Other authors, such
as O’Day et al. [67], also described an improvement in the passage of natamycin when the
corneal epithelium was removed.

The administration of natamycin solubilized with HPβCD (In SNV, AHNV and LNV
formulations) improved the passage of natamycin in the presence of corneal epithelium.
This may be because cyclodextrins decrease the resistance of the aqueous layer exerted
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by the tear and the ocular mucosa. Moreover, cyclodextrins enhance the passage across
the cornea by the extraction of cholesterol from the corneal epithelium [68]. Lorenzo
Veiga et al. [69] developed a natamycin micelle formulation in which the values of the
cumulative amount of permeated natamycin were below 0.01 µg/cm2 at 5 h of permeation
in epithelized corneas. The quantities of natamycin permeated with SNV, AHNV, and LNV
were 0.15 ± 0.06, 0.37 ± 0.20, and 0.67 ± 0.66 µg/cm2, respectively at 5 h of permeation in
epithelized corneas.

The values obtained for voriconazole showed, both in the presence and absence
of epithelium, better Papp and flux values than natamycin in the presence of corneal
epithelium (Figure 9a–d).

In addition, in the presence of epithelium, the lag time values show that voriconazole
takes less time to cross the cornea than natamycin (see data details in Figure 9e,f). However,
in the absence of epithelium, the time lag data (Figure 9e) decreased considerably for
natamycin (SNV 36.77 ± 3.028, AHNV 37.85 ± 11.22, and LNV 39.87 ± 6.144 min) with an
average of 38.49 ± 1.19 min instead of 102.98 ± 5.81 min with corneal epithelium.

Permeability, flux, and lag time data show that the limiting step in the penetration of
natamycin through the cornea is mainly the passage through the corneal epithelium.

3.9. Ocular Irritation Test
3.9.1. Bovine Corneal Opacity and Permeability Assay (BCOP)

BCOP data (Figure 10) showed that there were no significant modifications in trans-
parency and opacity after treating the bovine corneas with SNV, AHNV, and LNV for
10 min. An ANOVA test showed no significant differences between C- (PBS) and all
formulations tested.
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Figure 10. (a) Transmittance values in the ultra-visible light spectrum (200–800 nm) of bovine
corneas treated 10 min with SNV, AHNV, and LNV. Values are compared with ethanol (C+: positive
control), PBS (C−: negative control), and untreated corneas. (b) Transmitted light (%) (opacity)
values of bovine corneas treated with SNV, AHNV, and LNV. Data were compared with ethanol
(C+: positive control).

The data obtained in the corneal permeability test showed no passage of fluorescein
and therefore the tested formulations did not modify corneal permeability, maintaining the
integrity of the cornea.

3.9.2. Hen’s Egg Test—Chorioallantoic Membrane (HET-CAM)

Natamycin/voriconazole formulations (SNV, AHNV, and LNV) were tested on the
egg’s chorioallantoic membrane (Figure 11). None of the formulations showed vessel
modifications (hemorrhage, lysis, or coagulation at 5 min) compared to a NaOH solution
(positive control). Consequently, all formulations can be considered non-ocular irritants.
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3.10. Corneal Mucoadhesiveness

The study of the mucoadhesive properties of the topical ophthalmic formulations can
predict the prolonged permanence on the ocular surface improving the effectiveness of
the treatment.

The bioadhesion work for all formulations is represented in Figure S4. All formula-
tions showed similar values of bioadhesion work (mJ) (SNV: 0.0251 ± 0.002 mJ, AHNV:
0.0242 ± 0.005 mJ, LNV: 0.0249 ± 0.002 mJ). These results can be explained because, during
the traction stage of the assay, the bond between the cornea and the formulation is broken
within the formulation itself, not at the corneal surface. As all the formulations are low-
viscosity systems, the interaction between the vehicle molecules is low, and therefore lower
than the bioadhesive forces between the cornea and the formulation itself. A one-way
ANOVA test was performed, and no significant differences were found in the bioadhesion
work data for SNV, AHNV, and LNV. For this reason, an in vivo permanence study was
carried out by PET to quantify the amount of formulation that remains on the ocular surface
over time.

3.11. PET In Vivo Assay: Quantitative Ocular Permanence Study

An eye drop formulation with low ocular permanence cannot ensure the necessary
time for the drug to diffuse through the corneal tissue. A PET in vivo assay was carried out
to quantify the amount of formulation remaining on the ocular surface over time.

The semi-logarithmic plot (Figure 12) shows the data of the clearance rate of the
formulations as a function of the remaining radioactivity in the eye. Table 8 shows the
pharmacokinetic parameters (elimination constant K, t1/2, AUC 0

∞, and MRT) obtained by
fitting the formulation percentage remaining in the eye over time.



Pharmaceutics 2023, 15, 35 20 of 26
Pharmaceutics 2023, 15, x FOR PEER REVIEW 22 of 28 
 

 

 

Figure 12. SNV, AHNV, and LNV clearance ratio from the ocular surface determination by PET. 

Ratio CT/Cinitial was calculated assuming Cinitial value obtained in the Regions of Interest (ROI). 

Table 8. Pharmacokinetic parameters (K, t1/2, AUC 0∞, and MRT) obtained by fitting the formulation 

percentage remaining in the eye over time by PET imaging. 

Formulations 
K 

(Min−1) 

t1/2 

(Min) 

AUC 0∞ 

(% × Min) 

MRT 

(Min) 
R2 

Remaining For-

mulation at 75 

Min (%) 
 Mean SD Mean SD Mean SD Mean SD  Mean SD 

SNV 0.010 0.007 12.02 2.23 46.77 8.19 68.47 4.45 0.96 15.42 6.107 

AHNV 0.009 0.005 15.74 1.62 60.93 23.72 70.26 20.99 0.98 22.53 11.27 

LNV 0.011 0.001 16.94 3.80 43.13 4.22 53.41 4.67 0.93 21.85 8.77 

One-way ANOVA and Kruskal–Wallis tests were performed, and no significant dif-

ferences were found for any formulation pharmacokinetic parameters. This suggests that 

HPβCD is responsible for ocular permanence independently of the added polymer. Pre-

vious studies obtained similar results, proving the mucoadhesive capacity of HPβCD at 

high concentrations (40% (p/v)) [35]. 

The results show that there is a high clearance in the first few minutes due to the loss 

of the formulation by blinking (Figure 13). This is consistent with the mucoadhesion val-

ues indicating that the breakage of the bioadhesive bond occurs at the level of the vehicle 

itself. After those first few minutes, the layer of formulation that remains bioadhered to 

the cornea is slowly removed. 

Figure 12. SNV, AHNV, and LNV clearance ratio from the ocular surface determination by PET. Ratio
CT/Cinitial was calculated assuming Cinitial value obtained in the Regions of Interest (ROI).

Table 8. Pharmacokinetic parameters (K, t1/2, AUC 0
∞, and MRT) obtained by fitting the formulation

percentage remaining in the eye over time by PET imaging.

Formulations K
(Min−1)

t1/2
(Min)

AUC 0∞

(% ×Min)
MRT
(Min) R2

Remaining
Formulation at

75 Min (%)

Mean SD Mean SD Mean SD Mean SD Mean SD

SNV 0.010 0.007 12.02 2.23 46.77 8.19 68.47 4.45 0.96 15.42 6.107

AHNV 0.009 0.005 15.74 1.62 60.93 23.72 70.26 20.99 0.98 22.53 11.27

LNV 0.011 0.001 16.94 3.80 43.13 4.22 53.41 4.67 0.93 21.85 8.77

One-way ANOVA and Kruskal–Wallis tests were performed, and no significant dif-
ferences were found for any formulation pharmacokinetic parameters. This suggests that
HPβCD is responsible for ocular permanence independently of the added polymer. Previ-
ous studies obtained similar results, proving the mucoadhesive capacity of HPβCD at high
concentrations (40% (p/v)) [35].

The results show that there is a high clearance in the first few minutes due to the loss
of the formulation by blinking (Figure 13). This is consistent with the mucoadhesion values
indicating that the breakage of the bioadhesive bond occurs at the level of the vehicle itself.
After those first few minutes, the layer of formulation that remains bioadhered to the cornea
is slowly removed.

Although the addition of polymers such as HA in AHNV and PVA in LNV has not
increased the ocular permanence compared with the solution without polymers (SNV), the
advantages of the presence of polymers must be considered. The addition of high molecular
weight HA (>1000 KDa) [70] to eye drops can promote faster corneal wound healing. This
is due to the binding of the HA to the CD44 protein (CD44 receptor is expressed when there
is damage in the corneal epithelium), which enhances the migration and regeneration of
epithelial cells [71]. Furthermore, the expression of inflammatory cytokines (e.g., IL-1beta
and MMP-9) is decreased following the HA administration, suppressing inflammatory
responses [72,73]. In addition, high molecular weight HA retains water, increasing tear
film stability and decreasing the friction during the blink. In addition, HA increases eye
hydration [74]. However, PVA is used in ophthalmic formulations as a lubricant and to
improve ocular surface hydration, which can increase the sense of well-being during the
treatment of FK.
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radioactive activity.



Pharmaceutics 2023, 15, 35 22 of 26

3.12. Disc Diffusion Method by the Kirby-Bauer Method

Inhibition zone diameters (Figure S5) obtained in the Kirby–Bauer Disc Diffusion
Method are shown in Table 9. The inhibitory zone is influenced by several parameters,
including the culture medium, the drug diffusion capacity, the amount of inoculum, the
time of microorganism generation, the sensitivity to the antifungal, or the incubation
period [75]. SN shows larger inhibitory zone diameters for all fungal species than NTC.
These results are due to the enhanced diffusion of natamycin from the disc into the inoculum
when natamycin is complexed with HPβCD. SN and NTC show no inhibitory activity for
PL. PL resistance to natamycin has been previously reported in cases of FK [76,77].

Table 9. Inhibition zone diameters (mm) obtained in Kirby–Bauer Disc Diffusion Method.

Fungal Specie
C.A 90231 C.A 90028 AF PL FS

Formulation

SV 72 58 81 68 85
SN 33–35 32 28 0 47

SNV 74–76 62 72 80 77
VFEND® 61 61 87 84 103

NTC® 10 14 12 0 26

The inhibition zone diameters obtained for the formulation with both drugs solubilized
with HPβCD (SNV) show slightly higher values than those obtained with the single drug
formulations (SN and SV) for all species except for AF and FS.

The combined formulation of natamycin and voriconazole was effective for the species
tested. However, to confirm an additive or synergistic effect produced by the combination
of natamycin and voriconazole, further in vitro studies using other more representative
techniques such as the checkerboard method [78] or ETEST® strips [79] would be neces-
sary. Moreover, additional in vivo and ex vivo studies would be required to assess the
antifungal efficacy.

4. Conclusions

Natamycin and voriconazole formulations were developed as a new alternative for
the treatment of FK. The formulations were developed to have characteristics suitable for
topical ophthalmic administration.

Solubility and NMR studies demonstrated the formation of stable complexes between
natamycin and HPβCD where the double bonds of natamycin are arranged towards the
more hydrophobic side of HPβCD and the polar rings of natamycin are arranged on the
more hydrophilic side of HPβCD. Furthermore, NMR results showed that natamycin
competes with voriconazole for the same binding site of HPβCD although this did not
affect the solubility of voriconazole in the formulations due to the presence of free cyclodex-
trin molecules.

In addition, the formation of aggregates of HPβCD molecules and their complexes
with natamycin and voriconazole was observed by TEM. These can control drug release,
improve residence time, and enhance their permeability across the cornea.

The pH, osmolality, viscosity, and transparency values were found to be within the
accepted range for ophthalmic topical formulations. In vitro release studies were success-
fully carried out and Fickian-type diffusions were obtained for all formulations developed.
All formulations showed an improvement in transcorneal permeability in the presence
or absence of corneal epithelium compared to Natacyn®. In addition, the ocular toxicity
studies performed (BCOP and HET-CAM) showed that the formulations are safe. Ex vivo
and in vivo mucoadhesion studies suggested that the mucoadhesive capacity of the for-
mulations is due to the presence of HPβCD and is not increased by the addition of HA or
PVA. Antifungal activity studies demonstrated the ability to inhibit the growth of several
fungal species. All these results concluded that the formulations developed in the present
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study could significantly improve the treatment of FK. Additionally, formulations can also
be prepared using only one of the drugs, making it a versatile pharmaceutical system that
can be tailored to meet the different needs of patients. Therefore, they could be used as a
first-choice treatment in cases of FK where the causative agent is unknown, species resistant
to one of the antifungal agents are suspected, or no commercial drug is available.
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