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Abstract: Antimicrobial resistance is a major concern for public health throughout the world that
severely restricts available treatments. In this context, methicillin-resistant Staphylococcus aureus
(MRSA) is responsible for a high percentage of S. aureus infections and mortality. To overcome this
challenge, nanoparticles are appropriate tools as drug carriers to improve the therapeutic efficacy and
decrease the toxicity of drugs. In this study, a polyethylene glycol (PEG)ylated nanostructured lipid
carrier (PEG-NLC) was synthesized to improve the oral delivery of trimethoprim/sulfamethoxazole
(TMP/SMZ) for the treatment of MRSA skin infection in vitro and in vivo. The nanoformulation
(PEG-TMP/SMZ-NLC) was synthesized with size and drug encapsulation efficiencies of 187 ± 9 nm
and 93.3%, respectively, which could release the drugs in a controlled manner at intestinal pH.
PEG-TMP/SMZ-NLC was found efficient in decreasing the drugs’ toxicity by 2.4-fold in vitro. In
addition, the intestinal permeability of TMP/SMZ was enhanced by 54%, and the antibacterial
effects of the drugs were enhanced by 8-fold in vitro. The results of the stability study demonstrated
that PEG-TMP/SMZ-NLC was stable for three months. In addition, the results demonstrated that
PEG-TMP/SMZ-NLC after oral administration could decrease the drugs’ side-effects such as renal
and hepatic toxicity by ~5-fold in MRSA skin infection in Balb/c mice, while it could improve the
antibacterial effects of TMP/SMZ by 3 orders of magnitude. Overall, the results of this study suggest
that the application of PEGylated NLC nanoparticles is a promising approach to improving the oral
delivery of TMP/SMZ for the treatment of MRSA skin infection.

Keywords: antibiotic; methicillin-resistance Staphylococcus aureus; nanostructured lipid carrier (NLC);
PEGylation; oral delivery; trimethoprim/sulfamethoxazole

1. Introduction

Antimicrobial resistance (AMR) has emerged as a significant risk to global public
health and severely restricts available treatments [1,2]. Statistics have demonstrated that
AMR contributes to approximately 700,000 deaths worldwide annually and have estimated
that this could rise to 10 million annually by 2050 [3]. Antimicrobial-resistant microorgan-
isms are a substantial contributor to infection-related morbidity and mortality [4]. Today,
antibiotics are the primary strategy for treating bacterial infections [5]. There are various
bacterial mechanisms responsible for antibiotic resistance, such as (i) innate resistance,
where genes are responsible for AMR; (ii) acquired resistance, where genetic mutation
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and/or acquisition of foreign resistance genes are responsible for AMR; (iii) adaptive resis-
tance, where exposure to the lower doses of antimicrobials that promote genetic alterations
is responsible for AMR [5].

Methicillin-resistant Staphylococcus (S.) aureus (MRSA) is Gram-positive bacteria that
causes either severe and difficult-to-treat infections in humans and animals that might
result in death [1] or a significant financial impact on public health systems globally [5].
Trimethoprim (TMP)/sulfamethoxazole (SMZ) is considered the treatment of choice for
infections brought on by MRSA. TMP/SMZ is a competitive inhibitor of dihydrofolate
reductase (DHFR) and dihydropteroate synthetase (DHPS) that inhibits the synthesis
of tetrahydrofolate (THF, a vital cofactor for nucleotide synthesis) and its conversion
(Figure 1) [6].
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Figure 1. Biosynthesis pathway of folic acid from para-aminobenzoic acid (PABA) using nicotinamide
adenine dinucleotide phosphate (NADPH) coenzyme. PABA, as a precursor, contributes to the syn-
thesis of dihydrofolic acid (DHFA) and then tetrahydrofolic acid (THFA). THFA, in turn, gives rise to
thymidine, purines, and methionine. TMP/SMZ inhibits folate synthesis by inhibiting dihydrofolate
reductase (DHFR) and dihydropteroate synthetase (DHPS), respectively, as the two key enzymes of
the folate pathway.

However, the clinical application of TMP/SMZ is associated with various side-effects [7].
One of the promising approaches to improving the therapeutic efficacy of drugs and
reducing their side-effects is the loading of drugs into nanoparticles [8–12]. Nanoparti-
cles can cause a reduction in the body distribution of drugs, resulting in a reduction in
the drugs’ side-effects [13]. Nanoparticles are able to increase the antibacterial effects
of drugs by improving drugs’ pharmacokinetics, increasing their interaction with bac-
teria, and/or enhancing the drug targeting capacity [14,15]. One of the nanoparticles,
as a nanotechnology-based device, is nanostructured lipid carriers (NLCs), which are
composed of a mixture of solid lipids with spatially incompatible fluid/liquid with the
preferred ratio of 70/30 to 99.9/0.1% [16]. These nanoparticles are synthesized to address
the problems/defects of solid lipid nanoparticles (SLNs) and other colloidal carriers, such
as nanoemulsions, polymeric nanoparticles, and liposomes [17]. Low loading capacity,
drug leakage during storage, and high water volume are some of these defects that can be
solved by the use of the unique advantages of NLCs [18]. High loading capacity, inhibition
of drug leakage, improved flexibility for drug release, and adaptability with various routes
of administration are some of these advantages [19,20]. In addition, NLCs are characterized
by improved drug bioavailability, improved stability, easy preparation process, scale-up
feasibility, biocompatibility, and improved targeting efficiency [20].

The physical and chemical properties of nanoparticles influence their pharmacokinetics
and biodistribution. For instance, the size of nanoparticles and their surface charge and
chemistry could increase serum protein binding, resulting in nanoparticle uptake and
internalization by macrophages, which are known as the reticuloendothelial system [18].
This, in turn, results in the removal of the nanoparticles and their cargoes from the blood
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circulation. To enhance the blood half-life of the nanoparticles, scientists have used methods
to modify or functionalize the surface of nanoparticles [21]. For this purpose, polyethylene
glycol (PEG)ylation of nanoparticles is a popular method that has been widely used by
researchers [22–25].

PEGylation is a process by which PEG, as a nonirritant and an inert hydrophilic
polymer, is conjugated on the surface of the nanoparticles via covalent grafting, entrapping,
or adsorbing [18,26]. The chains of PEG cause steric hindrance against plasma protein
binding, resulting in improved stability of the nanodrug delivery systems. In addition,
PEGylation improves the (i) pharmacokinetics and pharmacodynamics of nanoparticles
and drugs, (ii) biodistribution and dwelling time at the action site, and (iii) therapeutic
efficacy owing to increased drug concentration [18].

This study aimed to develop a stable nanoplatform for codelivery of TMP/SMZ via
the oral route with reduced drug toxicity and improved antibacterial effects against MRSA
skin infections in vitro and in vivo using PEGylated NLCs. To achieve this, TMP/SMZ-
loaded PEGylated and nonPEGylated NLCs (PEG-TMP/SMZ-NLC and TMP/SMZ-NLC,
respectively) were synthesized using melt emulsification and high-pressure homogeniza-
tion methods. The nanoformulations were characterized in terms of size, zeta potential,
morphology, and drug loading efficiency (LE%) using the Zetasizer, scanning electron mi-
croscopy (SEM), and ultra-high performance liquid chromatography (HPLC) instruments,
respectively. The biological effects of the nanoparticles were then evaluated in vitro using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), in vitro human
intestinal Caco-2 cells permeability, and minimum inhibitory concentration (MIC) assays.
The efficacy of the formulations in decreasing the toxicity of TMP/SMZ and increasing the
antibacterial effects of TMP/SMZ was evaluated in mice infected with MRSA skin infection.

2. Materials and Methods
2.1. Materials

Lecithin, monostearin, soybean oil, TMP/SMZ, phosphate-buffered saline (PBS), dial-
ysis bag (10,000 nominal-molecular-weight cutoff (NMWCO)), acetonitrile (HPLC grade),
di-potassium hydrogen phosphate, ethanol (EtOH), Hanks’ balanced salt solution (HBSS),
blood agar, Mueller Hinton broth (MHB), hematoxylin and eosin (H&E), mannitol, Roswell
Park Memorial Institute (RPMI)-1640 medium, penicillin and streptomycin (pen/strep) an-
tibiotics, and fetal bovine serum (FBS) were purchased from Merck (Darmstadt, Germany).
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
(DSPE-PEG2000) was purchased from Avanti Polar Lipids (Alabaster, AL, USA). A 12-well
Transwell® insert (0.4 µm pore size, 1.12 cm2 area) was purchased from Corning (Corning,
NY, USA). MRSA ATCC 33591 was obtained from the culture collection of the Iranian Re-
search Organization for Science and Technology (IROST), Tehran, Iran. Human embryonic
kidney HEK 293 cells, human colon adenocarcinoma Caco-2 cells, and male Balb/c mice
(6–8 weeks old) were purchased from the Pasteur Institute of Iran (Tehran, Iran).

2.2. Nanostructured Lipid Carrier Preparation

PEG-TMP/SMZ-NLC and TMP/SMZ-NLC were synthesized using melt emulsifica-
tion and high-pressure homogenization methods [27]. The formulation composition was
optimized using different concentrations and ratios of lecithin, monostearin, soybean oil,
TMP/SMZ, and DSPE-PEG2000 (Tables S1–S3). The best concentrations and ratios were
selected according to the results of size, polydispersity index (PDI), and LE% (Table 1). To
synthesize PEG-TMP/SMZ-NLC, lecithin as the solid lipid, monostearin and soybean oil as
the liquid lipid, TMP/SMZ (1:5 weight ratio), and DSPE-PEG2000 were mixed and stirred
(1 h, 75 ◦C). The aqueous phase (Tween 80 (0.1% w/v), Poloxamer 188 (0.2% w/v), and
water (95.2% w/v)) was added dropwise to the lipid phase under stirring (200 RPM), and a
coarse emulsion was obtained after 1 h. The emulsion was converted to a fine emulsion
by mixing at 15,000 RPM using an ULTRA-TURRAX T-25 instrument (60 ◦C) and then
homogenized (60 ◦C, 800 bars, 10 min) using a Lab-60 high-pressure homogenizer (APV
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Gaulin, Lübeck, Germany). The non-PEGylated NLCs (TMP/SMZ-NLC) were prepared
with the same method, except that DSPE-PEG2000 was not added to the reaction medium.

Table 1. Components of the lipid and aqueous phases used for the preparation of nanostructured
lipid carriers (NLCs) and polyethylene glycol (PEG)ylated NLCs.

Ingredients NonPEGylated NLCs (% w/v) PEGylated NLC (% w/v)

Lipid phase

Lecithin 2 2

Monostearin 1 1

Soybean oil 0.4 0.4

TMP/SMZ 0.5 0.5

DSPE-PEG2000 0 0.6

Aqueous phase

Tween 80 0.1 0.1

Poloxamer 188 0.2 0.2

Water 95.8 95.2

2.3. Nanoparticles Characterization
2.3.1. Dynamic Light Scattering

The size, size distribution, and zeta potential of the nanoparticles were measured using
the Zetasizer instrument. For this purpose, a suspension of the nanoparticles (100 µg/mL)
was prepared in PBS (pH 7.4, 25 ◦C) and then introduced into the instrument (ZEN 3600,
Malvern Instruments Ltd., Worcestershire, UK).

2.3.2. Scanning Electron Microscopy

The nanoparticles were morphologically evaluated under vacuum conditions using
an SEM microscope. For this purpose, 200 µL of the suspensions of nanoparticles were
centrifuged (13,000 RPM, 30 min, 4 ◦C), and the pellets were resuspended in 200 µL of
mannitol solution (50 mg/mL), as a cryoprotectant, and freeze-dried using Labconco-
Freezone 25. The powder of the nanoparticles was then coated with a thin layer of gold and
the nanoparticles were evaluated by the SEM instrument (XL30, Philips, AE Eindhoven,
The Netherlands).

2.3.3. Drug Encapsulation and Loading Efficiencies

Drug encapsulation (EE%) and LE% efficiencies were measured using ultra-high per-
formance liquid chromatography (UHPLC; Agilent Technologies Inc. Santa Clara, CA,
USA) [28]. Briefly, the suspensions of nanoparticles were centrifuged (13,000 RPM, 30 min,
4 ◦C) and the supernatants were obtained. The drug concentration in the supernatants
was obtained using UHPLC equipped with the analytical C-18 reversed-phase column
(Nucleodur 18, 25 cm, 4.6 mm, 5 µm) and photon diode array (PDA) detector. The elution
was performed with a mobile phase of di-potassium hydrogen phosphate (10 mM, pH 7.2)
containing acetonitrile (80:20) with a flow rate of 1 mL/min. Chromatograms were reana-
lyzed by Agilent ChemStation software. TMP and SMZ were detected at 270 and 254 nm,
respectively. After the determination of the drug concentration in the supernatant, EE%
and LE% were calculated using the formulae below:

EE% =
Initial drug concentration (mg)− Drug concentration in supernatant (mg)

Initial drug concentration (mg)
× 100 (1)

LE% =
Loaded drug in nanoparticles (mg)

Weight of nanoparticles (mg)
× 100 (2)
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2.4. Release Study

To determine the effects of PEGylation on the profile of drug release from the nanopar-
ticles and determine the efficacy of the nanoparticles for the oral drug delivery, the drug
release study was performed using the dialysis membrane method at pH 1.2 and 6.8 to
simulate the pH of gastric and intestinal environments, respectively [29]. For this purpose,
the suspensions of TMP/SMZ-NLC and PEG-TMP/SMZ-NLC were centrifuged to obtain
the precipitates of the nanoparticles. The precipitates equal to 3 mg of TMP/SMZ were
resuspended into 5 mL of PBS (pH 1.2 and 6.8) and transferred into 4 separate dialysis bags.
The bags were then immersed in 100 mL of PBS (pH 1.2 and 6.8), as the acceptor medium,
and stirred (150 RPM, 25 ◦C). Two separate solutions of TMP/SMZ at the concentration of
3 mg/5 mL PBS were prepared, transferred to two separate dialysis bags, immersed into
100 mL of PBS (pH 1.2 and 6.8), as the acceptor medium, and stirred (150 RPM, 25 ◦C). At
the predetermined time intervals (0.5, 1, 2, 4, and 8 h), 1 mL of the buffer was withdrawn
and replaced with the fresh buffer. The drug concentrations in the collected samples were
measured using UHPLC, and the cumulative drug release versus time was measured using
the formula below:

Drug release (%) =
Mass of the released drug from nanoparticles (mg)

Mass of the loaded drug in nanoparticles (mg)
× 100 (3)

The kinetics of drug release were also determined by the use of zero-order, first-order,
Higuchi, and Korsmeyer–Peppas mathematical models [30].

2.5. Evaluation of the Biological Effects of the Nanoparticles
2.5.1. Evaluation of the Toxicity of the Nanoparticles

The toxicity of PEG-TMP/SMZ-NLC and TMP/SMZ-NLC, compared to the standard
TMP/SMZ, was evaluated using human embryonic kidney HEK293 cells and MTT assay.
For this purpose, the cells were seeded at the density of 104 cells/well in 96-well plates
containing 100 µL of RPMI-1640 culture medium supplemented with 10% FBS and 1%
pen/strep antibiotics (complete media). The plates were then transferred to a 5% CO2
incubator and incubated for 24 h at 37 ◦C. The culture media was removed; 100 µL of the
fresh complete culture media, containing 2, 4, 8, 16, 32, 64, 128, and 256 µM of TMP/SMZ
in the standard form and encapsulated into the nanoparticles (TMP/SMZ-NLC and PEG-
TMP/SMZ-NLC), were added to the wells; the cells were incubated for 48 h in the incubator
(5% CO2 and 37 ◦C). The culture media was then replaced with 100 µL of MTT solution
(0.5 mg/mL in PBS), and the cells were incubated for 3 h at 37 ◦C. The MTT solution was
discarded, and 100 µL of DMSO was added to each well to dissolve the formazan crystals
and was incubated for 20 min. The absorbance was read at 570 nm using a microplate
reader, and the cell viability was calculated using the following formula:

Cell viability (%) =
Absorbancesample − Absorbancebackground

Absorbancenegative control − Absorbancebackground
× 100 (4)

The negative and positive controls were the cells incubated with the complete media,
and the cells were treated with SDS (10% v/v in water) + 0.1 M HCl, respectively. In addition,
the background was the complete media only. The half-maximal inhibitory concentration
(IC50) of TMP/SMZ, TMP/SMZ-NLC, and PEG-TMP/SMZ-NLC was calculated using
GraphPad Prism Software version 8.00 (GraphPad Software, Inc., San Diego, CA, USA).

2.5.2. Stability Study

The stability of PEG-TMP/SMZ-NLC, compared to TMP/SMZ-NLC, was measured
using the dialysis bag, MTT assay, DLS, and UHPLC methods, 3 months after their prepa-
ration. Briefly, 5 mL of PEG-TMP/SMZ-NLC and TMP/SMZ-NLC equivalent to 238.5 and
206.5 mg of the nanoparticles, respectively, were stored in a 4 ◦C refrigerator for 3 months,
and their profile of drug release, in vitro toxicity, size, PDI, and LE% was measured using
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the methods mentioned above. In addition, the serum stability of PEG-TMP/SMZ-NLC,
compared to TMP/SMZ-NLC, was measured in FBS [31]. Briefly, a suspension of 10 mg/mL
from TMP/SMZ-NLC and PEG-TMP/SMZ-NLC was prepared in FBS:PBS (45:55% v/v
ratio) and incubated for 5 h at 37 ◦C Next, the size of the formulations was calculated at the
time intervals of 1, 3, and 5 h.

2.5.3. In Vitro Caco-2 Permeability

The permeability rate of TMP/SMZ-NLC and PEG-TMP/SMZ-NLC, compared to
TMP/SMZ, was measured using Caco-2 cells. The cells were cultured in the complete
media and incubated (5% CO2 and 37 ◦C) to reach 90% confluency. The cells were then
trypsinized and suspended at the concentration of 2 × 105/mL in the complete media. The
cells (0.5 mL: 1 × 105/mL) were cultured on the apical chamber (A) of a 12-well transwell
insert, and 1.5 mL of the fresh medium was added into the basolateral chamber (B) of
each insert.

Determining the Transepithelial Electrical Resistance

The electrode of the volt-ohmmeter was incubated with the complete culture medium
for 20 min to equilibrate. In addition, the culture medium of the apical and basolateral
chambers of the insert plates was replaced with the fresh complete culture medium every
48 h. After 20 min incubation at 37 ◦C, the transepithelial electrical resistance (TEER) was
recorded. The cell monolayer with TEER ≤ 500 cm2 Ω was considered an appropriate cell
monolayer for subsequent experiments. The amounts of TEER of the Caco-2 cell monolayer
were measured using the formula below:

TEER (cm 2 Ω) =[TEER (Ω) − TEERbackground (Ω)]× A (cm 2)

where TEER (Ω), TEERbackground (Ω), and A are the electrical resistance of Caco-2 cell
monolayers, the resistance of the insert without the cells, and the surface area of the insert
(1.12 cm2), respectively.

Evaluation of the Nanoparticles’ Permeability

In this experiment, Caco-2 monolayer cells with the TEER ≤ 500 cm2 Ω were formed
within 6 days and used for the permeability study. To evaluate the permeability, the medium
of each well was discarded, and preheated HBSS (washing medium of cell monolayers) was
added to each well and incubated for 20 min at 37 ◦C. Next, the media was discarded, and
0.5 mL of HBSS containing 125 µg of TMP/SMZ in the standard form and encapsulated
into the nanoparticles (TMP/SMZ-NLC (1202 µg) and PEG-TMP/SMZ-NLC (1276 µg))
was added in chamber A, while 1.5 mL of fresh HBSS was added to chamber B. At the
time intervals of 1.5, 3, 4.5, and 6 h, 0.2 mL of the medium in chamber B was withdrawn
and replaced with the fresh HBSS. The drug concentration in the collected samples was
measured and compared using UHPLC.

2.5.4. In Vitro Bacterial Assay

To determine the MIC of PEG-TMP/SMZ-NLC, compared to TMP/SMZ-NLC and
TMP/SMZ, a broth microdilution method and an MRSA bacterium (ATCC 33591) were
used. For this purpose, TMP/SMZ, TMP/SMZ-NLC, and PEG-TMP/SMZ-NLC were
serially twofold diluted with MHB to obtain the drug concentrations of 2, 4, 8, 16, 32,
64, 128, and 256 µM of TMP/SMZ. An amount of 100 µL of the dilutions was plated into
flat-bottom microtiter plates. A 0.5 McFarland bacterial suspension (1 × 108 colony-forming
unit (CFU)/mL) was prepared in sterile-distilled water and diluted (1:100) into MHB to
obtain 1 × 106 CFU/mL inoculum. An amount of 100 µL of the inoculum was then added
to the TMP/SMZ samples to prepare a final initial inoculum of 0.5 × 106 CFU/mL and
incubated for 20 h at 37 ◦C. The bacterial suspension without antibiotics prepared in MHB
and the MHB culture medium only were considered as the negative and sterile control,
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respectively. The MIC values were determined spectrophotometrically at 620 nm. The
experiment was repeated three times.

2.5.5. Animal Study

To evaluate the therapeutic efficacy of PEG-TMP/SMZ-NLC, compared to TMP/SMZ-
NLC and TMP/SMZ, for the treatment of MRSA skin infection, male Balb/c mice (6–8 weeks)
were used. The experiments were approved by the Ethic Committee of Rafsanjan University
of Medical Sciences, Rafsanjan, Iran (approval code: IR.RUMS.REC.1399.89; approval date:
7 August 2020). The animals were maintained in standard and controlled conditions of
temperature (25 ± 2 ◦C), humidity (50–60%), and light (12 h light/dark cycle). They were
maintained in polypropylene cages and allowed free access to food and water. The bottom
of the cages was lined with wood husks, which were changed frequently. After 1 week of
acclimation, the hair on the back was shaved, and the skin was disinfected with 70% EtOH.
The mice were then anesthetized intraperitoneally with a mixture of xylazine (8 mg/kg)
and ketamine (50 mg/kg). A round wound (5 mm diameter) was created on the back of
each mouse using a biopsy punch. After 5 min, the wound was covered with a small piece
of gauze and inoculated with 50 µL of bacterial suspension containing 108 CFU prepared
in PBS. The wound was closed with skin clips, and the mice were returned to the cages.
At 48 h after wound creation, the animals were randomly divided into 4 groups (n = 10)
and received TMP/SMZ, TMP/SMZ-NLC, PEG-TMP/SMZ-NLC, and PBS, as the control
group. The formulations were administered orally at the drug dose of 20 mg/kg every
24 h and for 10 days. After 10 days, the mice were sacrificed, and the skin containing
the wound was removed and inspected in terms of the number of viable bacteria. Briefly,
the tissues were homogenized in 1 mL of sterile PBS and diluted with distilled water.
Next, the solutions were serially diluted and cultured in blood agar plates. The plates
were maintained for 48 h at 37 ◦C, and the number of viable bacteria was calculated
by CFU counting. In addition, the side-effects of the formulations were evaluated by
measuring the weight changes of the animals, hepatic (alanine aminotransferase (ALT) and
aspartate aminotransferase (AST)) and renal serum markers (blood urea nitrogen (BUN)
and creatinine), and histopathological studies.

2.6. Statistical Analysis

All statistical analyses were performed using GraphPad Prism software version 8.00,
San Diego, CA, USA. The data of size, PDI, LE%, EE%, release study, toxicity of the
nanoparticles, in vitro permeability, and in vitro bacterial assay were expressed as the
mean ± standard deviation (SD, n = 3). The one-way analysis of variance (ANOVA) test
was used to analyze all statistical differences. In addition, statistical analysis was performed
using nonlinear regression analysis.

3. Results and Discussion
3.1. Nanoparticle Characterization

NLC, PEG-NLC, TMP/SMZ-NLC, and PEG-TMP/SMZ-NLC were successfully syn-
thesized using melt emulsification and high-pressure homogenization methods. The size,
PDI, and zeta potential of the nanoparticles were measured using the Zetasizer instrument.
The results showed that all of the formulations were synthesized at the nanoscale size
(Table 2), in which the size of NLC, PEG-NLC, TMP/SMZ-NLC, and PEG-TMP/SMZ-NLC
was 184 ± 7, 170 ± 10, 198 ± 11, and 187 ± 9 nm, respectively. All the formulations
demonstrated a negative zeta potential (−25 ± 1.4, −20 ± 1.3, −19 ± 1, and −13 ± 0.8 mV
for NLC, PEG-NLC, TMP/SMZ-NLC, and PEG-TMP/SMZ-NLC, respectively), causing
them to repel each other, and consequently, inhibiting aggregation. In addition, the for-
mulations demonstrated PDI values in the range of 0.1–0.4, confirming that they were
monodisperse and homogeneous [30,32]. The particles were PEGylated to improve the
blood half-life and biocompatibility [33,34], solubility, tumor-targeting efficiency [26,35–37],
drug release profile [38], stability [39,40], and oral absorption [41]. PEG works as a lamel-



Pharmaceutics 2022, 14, 1668 8 of 19

larity reducing agent and improves stability, which causes an inhibition in the nanoparticle
aggregation [42–44].

Table 2. Size, polydispersity index (PDI), zeta potential, EE%, and LE% of various nanoparticles
obtained by Zetasizer and ultra-high performance liquid chromatography (UHPLC).

Formuation Size (nm) PDI Zeta Potential (mV) EE% LE%

NLC 184 ± 7 0.332 ± 0.014 −25 ± 1.4 N/A N/A

PEG-NLC 170 ± 10 0.314 ± 0.013 −20 ± 1.3 N/A N/A

TMP/SMZ-NLC 198 ± 11 0.273 ± 0.011 −19 ± 1 86.2 10.4

PEG-TMP/
SMZ-NLC 187 ± 9 0.244 ± 0.01 −13 ± 0.8 93.3 9.8

PEGylated nanoparticles (PEG-NLC and PEG-TMP/SMZ-NLC), compared to the non-
PEGylated counterparts (NLC and TMP/SMZ-NLC), were smaller and demonstrated lower
PDI values (Table 2). Lakhani et al. [27] also demonstrated that PEGylated NLCs, compared
to non-PEGylated NLCs, were smaller (218 vs. ~570 nm). This could be due to PEG’s
capability to decrease the lamellarity and increase the stability of the conjugate [43,44].
PEGylated nanoparticles, compared to the non-PEGylated nanoparticles, also demonstrated
an increase in the zeta potential that could result from the neutral charge of PEG. The
difference in the Zeta potential between PEGylated and non-PEGylated nanoparticles
indicated that the nanoparticles were successfully PEGylated.

In addition, the morphology of NLCs, TMP/SMZ-NLCs, PEG-NLCs, and PEG-
TMP/SMZ-NLCs was evaluated and compared using an SEM instrument. The results
of SEM confirmed the synthesis of the nanoparticles as spherical particles with smooth
surfaces (Figure 2). In addition, the results of SEM demonstrated that the nanoparticles
were synthesized in a homogenous and monodisperse mode.
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In addition, the EE% and LE% of TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs were
measured using UHPLC at 270 and 254 nm. The EE% and LE% for TMP/SMZ-NLCs and
PEG-TMP/SMZ-NLCs were found to be 86.2 and 10.4, and 93.3% and 9.8%, respectively
(Table 2). As the results showed, PEGylated nanoparticles (PEG-TMP/SMZ-NLCs), com-
pared to the non-PEGylated ones (TMP/SMZ-NLCs), caused a higher EE% (93.3 vs. 86.2%).
This could be due to the function of PEG, as PEG could cause a change in the hydrophobic-
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ity, rigidity, chain order, and spacing between tails of the lipid membrane and, as a result,
cause an increase in the EE% [45]. These results were in agreement with the results of the
Zhang et al. study, [46] in which PEGylated NLCs, compared to nonPEGylated NLCs,
caused a higher EE% (92.2 vs. 88.6%).

3.2. Release Study

The efficacy of PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs, in controlling
the drug release was evaluated using a dialysis bag method. The drug release from the
nanoparticles was evaluated at two pHs, 1.2 and 6.8, to simulate the gastric and intestinal
environments, respectively [47]. According to the results, the drug release at both pHs
demonstrated two distinct phases, including an initial burst release, followed by a slow
and sustained release. In the burst phase, 22 and 18% of the loaded drug were released at
pH 1.2 and 6.8 from TMP/SMZ-NLCs in the first 30 min of the study, while these values
for PEG-TMP/SMZ-NLCs were 17 and 13%, respectively. These burst releases could be
due to the release of the adsorbed drug [35] that continued with a slow and sustained
release, in which 43.2 and 40% of the loaded drug was released from TMP/SMZ-NLCs at
pH 1.2 and 6.8, respectively, after 8 h, while these values for PEG-TMP/SMZ-NLCs were
32.4 and 26.7%, respectively (Figure 3). According to these results, PEG-TMP/SMZ-NLCs,
compared to TMP/SMZ-NLCs, were more efficient by 25 and ~33.2% at pH 1.2 and 6.8,
respectively, in preserving the loaded drug and released them for a longer time. Coating the
nanoparticles’ surface with PEG restrains the leakage of the loaded drug from the particles.
Premature drug release limits the nanoparticles’ application [48] that could be resolved
through PEGylation. In agreement with the results of the present study, Chime et al. [49]
demonstrated that PEGylated NLCs, compared to non-PEGylated NLCs, caused a lower
amount of drug release (~33.5 vs. ~48%). In addition, the results of drug release from
TMP/SMZ solutions demonstrated that 91 and 100% of the standard drug were released
from the solutions after 2 and 2.5 h, respectively, at pH 1.2, while these values for pH 6.8
were 87 and 100%, respectively (Figure 3), indicating the high efficacy of TMP/SMZ-NLCs
and PEG-TMP/SMZ-NLCs to control the release of the drug [48]. Overall, the results of the
drug release study demonstrated that NLCs and PEGylated NLCs provided controlled drug
release systems. In addition, PEGylation of nanoparticles caused a further improvement in
the profile of drug release at both gastric and intestinal pHs; thus, PEG-TMP/SMZ-NLCs
could be considered for oral delivery of TMP/SMZ to improve its therapeutic effects.
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The kinetics of drug release from TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs were
also measured using zero-order, first-order, Higuchi, and Korsmeyer–Peppas mathematical
models. In the kinetic model of zero-order, the drug release rate from the polymer matrix
is constant throughout an experiment and is not dependent on the drug concentration;
therefore, the same amount of drugs per unit of time is released over time. However, in the
kinetic model of first-order, the drug release rate is dependent on the drug concentration
and, thus, decreases with time [50]. In the kinetic model of Higuchi, the amount of
cumulative released drug is directly proportional to the square root of time [51], and in the
Korsmeyer–Peppas model, the rate of drug release is tuned by the diffusion and swelling
rate [52,53]. The results of the present study demonstrated that TMP/SMZ-NLCs and
PEG-TMP/SMZ-NLCs fitted well with the Higuchi model with the correlation coefficient
(R2) values of 0.8269 and 0.8835, respectively, at pH 1.2, and 0.8653 and 0.8789, respectively,
at pH 6.8 (Figure S1, Tables S4–S7).

3.3. Evaluation of the Biological Effects of the Nanoparticles
3.3.1. Evaluation of the Toxicity of the Nanoparticles

The toxicity effects of PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs and
TMP/SMZ, were measured in vitro using an MTT assay and HEK293 cells. In addition,
the toxicity effects of NLCs and PEG-NLCs at different concentrations (e.g., 5, 10, 20, 40,
and 80 mg/mL) were evaluated to determine their nontoxic concentrations. The results
demonstrated that NLCs and PEG-NLCs at the concentration of 10 mg/mL were safe and
nontoxic. In addition, the results demonstrated that TMP/SMZ-NLCs and PEG-TMP/SMZ-
NLCs could reduce the TMP/SMZ toxicity by 1.5- and 2.4-fold, respectively (IC50: 25.4, 40.9,
and 16.9 µM for TMP/SMZ-NLCs, PEG-TMP/SMZ-NLCs, and TMP/SMZ, respectively;
Figure 4). The higher efficacy of PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs,
in reducing the drugs’ toxicity could result from the profile of drug release from PEG-
TMP/SMZ-NLCs, in which PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs, were
more efficient in preserving the loaded drugs and their release for a longer time.
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3.3.2. Stability Study

The stability of nanoparticles is a critical factor in their synthesis, storage, and efficacy
for the therapeutics delivery to blood circulation [54,55]. The sufficient stability of nanopar-
ticles is required to preserve their cargos under harsh biological environments, such as low
pH and enzymatic decomposition [56]. For this reason, the profile of drug release, in vitro
toxicity, and drug loading efficiency of TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs were
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measured and compared with those obtained in the production time. According to the
obtained results, TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs preserved their efficacy
in controlling the drug release, in which TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs
released 91.2% and 67.2% of the loaded drug, respectively, at pH 1.2 after 52 h and 76.3%
and 54.5% of the loaded drug, respectively, at pH 6.8 after 52 h. These values were 86%
and 64%, respectively, at pH 1.2 and 73% and 52%, respectively, at pH 6.8 in the produc-
tion time (Table 3, Figure 5A). In addition, the values of LE% measured three months
after the production time did not significantly change compared to those obtained at the
time of production, in which LE% for TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs was
9.7% and 9.1%, respectively, while these values at the time of preparation were 10.4%
and 9.8%, respectively (Table 3). Moreover, the cell toxicity results did not significantly
change compared to those obtained in the production time, in which the IC50 values for
TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs were 27.8 and 43.1 µM, respectively, while
these values at the production time were 25.4 and 40.9 µM, respectively (Figure 5B).

Table 3. Drug release, cell toxicity, and LE% for TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs at the
preparation time and 3 months after preparation.

Drug Release (%) Cell Viability (IC50) LE%

P.T T.M.P.T

P.T T.M.P.T P.T T.M.P.TpH pH

1.2 6.8 1.2 6.8

TMP/SMZ-NLCs 86% 73% 91% 76.3% 25.4 27.8 10.4 9.7

PEG-TMP/SMZ-NLCs 64% 52% 67% 54.5% 40.9 43.1 9.8 9.1

P.T: Preparation time; T.M.P.T: Three months after the preparation time.
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In addition, the stability of TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs was mea-
sured in terms of the size and PDI of the formulations, and the results demonstrated
that the size and PDI of TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs, 3 months after the
production, were comparable to those results obtained at the production time (Table 4).
However, PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs, were found to be more
potent in preserving their size (~4% vs. ~7% size increment for PEG-TMP/SMZ-NLCs
and TMP/SMZ-NLCs, respectively). In addition, the stability of TMP/SMZ-NLCs and
PEG-TMP/SMZ-NLCs was evaluated in an FBS solution, and the results demonstrated
that PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs, were more stable in this serum
solution (size increment of 12.5 and 20.3% for PEG-TMP/SMZ-NLCs and TMP/SMZ-NLCs,
respectively; Figure S2). This result was in agreement with the results of size and PDI
measurements in that PEG-TMP/SMZ-NLCs were found to be more stable compared to
TMP/SMZ-NLCs.

Table 4. Size and polydispersity index (PDI) for TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs on the
production time (P.T) and three months after the preparation (T.M.P.T).

Size (nm) Polydispersity Index (PDI)

P.T T.M.P.T P.T T.M.P.T

TMP/SMZ-NLCs 198 ± 11 212 ± 12 0.273 ± 0.011 0.311 ± 0.013

PEG-TMP/SMZ-NLCs 187 ± 9 195 ± 11 0.244 ± 0.01 0.267 ± 0.010
P.T: Preparation time; T.M.P.T: Three months after the preparation time.

According to these results, TMP/SMZ-NLCs and PEG-TMP/SMZ-NLCs were sta-
ble carriers for TMP/SMZ and, thus, could improve the stability of TMP/SMZ. These
results are in agreement with the results of Lakhani et al.’s study [27], where they demon-
strated that amphotericin B(AmB)-loaded PEGylated NLCs, compared to AmB-loaded
non-PEGylated NLCs, were more stable, in which lower increments (~1% vs. ~55%) in
the size values were observed for AmB-loaded PEGylated NLCs, compared to that of
AmB-loaded non-PEGylated NLCs, after autoclaving of the nanoparticles.

3.3.3. Evaluation of the Nanoparticles’ Permeability

To determine the permeability of PEG-TMP/SMZ-NLC, TMP/SMZ-NLC, and TMP/SMZ
across the gastrointestinal tract, a Caco-2 monolayer culture model was used as the Caco-2
monolayer culture model is well-established as having absorptive (A to B) characteristics
of intestinal epithelial cells [57]. Thus, the directional transport of TMP/SMZ in the
standard form and encapsulated into NLCs and PEG-NLCs was measured across the Caco-
2 monolayer at four different time points (1.5, 3, 4.5, and 6 h). As the results demonstrated
(Figure 6), the encapsulation of TMP/SMZ into NLCs and PEG-NLCs caused an increase
in the transport of TMP/SMZ across the cell monolayer; however, PEG-TMP/SMZ-NLC,
compared to TMP/SMZ-NLC and TMP/SMZ, demonstrated a higher efficacy to transport
across the cell monolayer by 17.4 and 54%, respectively. This could be due to the smaller
size of the PEGylated nanoparticles, compared to nonPEGylated ones, as transport is a
size-dependent process [58]. In addition, as PEGylated nanoparticles are more stable and
less likely to aggregate, they are more in favor of transcytosis [59]. The high efficacy
of PEGylated nanoparticles to increase the intestinal permeability of a drug has also
been demonstrated previously [60], where the encapsulation of paclitaxel into pegylated
poly(anhydride) nanoparticles caused a 3–7-times increase in the intestinal permeability of
the drug.
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3.3.4. In Vitro Bacterial Assay

Nanoparticles, as drug carriers, can improve drugs’ therapeutic effects [30,35]. To de-
termine the efficacy of PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs, to increase
the antibacterial effects of TMP/SMZ against an MRSA bacterium, a broth microdilution
method was used. The results demonstrated that PEG-TMP/SMZ-NLCs and TMP/SMZ-
NLCs caused an 8- and a 4-fold decrease in the MIC value, respectively (MIC: 4, 8, and
32 µM for PEG-TMP/SMZ-NLCs, TMP/SMZ-NLCs, and TMP/SMZ, respectively), indi-
cating the efficacy of the nanoparticles to increase the antibacterial effects of TMP/SMZ.
The enhanced antibacterial effects of PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-
NLCs, could result from the positive surface charge of PEG-TMP/SMZ-NLCs, compared
to TMP/SMZ-NLCs, that lead to PEG-TMP/SMZ-NLCs interacting more efficiently with
the MRSA bacterium with the negative-charged cell membrane [61], and consequently,
stronger antibacterial effects. Furthermore, the PEGylation of nanoparticles can improve
the stability of the particles that, in turn, can improve the particles’ interaction with the
bacterial cells [62]. In addition, PEGylation could cause an improvement in the bacterial cell
permeability, leading to an increase in the nanoparticles concentration inside the cells and,
as a result, the antibacterial effects of the loaded-antibacterial agents [63]. In addition, the
higher drug encapsulation efficiency of PEG-TMP/SMZ-NLCs (86.2 vs. 93.3%) and slower
drug release from PEG-TMP/SMZ-NLCs (18 vs. 13%), compared to TMP/SMZ-NLCs,
could be the reasons for increasing the antibacterial effects of PEG-TMP/SMZ-NLCs [63].

3.3.5. Animal Study

MRSA is the cause of the highest proportion of S. aureus infections (up to 55%) and mor-
tality (20%) [64]. Thus, it is recommended to develop more effective therapeutic strategies
to improve clinical outcomes [65]. For this purpose, the application of nanotechnology-
based devices can be considered a promising strategy to address these issues. In this study,
the therapeutic efficacy of PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs and
TMP/SMZ, in treating MRSA skin infections was measured and compared in vivo. For this
purpose, the weight changes of the infected animals were controlled and recorded through-
out the experiment. According to the results, the weight loss occurring in the TMP/SMZ
receiver group was more prominent compared to the other groups (8, 8.4, 13, and 19.2%
weight loss in control, PEG-TMP/SMZ-NLCs, TMP/SMZ-NLCs, and TMP/SMZ receiver
groups, respectively, Figure 7). This results from the efficacy of nanoparticles in decreasing
the side-effects of drugs as the nanoparticles are able to reduce the drug distribution in the
body [13].



Pharmaceutics 2022, 14, 1668 14 of 19

Pharmaceutics 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

ciently with the MRSA bacterium with the negative-charged cell membrane [61], and con-
sequently, stronger antibacterial effects. Furthermore, the PEGylation of nanoparticles can 
improve the stability of the particles that, in turn, can improve the particles’ interaction 
with the bacterial cells [62]. In addition, PEGylation could cause an improvement in the 
bacterial cell permeability, leading to an increase in the nanoparticles concentration inside 
the cells and, as a result, the antibacterial effects of the loaded-antibacterial agents [63]. In 
addition, the higher drug encapsulation efficiency of PEG-TMP/SMZ-NLCs (86.2 vs. 
93.3%) and slower drug release from PEG-TMP/SMZ-NLCs (18 vs. 13%), compared to 
TMP/SMZ-NLCs, could be the reasons for increasing the antibacterial effects of PEG-
TMP/SMZ-NLCs [63]. 

3.3.5. Animal Study 
MRSA is the cause of the highest proportion of S. aureus infections (up to 55%) and 

mortality (20%) [64]. Thus, it is recommended to develop more effective therapeutic strat-
egies to improve clinical outcomes [65]. For this purpose, the application of nanotechnol-
ogy-based devices can be considered a promising strategy to address these issues. In this 
study, the therapeutic efficacy of PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs 
and TMP/SMZ, in treating MRSA skin infections was measured and compared in vivo. 
For this purpose, the weight changes of the infected animals were controlled and recorded 
throughout the experiment. According to the results, the weight loss occurring in the 
TMP/SMZ receiver group was more prominent compared to the other groups (8, 8.4, 13, 
and 19.2% weight loss in control, PEG-TMP/SMZ-NLCs, TMP/SMZ-NLCs, and TMP/SMZ 
receiver groups, respectively, Figure 7). This results from the efficacy of nanoparticles in 
decreasing the side-effects of drugs as the nanoparticles are able to reduce the drug dis-
tribution in the body [13]. 

 
Figure 7. (A) Weight change measurements in MRSA skin infections in Balb/c mice 10 days after the 
development of infection. As the figure shows, TMP/SMZ receiver mice, compared to TMP/SMZ-
NLCs, PEG-TMP/SMZ-NLCs receiver, and the control groups of mice, demonstrated higher weight 
loss. (B) Histopathological effects of (i) TMP/SMZ, (ii) TMP/SMZ-NLCs, and (iii) PEG-TMP/SMZ-
NLCs, compared to (iv) PBS, on the liver of the skin-infected mice caused by MRSA. Arrows show 
the histopathological lesion (Magnification ×40). 

Figure 7. (A) Weight change measurements in MRSA skin infections in Balb/c mice 10 days after the
development of infection. As the figure shows, TMP/SMZ receiver mice, compared to TMP/SMZ-
NLCs, PEG-TMP/SMZ-NLCs receiver, and the control groups of mice, demonstrated higher weight
loss. (B) Histopathological effects of (i) TMP/SMZ, (ii) TMP/SMZ-NLCs, and (iii) PEG-TMP/SMZ-
NLCs, compared to (iv) PBS, on the liver of the skin-infected mice caused by MRSA. Arrows show
the histopathological lesion (Magnification ×40).

In addition, the serum concentrations of ALT, AST, BUN, and creatinine were mea-
sured in the infected animals, and the results demonstrated that these factors significantly
increased in the TMP/SMZ receiver group, compared to other groups receiving TMP/SMZ-
NLCs, PEG-TMP/SMZ-NLCs, and PBS (Figure 8, Table S8). The higher efficacy of PEG-
TMP/SMZ-NLCs, compared to TMP/SMZ-NLCs, in decreasing the side-effects of the
drugs could be due to the higher blood circulation stability of PEG-TMP/SMZ-NLCs and
release of the drugs for a longer time [66].

The results of toxicity were confirmed by histopathological studies, in which more liver
cell necrosis was observed in the TMP/SMZ receiver group (Figure 7B). In addition, the
therapeutic effects of the formulations were evaluated in terms of antibacterial effects. The
results demonstrated that the numbers of viable bacteria in TMP/SMZ, TMP/SMZ-NLCs,
and PEG-TMP/SMZ-NLCs receiver groups were 105, 103, and 102 CFU/mL, respectively.
These results indicated the efficacy of PEG-TMP/SMZ-NLCs, compared to TMP/SMZ-
NLCs and TMP/SMZ, in increasing the therapeutic effects of TMP/SMZ. This could be
due to the positive effects of PEG on the circulation time of the particles and the profile of
drug release.
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4. Conclusions

This study aimed to improve the oral delivery of TMP/SMZ for the treatment of MRSA
skin infections using a PEGylated nanoformulation of the drugs. The nanoformulation
was successfully synthesized with the size and LE% of 187 ± 9 nm and 9.8%, respectively,
that could release the drugs in a controlled manner at both pH 1.2 (64%) and 6.8 (52%).
The nanoformulation could significantly decrease the toxicity of the drugs by 2.4-fold
and demonstrated high stability with time. In addition, PEG-TMP/SMZ-NLCs could
improve the intestinal permeability of the drugs in vitro by 54%. The nanoformulation
was found efficient in increasing the antibacterial effects of the drugs against the MRSA
bacterium by eightfold in vitro. The efficacy results of PEG-TMP/SMZ-NLCs in improving
the oral delivery of the drugs in the treatment of MRSA skin infection in vivo demonstrated
that PEG-TMP/SMZ-NLCs could decrease the toxicity of the drugs by ~5-fold, which
was confirmed by histopathological studies. In addition, PEG-TMP/SMZ-NLCs could
enhance the antibacterial effects of the drugs after oral administration in the infected
mice by three orders of magnitude. According to these results, it can be concluded that
PEG-TMP/SMZ-NLCs could be considered a promising carrier for the oral delivery of
TMP/SMZ for the treatment of MRSA skin infection. Oral drug delivery is an ideal route
to achieve therapeutic and prophylactic effects against diseases. For this purpose, NLCs
have demonstrated great promise as these nanoparticles can protect entrapped drugs from
degrading enzymes and harsh pH conditions, adhere to the intestinal mucus, and inhibit
the P-gp-mediated efflux. In addition, the surface of NLCs can be modified with polymers
and peptides to further improve their oral bioavailability. Moreover, these nanoparticles
release the entrapped drugs in a controlled manner, resulting in a decrease in the side-
effects of the loaded drugs. Therefore, NLCs have the commercialization potential for the
preparation of oral formulations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics14081668/s1, Figure S1: The Higuchi model of TMP and SMZ
release from (A) TMP/SMZ-NLCs (pH 1.2), (B) TMP/SMZ-NLCs (pH 6.8), (C) PEG-TMP/SMZ-NLCs
(pH 1.2), and (D) PEG-TMP/SMZ-NLCs (pH 6.8); Figure S2: The stability of TMP/SMZ-NLCs and
PEG-TMP/SMZ-NLCs in fetal bovine serum (FBS) over 5 h at 37 ◦C. Data is expressed as mean ±
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SD (n = 3); Table S1: Formulation and optimization of non-PEGylated nanostructured lipid carriers
(NLCs) using various monostearin/lecithin ratios; Table S2: Formulation and optimization of PEGylated
NLC nanoparticles using various PEG/(lecithin + monostearin) lipid ratios; Table S3: Formulation and
optimization of drug-loaded PEGylated and non-PEGylated NLC nanoparticles using various drug
(TMP/SMZ) concentrations.; Table S4: Values of cumulative % drug released, % drug remaining, square
root time, log cumulative % drug remaining, log time, log cumulative % drug released, % drug released,
cube root of % drug remaining (Wt) and W0-Wt parameters used to determine the kinetics of the drug
release from TMP/SMZ-NLCs at pH 1.2. W0 and Wt are the initial and remaining amount of drug in
the pharmaceutical dosage form at times 0 and t, respectively; Table S5: Values of cumulative % drug
released, % drug remaining, square root time, log cumulative % drug remaining, log time, log cumulative
% drug released, % drug released, cube root of % drug remaining (Wt) and W0-Wt parameters used to
determine the kinetics of the drug release from TMP/SMZ-NLCs at pH 6.8. W0 and Wt are the initial
and remaining amount of drug in the pharmaceutical dosage form at times 0 and t, respectively; Table
S6: Values of cumulative % drug released, % drug remaining, square root time, log cumulative % drug
remaining, log time, log cumulative % drug released, % drug released, cube root of % drug remaining
(Wt) and W0-Wt parameters used to determine the kinetics of the drug release from PEG-TMP/SMZ-
NLCs at pH 1.2. W0 and Wt are the initial and remaining amount of drug in the pharmaceutical dosage
form at times 0 and t, respectively; Table S7: Values of cumulative % drug released, % drug remaining,
square root time, log cumulative % drug remaining, log time, log cumulative % drug released, % drug
released, cube root of % drug remaining (Wt) and W0-Wt parameters used to determine the kinetics
of the drug release from PEG-TMP/SMZ-NLCs at pH 6.8. W0 and Wt are the initial and remaining
amount of drug in the pharmaceutical dosage form at times 0 and t, respectively; Table S8: Values of
ALT, AST, BUN, and creatinine in control, TMP/SMZ, TMP/SMZ-NLCs, and PEG-TMP/SMZ-NLCs
receiver groups. The values are expressed as mean ± SD from three independent experiments.
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