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Abstract: Endodontic-related diseases constitute the fourth most expensive pathologies in industrial-
ized countries. Specifically, endodontics is the part of dentistry focused on treating disorders of the
dental pulp and its consequences. In order to treat these problems, especially endodontic infections,
dental barriers and complex root canal anatomy should be overcome. This constitutes an unmet
medical need since the rate of successful disinfection with the currently marketed drugs is around
85%. Therefore, nanoparticles constitute a suitable alternative in order to deliver active compounds
effectively to the target site, increasing their therapeutic efficacy. Therefore, in the present review,
an overview of dental anatomy and the barriers that should be overcome for effective disinfection
will be summarized. In addition, the versatility of nanoparticles for drug delivery and their specific
uses in dentistry are comprehensively discussed. Finally, the latest findings, potential applications
and state of the art nanoparticles with special emphasis on biodegradable nanoparticles used for
endodontic disinfection are also reviewed.

Keywords: nanoparticles; endodontics; PLGA; metal nanoparticles; dentistry

1. Introduction

The nanotechnological field has highly evolved during the last few decades. Progress
achieved in nanotechnology has allowed nanoparticles (NPs) to be considered one of the
most promising vehicles in the administration of medicines [1]. Therefore, nanotechnology
has been used with highly interesting results in the diagnosis and treatment of several
pathologies and also to produce biocompatible materials [2–4]. Nevertheless, one of the
most relevant purposes of NPs is to act as vehicles to deliver active compounds for imaging
and therapeutic agents, such as small molecules, proteins, peptides, and nucleic acids. The
primary advantages of NPs are their specificity, low toxicity, targeting and biocompatibility.
The materials employed in NPs are assorted, including lipids, metal, silicon and silica,
polymers, proteins and carbon [3,4].
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Specifically, NPs possess physical and chemical properties that differ from those of
bulk materials [1,5]. In addition, the flexibility of nanotechnology allows the development
of safer, yet more effective, diagnostic, therapeutic, and imaging modalities [2,5].

Among several applications of nanomaterials, the use of NPs in dentistry constitutes
a novel field, where a few research studies have been carried out. The most relevant
pathologies in dentistry are caries, periodontal disease, and endodontic infections [6–9].
Endodontics is the field of dentistry that treats the disorders of the dental pulp and its
consequences. According to the American Association of Endodontics, 15 million root
canal treatments are performed annually in the USA. In this area, the World Health Orga-
nization [1] estimates that in industrialized countries, oral diseases constitute the fourth
most expensive pathologies, expressed in direct cost [10]. Many oral dental pathologies are
highly difficult to treat and prevent due to the restrictive dental barriers and the complex
anatomy of the root canal system, which does not allow active compounds to arrive at
the target site [9]. Specifically regarding to endodontic disinfection, biofilms, as well as
the complex anatomy of the root canals, allows endodontic pathogens to be hidden in
areas that are inaccessible for irrigating preparations [11]. Therefore, effective disinfection
of the root canal system still constitutes one of the hallmarks for successful endodontic
treatment [12]. This therapy is carried out using mechanical instrumentation to achieve
effective microbial reduction before filling the root canal with an inert filling material.
However, a major challenge in root canal treatment is the inability of the current cleaning
procedures to eliminate bacterial biofilms surviving within the anatomic complexities of
the root canal system [13]. Despite efforts to develop new irrigation instruments, the rate
of treatment failure has not decreased below 18–26% during the past few decades. To solve
these problems, NPs could offer a solution being able to transport the active compounds
and deliver them effectively in a sustained manner [14,15]. Moreover, some NPs have also
shown intrinsic antibacterial potential such as silver or chitosan NPs and they have also
proven to be much more efficient, with good interaction properties and suitable surface
chemistry compared to conventional materials [11].

In this review, NPs and their specific uses in dentistry will be discussed. In addition, an
overview of dental anatomy and drug delivery barriers will be explored. The types of NPs
and their advantages and disadvantages will be reviewed for endodontic purposes, with
special emphasis on biodegradable NPs. In this area, NPs will provide a new paradigm shift
in dentistry. This review will highlight the latest studies developed using nanotechnological
tools for endodontic disinfection, their mechanisms of action and the future trends in
nanodentistry aimed towards endodontics disinfections.

2. The Oral Cavity and the Dentin-Pulp Complex

The oral cavity is the most anterior subdivision of the digestive tract [16]. It is formed
by the following structures (Figure 1): lips, oral mucosa, teeth, the hard palate, floor of
mouth, labial frenulum, upper and lower gum, and the anterior two thirds of the oral
tongue [17,18]. Despite their proximity, each area has different structures and anatomical
characteristics, to provide different functions. This leads to differences in barrier properties
and permeabilities that have to be taken into account to develop suitable and effective drug
administration [18].

2.1. Anatomical Structures of the Dentin-Pulp Complex

The teeth are constituted by crown and roots. In addition, related to their tissues,
teeth can be classified into two main groups: mineralized hard tissues (enamel, dentin,
and cementum) and non-mineralized soft tissues (pulp) [19]. Enamel is the outer aspect
of the crown and is also the most mineralized substance in the human body, composed
mainly of hydroxyapatite, a crystalline calcium phosphate [20]. The next layer is the
dentin which constitutes a major part of the crown and roots and is more porous than
the enamel. It is composed of microtubules that connect the dental pulp and the root
surface. The distribution of microtubules ranges from 15,000 × mm2 in the outermost
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zone to 45,000 × mm2 in the zone closest to the pulp. Inside the pulp, there is pulp tissue
and odontoblast. Tubules of teeth branch into nano-tubuli, which could be observed on
perpendicularly cut sections [21]. Dentin tubules are hollow microscopic channels that
travel from the pulp through the dentin, ending right beneath the enamel or cementum.
Pulp is vascularised by blood vessels or nerves, in contrast to enamel that does not present
the mentioned structures [22].

The dentin surrounds the pulpal tissues within the tooth. In the radicular portion,
dentin is surrounded by root cementum. Cementum is the tissue layer that covers the
roots of a tooth and surrounds the underlying dentin which has direct contact with the
periodontal ligament [23].

The morphology of the roots differs depending on each tooth type, since they can
either be single rooted or multirooted. Additionally, from top to bottom, root structures are
divided into coronal (which correspond to the crown of the tooth) and cervical (located
in the amelo-cemental junction) (Figure 1) [19]. In the inner part of the teeth, the pulp
runs inside the root canals, which present great morphological variability with multiple
anatomical varieties, which makes their preparation and debridement difficult from a
chemical-mechanical point of view. The pulp is a neuro-vascular complex that supplies
nutrients, provides sensory functions and controls blood flow [9].
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Figure 1. Tooth anatomy divided in crown and root and nanoparticles localization for endodontic
disinfection [24,25].

The main function of the dentinal tubules is to transport nutrients and fluids, hydrating
the tooth and serving as a transducer of physical signals to sensory responses. These
channels act as blood vessels in the hardest layers of the teeth, from the pulp chamber to
the dentin layer [24]. These network of canals extend radially from the pulp (inside the
tooth) towards the enamel-dentin junction and the cementum (outer areas).

2.2. Bacterial Infections of the Pulp and Dentinal-Pulp Complex

In the oral cavity, there are distinct microenvironments with several microbial com-
munities that grow on the teeth and the epithelial surfaces [26]. In this microenvironment,
around 50 different genera of bacteria can be found such as Firmicutes, Proteobacteria,
Actinobacteria, and Bacteroidetes [27]. Usually, host and external microbial communities
maintain a homeostatic balance, contributing to the oral health cavity by excluding harmful
pathogens [26]. Therefore, in the oral cavity, the local immune system strikes a delicate
balance to perform an effective immune surveillance without exuberant inflammatory
responses, tolerating commensals and innocuous antigens [27].
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Despite this, bacterial infections are usually represented as the most important aeti-
ological factors in pulpal and periapical diseases. To prevent these infections, the pulp
is surrounded by a strong mechanical support which protects it from the microbial oral
environment. This is formed by enamel, cementum and dentine [28]. Nevertheless, the
pulp could lose these protections trough diverse external factors such as caries, cracks,
fractures and open restoration margins. This can cause the oral microbiota or their toxins to
enter in the pulp, leading to inflammation that can end up in necrosis of the pulp tissue [29].
The pulp space is located in a complex system of root canals with a high anatomical variety
that includes isthmuses, lateral canals, accessory canals, dilacerations, apical deltas and
other abnormalities, which make their mechanical preparation and disinfection extremely
difficult. Moreover, infections produced in the dentino-pulpar complex can lead to serious
pathologies such as cellulitis, apical abscess or general disorders [28]. If the infection
spreads from the maxillary teeth, it could cause other pathologies such as purulent sinusitis,
meningitis, brain abscess, orbital cellulitis and cavernous sinus thrombosis. On the other
hand, infections from the mandibular teeth may cause Ludwig’s angina, pericarditis or
emphysema, among others. Furthermore, it should also be taken into account the emotional
damage and nutritional problems that can be caused by the extraction of infected teeth [30].

2.3. Current Bacterial Disinfection Techniques

The current cleaning and shaping of root canals is based on the use of chemomechani-
cal debridement to achieve optimal bacterial disinfection [31]. Among the most commonly
used current irrigants are sodium hypochlorite and chlorhexidine [32]. Sodium hypochlo-
rite is the irrigant most widely used in endodontics due to its ability to solve organic
and inorganic tissues [33]. However, its main drawback is the adverse effects that can be
produced due to its extrusion trough the apical foramen. Furthermore, the literature shows
a low potency applied in vivo which does not correspond to the excellent results obtained
in vitro. These discrepancies may be due to sodium hypochlorite, low penetration on the
dentinal tubules and the buffer effect produced on the dentin [34]. Moreover, other meth-
ods used to disinfect the radicular conducts are Ethylenediaminetetraacetic acid (EDTA),
Qmix®, MTAD®, Iodine Potassium Iodine (IPI) and Hydrogen peroxide [35,36].

Despite all these advances, current scientific evidence shows that the success rate of
disinfection therapies in endodontics is around 85% [37]. Taking these data into account, the
use of intra-canal medication to achieve greater bacterial disinfection has been extensively
studied. Among all, the most commonly used medication is calcium hydroxide [13].

Calcium hydroxide constitutes the first choice for antibacterial disinfection in cases
of teeth with infected root canals [38–40]. Its antimicrobial property is due to the ionic
dissociation of calcium hydroxide upon contact with aqueous fluids, dissociating into
calcium and hydroxyl ions [40]. Hydroxyl ions are highly oxidising free radicals with a
high reactivity that can cause damage to the bacterial cytoplasmic membrane; denaturation
of key proteins and enzymes and/or DNA damage. On the other hand, calcium ions
released from calcium hydroxide produce a stimulation of the synthesis of fibronectin by
the cells of the dental pulp that may cause dental pulp cells to differentiate into mineralised
tissue-forming cells [41].

However, one of the reported shortcomings of calcium hydroxide is the deactivation of
its active antibacterial capacity by contacting with dentinal tissue inside the root canal. This
fact may be due to the inhibitory effect of dentine, as is has been previously demonstrated
for various irrigants and root canal medicaments [39]. This inhibitory impact of dentin on
the antibacterial activity of calcium hydroxides may be related to dentin buffering action
against the primary cause of its influence, the hydroxyl ion, lowering the antibacterial
potential of calcium hydroxide [42].

3. Nanoparticles in the Medical Field

NPs have shown a wide variety of applications, especially in the medical field. These
applications range from in vitro diagnostic assays to in vivo localised imaging, drug de-
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livery, treatment and the prevention of several diseases [43]. In addition, NPs constitute a
suitable vehicle against bacterial infections due to their ultra-small size, large surface-area-
to-mass ratio, increased chemical reactivity, high stability and thermal conductivity [44–46].
Moreover, antimicrobial effects are derived from the large surface area and high charge den-
sity of NPs which interact with the negatively charged surface of bacterial cells, providing
enhanced antimicrobial activity of the encapsulated compound.

3.1. Nanoparticles in Endodontics

Nanostructured systems have demonstrated important applications in the medical
field, especially in dentistry, coining a novel research field named nanodentistry [47,48].
These systems have been used in dentistry to polish the enamel surface, teeth whitening,
prevention of caries, as a desensitizing agent or dental filling, among others [49]. Moreover,
among several dental diseases, endodontics disinfection constitutes an unmet medical need
that may be overcome using NP [50].

According to the available data, there are several types of NPs used in endodon-
tics. Among them, biodegradable (e.g., polylactic acid), inorganic (e.g., silica) and metal
(e.g., gold) NPs are the most commonly employed [50]. Therefore, the medical applications
of these NPs will be discussed in the following subsections [51].

3.2. Biodegradable Nanoparticles

Biodegradable NPs constitute promising carriers for the administration of a large vari-
ety of drugs, being able to provide the targeted delivery of drugs, improved bioavailability,
prolonged therapeutic efficacy, diminished drug resistance and reduced side effects [52].
Moreover, they are one of the most widely used for drug delivery [53].

Among several biodegradable NPs, polymeric NPs are the most widely used. They
are made of polymers that can be synthetic or natural. Synthetic polymers are based
on polyesters such as polylactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA), poly
(ε-caprolactone) (PCL) or poly-β-hydroxybutyric acid (PHB) [52,54,55]. Natural polymers
include chitosan, cellulose, gelatine, gliadin and different polysaccharides such as pullulan.

Polyester-based NPs are one of the few synthetic polymers that have entered clinical
trials in drug delivery application due to its excellent safety profile [56]. PLA, PLGA,
PCL and PHB are not only degradable in the physiological environment, they are also
bioresorbable, thus indicating that their degradation product or intermediates can be
eliminated through natural pathways by simple filtration or metabolism [57]. Degradation
occurs by several mechanisms, but the main one is through hydrolysis of the ester bonds.
Moreover, NPs fragments can also be taken up by macrophages phagocytosis. On the other
hand, PLA and PCL may also enter the citric acid cycle and be eliminated [58]. In addition,
PLGA is authorized by the Food and Drug Administration (FDA) and it is used as a carrier
for controlled drug release [59].

In this area, polyester derivatives have been approved in combination with different
drugs. Additionally, a PLA micelle containing paclitaxel (Genexol-PM) has been approved
in South Korea, India, and Indonesia for the treatment of breast, ovarian and lung cancer; it
is now conditionally approved by the FDA pending a full demonstration of effectiveness in
the EU [60]. There are also chemotherapeutic formulations of PLGA that are enriched by its
different properties (shape, support or size) currently approved by the FDA and available
on the market for various types of cancer treatment. The most prominent among them are
based on PLGA microspheres such as Lupron Depot® (Abbvie Endocrine Inc.) or Eligard®

(Tomar Therap), the latter being a PLGA-based gel [61]. Moreover, several studies using
PLGA nanoparticles in the medical field have been carried out. In this area, research using
PLGA NPs has proven a utility-wide variety of diseases such as ocular, brain or dermal
pathologies [54,62–65].

Natural polymers are extracted from animals, plants, bacteria and fungi. They can
be divided into two main groups: polysaccharides and protein-based polymers. As a
result, drug delivery with high loading efficiency and minimally invasive behaviour can be
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achieved. Natural polymers are usually derived from natural sources, such as chitosan from
chitin, and for this reason they generally have good biocompatibility and biodegradabil-
ity [66]. The use of polysaccharides and polymers for drug delivery has shown promising
results, especially in cancer therapy [67–69]. This type of encapsulation has given good
results with chemotherapeutic agents of plant origin, such as paclitaxel, which showed suit-
able controlled release behaviour and greater antitumoral efficacy in MDA-MB231 (human
breast tumoral cells) [70]. Similar results have also been observed with artificial agents,
such as in the study developed by Kim et al. in which they used hydrophobic cholanic
acid-modified glycol chitosan (HGC) to encapsulate cisplatin (CDDP), which proved to be a
promising vehicle for effective anticancer drug CDDP delivery [71]. Even though chitosan
is approved in dietary use, wound dressing applications and cartilage formulations, there
is not yet a chitosan NPs-based formulation approved for medical purposes [72].

3.3. Inorganic Nanoparticles

The main inorganic materials used to produce NPs are silicon, graphene and silica [73].
These NPs offer a wide variety of sizes, structures and geometries according to their
production methods [46]. Inorganic materials have a high chemical, thermal and mechanical
resistance, which facilitates their production and chemical modification. However, this
higher strength may also hinder their penetration into tissues due to their lack of flexibility.
In addition, they offer good biocompatibility, low immunogenicity, easy scalability, cheap
production and high drug loading capacity due to their porosity. The latter constitutes
a crucial property since inorganic NPs can be modified to possess pores with different
diameters. This allows the transport of several active compounds, from small drugs such
as chemotherapeutic agents to large proteins or oligonucleotide chains [73].

Among several materials, silica NPs are one of the most commonly used inorganic
nanomaterials. They can degrade into silicic acid or small silica species in certain aqueous
media and offer suitable biocompatibility [74]. The most commonly used applications of
silica NPs are diagnostic imaging [75,76] and drug delivery [77,78]. In fact, the FDA has
approved fluorescent silica nanoparticles for human clinical trials named Cornell dots.
Cornell dots range in size from 3 to 6 nm and are made of iodine 124, its primary target
for positron emission tomography (PET) imaging, and cyclo-(Arg-Gly-Asp-Tyr) peptides
(cRGDY) for molecular orientation. Cornell dots can be modified with radioisotopes or
contain an NIR dye (i.e., Cy5), whereby they could be used as hybrid PET optical imaging
agents [79]. These showed a significantly improved target-background ratio and higher
sensitivity, showing great potential for cancer diagnostics [80]. Other common inorganic
NPs are those made from calcium phosphate. These have been used successfully for gene
and drug delivery [81]. A summary of inorganic nanoparticles for medical purposes can be
found in Table 1.

3.4. Metal Nanoparticles

Metal NPs have unique physical, electrical, magnetic and optical properties [82]. They
are of particular interest for applications such as diagnostics, imaging and photothermal
therapies due to their magnetic, radioactive and plasmonic properties. However, the main
drawback for their clinical application is limited due to the low solubility and toxicity
problems at both human and environmental levels [83].

The main materials used for the production of metal NPs are gold, iron and silver.
The most widely studied are Gold NPs (AuNPs) due to their photothermal properties,
and are used in various forms such as nanospheres, nanorods, nanostars, nanoshells and
nanocages [46]. AuNPs possess free electrons on their surface that oscillate continuously
at a frequency that depends on their size and shape. In addition, they can be easily
functionalized [84]. Moreover, some of them are commercialized, as is the case of gold
nanocapsules called AuroLase® used in the treatment of brain and neck tumours [85].
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Table 1. Summary of recent advances and types of inorganic NPs in the medical field.

Nanoparticle Material Main Properties In Vitro Studies Ex Vivo Studies References

Silica

Most commonly used inorganic materials.
Great biocompatibility. Their main
applications are diagnostic imaging and
drug delivery.

Diagnostic imaging: In Vivo Photoacoustic
Imaging of Livers Using Biodegradable
Hyaluronic Acid- Conjugated
Silica Nanoparticles.

Diagnostic imaging: Photoluminescent and
biodegradable porous silicon nanoparticles
for biomedical imaging.

[75,76]

Drug delivery: Controllable drug release
and simultaneously carrier decomposition
of SiO2-drug composite nanoparticles.

[57]

Double loaded self-decomposable SiO2
nanoparticles for sustained drug release. [58]

Silica (Cornell dots)

Fluorescent silica nanoparticles for human
clinical trials approved by FDA. These can
be modified with radioisotopes or optical
imaging agents. Moreover, these NPs
showed a significantly improved
target-background ratio and higher
sensitivity for cancer diagnostics.

Clinical translation of an ultrasmall
inorganic optical-PET imaging
nanoparticle probe.

- [80]

Calcium carbonate Successfully used for gene and
drug delivery. - Calcium carbonate nanoparticles; Potential

in bone and tooth disorders. [81]
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In addition, iron oxide is another frequently investigated material for the synthesis
of inorganic NPs and constitutes the majority of FDA-approved inorganic nanomedicines.
Iron oxide NPs are composed of magnetite (Fe3O4) or maghemite (Fe2O3), which possess
superparamagnetic properties at certain sizes. This allows them to have properties that
make them suitable contrast agents, drug delivery vehicles and thermal-based therapeu-
tics [46]. Moreover, Fe3O4NPs also exhibit good biocompatibility, which has led to the
clinical approval of several drugs based on iron oxide NPs [74]. This is the case of Feridex®,
an MRI contrast agent [86]. Moreover, Fe3O4NPs are also used in cancer treatment, as is
the case of NanoTherm®. NanoTherm® was the first therapeutic NP formulation approved
in Europe (2010). It is effective against brain tumours and it is based on magnetic NPs with
an iron oxide core that by applying an alternating magnetic field, causing rapid rotation
of NPs that induces heat in the tumour by friction, causing cancer cells to be irreversibly
damaged or sensitized to receive additional chemotherapy or radiotherapy [87,88].

Furthermore, silver NPs (AgNPs) also constitute a highly relevant group of metal
NPs. AgNPs stand out in particular for their antibacterial role. AgNPs possess chemical
stability, high electrical and thermal conductivity and catalytic activity [89]. AgNPs have
been applied in different fields, such as textiles, cosmetics, food industry and biomedicine.
In the biomedical field they are gaining strength, especially for their applications as an-
timicrobial agents, in molecular diagnostics, and as carriers of chemotherapeutics [90].
AgNPs have been used as disinfectants and are effective against several bacterial strains
such as Escherichia coli and Staphylococcus aureus [91–93], Mycobacterium tuberculosis and
Chlamydia trachomatis [94], among others. Furthermore, these NPs have also been used
in combination with antibiotics such as cefazolin (CEF), mupirocin (MUP) or gentam-
icin (GEN), with good results against Staphylococcus aureus, Pseudomonas aeruginosa and
Escherichia coli [95]. In addition to their antimicrobial and antifungal applications, the char-
acteristic conductive properties of AgNPs allows them to be employed for photothermal,
laser, and radiation therapies in order to enhance anti-tumoral therapy. For this reason, they
have been extensively studied against different tumours (leukaemia, breast cancer, hepato-
cellular carcinoma, lung carcinoma and colon carcinoma) [96,97]. Moreover, a summary of
the medical applications of metal NPs can be found in Table 2.

3.5. Mesoporous Calcium Silicate

Calcium silicate-based materials play an important role in the development of en-
dodontic materials that induce bone/cementum tissue regeneration and inhibit bacterial
viability [98]. In this sense, mesoporous calcium silicate NPs combines the properties of
calcium silicate but also possesses pores that have diameters between 2 and 50 nm that
can be used for drug delivery. In this sense, Huang et al. loaded some antibiotics such as
gentamicin in order to potentiate its antibacterial properties [98].

Furthermore, these NPs are also useful in filling the apical third of the root canals due
to their property of being highly viscous in nature [11].

3.6. Nanoparticles Functionalization

Despite the relevant effects and beneficial features of NPs, the number of nanomedicines
available in the market is far below the projections expected for the field [83]. To solve
these complications, there are new mechanisms to vectorize NPs to a specific site of action
by adding specific compounds to the NPs surface, allowing them to be directed towards
specific tissues [99]. Functionalization can be achieved using several compounds such as
peptides, antibodies, stabilizers, or imaging agents [100]. Although in endodontics limited
examples of functionalized NPs can be found, in other areas, several studies have been
developed using targeted NPs.
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Table 2. Summary of recent advances and types of metal NPs in the medical field.

Active Compound Nanoparticle Material Main Properties In Vitro Studies Ex Vivo Studies References

- Gold

The most widely studied in various
forms due to their photothermal
properties and its capacity to be
easily functionalized. Some of
them are commercialized
(AuroLase®, treatment of head and
neck tumours).

Gold nanoshell- localized
photothermal ablation of prostate
tumours in a clinical pilot
device study.

- [85]

- Iron

Possess superparamagnetic
properties at certain sizes, good
biocompatibility and great
properties for being a contrast
agent (Feridex®) or against cancer
treatment (NanoTherm®).

Cancer treatment: Plasmonic
photothermal therapy (PPTT)
using gold nanoparticles.

Contrast agent: Fractionated
Feridex and positive contrast:
In vivo MR imaging
of atherosclerosis.

[86,88]

- Silver

AgNPs stand out especially for
their, chemical stability, higher
electrical and thermal conductivity
of metals, catalytic and
antibacterial activity. In the
biomedical field they are gaining
strength in molecular diagnostics,
and as carriers
of chemotherapeutics.

Antibacterial properties:
Anti-inflammatory effects of
silver-polyvinyl pyrrolidone
(Ag-PVP) nanoparticles in mouse
macrophages infected with live
Chlamydia trachomatis.
Antibacterial activity of silver
nanoparticles (AgNPs) in
Staphylococcus aureus and
cytotoxicity effect in mammalian
cells. substance.

Cancer treatment:
Anti-leukaemia activity of
PVP-coated silver nanoparticles via
generation of reactive oxygen
species and release of silver ions

[71,93,97]

Antibiotics Silver

Ag NPs have also been used in
combination with antibiotics such
as cefazolin (CEF), mupirocin
(MUP) or gentamicin (GEN)
with good results against
Staphylococcus aureus,
Pseudomonas aeruginosa and
Escherichia coli.

Elucidating pharmacodynamic
interaction of silver
nanoparticle—Topical
deliverable antibiotics.

[95]
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Functionalization can be achieved my modifying the surface of the NPs, as in the study
carried out by Folle et al. The authors developed a thymol-loaded surface-functionalized
PLGA NPs for topical administration that enhanced the anti-inflammatory, antioxidant,
and anti-acne healing activities of thymol. In this study, a synergistic activity between
TH-NPs and their surface functionalization using chitosan for their action against acne
was demonstrated [101]. Furthermore, together with the increase of viscosity, the addi-
tion of PEG to the nanoparticles’ surface is a recognised strategy to reduce nanoparticles
clearance [56,62,102,103].

Moreover, one of the most novel functionalization mechanisms are those carried
out with antibodies. This is the case of the study carried out by Marega et al. using
plasma-polymerized allylamine-coated AuNPs, bioconjugated with a monoclonal antibody
targeting epidermal growth factor receptor. With these, it was possible to overexpress
the epidermal growth factor receptor, as determined by ELISA and Western blot assays.
In addition, in vivo targeting of these receptors was also observed [104]. In this area,
functionalization using customized peptides has also shown great potential. Several
studies have been carried out using cell penetrating peptides aimed to increase the passage
of biodegradable NPs trough cellular membranes conferring increased selectivity to the
NPs. Specifically, in the studies carried out by Gonzalez-Pizarro et al., they developed
PLGA NPs encapsulating fluorometholone for ocular drug delivery [105]. Increased ocular
anti-inflammatory effect was demonstrated. Similarly, other researchers also encapsulated
drugs into PLGA-peptide targeted nanocarriers, proving an increased passage towards cell
membranes such as cornea [106,107], brain [108], colon [109] or tumoral cells [109].

Furthermore, a different strategy to increase the remaining time of NPs in the tissues
is their dispersion into gelling systems [110]. Among all, stimuli-forming gels constitute
one of the most novel advances. In this area, Esteruelas et al. encapsulated Riluzole
into PLGA NPs and these were dispersed in an in situ gelation system to improve the
biopharmaceutical profile of Riluzole after ocular administration. As a result, the gel
formulation increased the contact of the NPs with the ocular surface and demonstrated the
ability to be distributed in the posterior segment of the eye for 24 h after application [55].

4. Biodegradable Nanoparticle in Endodontics Disinfection

The most commonly used antimicrobials for effective endodontic microbial reduction
are usually intracanal medication and irrigants combined with mechanical instrumentation.
Despite advances in this method, the treatment failure rate comprises between 5–25%,
depending on pulpal and periapical status [111]. This fact makes it clear that there is an
urgent medical need for novel disinfectant strategies in endodontics [13].

4.1. Dentinal Biofilms

Bacterial biofilms are considered the main cause of root canal infection. Oral biofilms
are a structured bacterial community with a wide range of microbes embedded in a self-
made matrix of extracellular polysaccharides (EPS). This biofilm is a virulence factor for
many oral infectious diseases, such as dental caries, gingivitis, periodontitis, periapical
periodontitis and peri-implantitis [112]. The life cycle of biofilms consists of an initial bacte-
rial adhesion that may be a reversible attachment, subsequent colonization (irreversible),
growth, maturation characterized by the enhanced production of EPS and, finally, its
dispersion in the environment [113,114].

The search for biofilm eradication compounds is influenced by the complexity of the
oral cavity and the rapid clearance of saliva, due to the fact that topically applied antibacte-
rial agents are not retained in sufficient concentrations, or for long enough to perform their
action [115]. In this area, novel advanced disinfection strategies involve antibiofilm treat-
ment in the root canal using antibacterial NPs, which are showing significant antimicrobial
potential [13].

Although they are not biodegradable, metal NPs are the most widely used in endodon-
tics disinfection. Among them, one of the components with the most promising potential
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against biofilms is Coper oxide (CuO). CuONPs have been reported as suitable alternatives
to control biofilm formation within the oral cavity. The mechanism of action of CuONPs
is the restriction of bacterial growth by hindering the passage inside cell membranes of
the majority of bacterial strains [116]. Although CuNPs have also been used, they present
rapid oxidation when exposed to air, which, added to their non-biodegradability, makes
their application limited [117]. Stages of biofilm are reproduced in Figure 2.
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Figure 2. Stages in biofilm formation. (1) Reversible adhesion of bacteria to the infection surface
by means of their superficial appendages (pili and flagella). (2) Irreversible adhesion, forming
microcolonies. (3) Growth and cell division. (4) Bacterial secretion from the extracellular polymeric
matrix, composed of proteins and polysaccharides and biofilm maturation. (5) Bacterial detachment
and migration to different environments. Based on [113].

Moreover, AgNPs also possess antibacterial properties able to penetrate the biofilms
and release silver ions. In this field, a comparative study of AgNPs and free silver nitrate
was carried out demonstrating that AgNPs had a higher antibacterial power than free silver
ions [118]. AgNPs offer a strong broad-spectrum antibacterial agent (gram-positive and
gram-negative bacteria), and also suitable stability. The antibacterial activity of the AgNPs
results from the damage to the bacterial cell membrane, in addition to the interaction
with the disulphide or sulfhydryl groups of the enzymes, causing the interruption of the
metabolic processes [117]. However, the toxicity of AgNPs is still under evaluation [119].

4.2. Biodegradable Nanoparticles in Endodontics

Biodegradable NPs have drawn attention among professionals due to their suitable
properties and decreased side-effects. One of the most widely used polymers in endodontics
is chitosan or poly [1,4-b-D-glucopyranosamine]. Chitosan is a deacetylated derivative of
chitin and its structure is similar to the components of the extracellular matrix, being able
to reinforce collagen constructions [13]. Chitosan is a versatile compound in terms of its
forms and functions, as demonstrated by its excellent antibacterial, antiviral and antifungal
properties, which has aroused great interest in biomedicine [120]. This polymer can be
loaded with different active compounds such as chlorhexidine (CHX), which has produced
great results in the elimination of bacteria and biofilms in specific oral diseases [121].
Chitosan has a positive charge, which could lead to the electrostatic attraction of chitosan
with negatively charged bacterial cell membranes (Figure 3). This attraction would lead
to an alteration in cell wall permeability, resulting in cell rupture, leakage of intracellular
proteins and components, and ultimately death of the microbial species [122]. In this area,
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chitosan nanoparticles (CS-NPs) have demonstrated their potential to be administered in
the dentinal tubules of an infected root canal to improve root canal disinfection, overcoming
its anatomical complexities. Moreover, it was observed that the effect of CS-NPs did not
decrease when used together with inhibitors of the efflux pump, a mechanism of biofilm
resistance to antimicrobial agents [123].

The efficacy of CS-NPs in improving root canal disinfection has been evaluated in
dentin infected teeth and treated with Enterococcus faecalis. In this study, it was observed
that dentin treated with CS-NPs resulted in significantly less adherence of Enterococcus fae-
calis than untreated dentin and a significant penetration of antibacterial NPs into the
dentinal tubules was observed [124]. In addition, the capability of CS-NPs avoiding the
formation of biofilms have been assessed. Streptococcus oralis, Prevotella intermedia, and
Actinomyces naeslundii biofilms were used to infect dentin sections and the application
of CS-NPs significantly reduced the antibiofilm activity. Moreover, using confocal laser
scanning microscopy (CLSM), the greater penetration of the CS-NPs was also proven [13].
In another study, Carpio-Perochena et al. also evaluated the antibiofilm effect of CS-NPs
through bovine dentin sections and it was observed that CS-NPs-treated sections had
half of the dentin smear and bacterial recolonization inhibited [125]. Moreover, Soto Bar-
reras et al. loaded CS-NPs with CHX to eliminate E. faecalis. A comparative in vitro study
was carried out with chlorhexidine (CHX) and CHX loaded CS-NPs, showing a signifi-
cantly greater reduction in colony-forming units on agar plates caused by CHX loaded
CS-NPs [126]. Furthermore, Li et al. found that using cross-linked CS-NPs could decrease
root stress distribution and improve resistance to fatigue loads in endodontically treated
teeth [127]. All these studies confirm that CS-NPs present a significant potential in the dis-
infection of the root canal. However, there are still different barriers that must be overcome,
such as the treatment time required to achieve effective bacterial elimination using these
nanosystems [13].
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Other biodegradable polymers widely used in endodontics are biodegradable
polyesters [129,130]. These polymers (PLA, PLGA, PCL and PHB) are bioabsorbable
and their degradation products can be eliminated through natural pathways [58]. These
are used as carriers for antibacterial, antibiotics or different types of medicines. However,
they do not possess antibacterial properties by themselves.

The mechanism of action for the elimination of microorganisms is mainly by fu-
sion with the microbial cell membrane and the subsequent release of the antimicrobial
agent [131]. In this area, our group has recently developed PLGA NPs loading Ca(OH)2, an
antibacterial compound, obtaining a prolonged Ca(OH)2 release able to be distributed along
the root canals [45]. Additionally, the NPs displayed a superior ability to penetrate inside
the dentinal tubules compared to marketed Ca(OH)2. Moreover, Wang et al. also developed
PLGA NPs loaded with Ca(OH)2, which, after their application in the dentin infected
models, were able to produce a decrease in the bacterial load and their by-products [132].
Furthermore, triclosan, an antimicrobial agent with high efficacy against plaque-forming
bacteria, have been loaded into PLGA and PLA NPs [133]. In this case, triclosan loaded
NPs efficacy for the treatment of periodontal disease was assessed. Both formulations
resulted in significant penetration into dentinal tubules, being superior in the case of PLGA
NPs. In addition, a rapid release of triclosan from NPs attributed to the NPs large surface
area was observed, along with a decrease in gingival inflammation [134].

Other studies have also shown the potential of PLGA to efficiently deliver active
compounds within the structure of the dental tubules at a sufficient depth to exert their
action [135]. Recently, other authors have carried out NPs functionalization to be used
for disinfection in endodontics through photo-dynamic therapy (PDT) [136]. PDT is a
novel interesting approach that could be used by loading photosynthesizers inside NPs.
In this area, Pagonis et al. have also assessed PLGA NPs potential on extracted human
teeth, observing positive results against E. faecalis using the photosensitizer methylene
blue [137]. Therefore, methylene blue loaded PLGA NPs demonstrated the potential to be
used as carriers for PDT in endodontics. A summary of biodegradable nanoparticles used
in endodontics can be found in Table 3.
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Table 3. Summary of biodegradable NPs used in endodontics disinfection.

Active Compound Nanoparticle Material Main Properties In Vitro Studies Ex Vivo Studies References

- Chitosan

Electrostatic attraction with bacterial cell
membranes. Versatile compound in forms and
functions. Excellent antibacterial, antiviral and
antifungal properties. High biodegradability,
non-toxicity. Proven antibiofilm efficacy. Hight
root canal penetration.

-

Adherence of E. faecalis to dentin in sectioned
single-rooted teeth showing bacterial death and
decreased adherence.

[124]

Multispecies biofilm infected dentin sections
proved the antibiofilm activity and CLSM
determined a high penetration.

[138]

Bovine dentin sections were infected
intra-orally, the treatment result in an inhibition
of bacterial recolonization on root dentin.

[125]

Chlorhexidine Chitosan Antibacterial spectrum that includes most of the
microorganisms of the oral cavity.

Collagen membrane with E. faecalis
infection, results significant
inhibition of bacterial growing.

- [126]

Cross-linked chitosan Improved resistance to fatigue loads in
endodontically treated teeth.

Root canal dentin sections were subjected to
nanoindentations before/after treatment,
showing a decrease of stress root.

[127]

Ca(OH)2 PLGA
Bioabsorbable by simple filtration or
metabolism. Prolonged release.
Hight root penetration.

-

Single-rooted
human teeth were treated with PLGA NPs and
observed with confocal microscope,
demonstrating higher NPs penetration.

[45]

Single-rooted teeth infected with E. faecalis and
treated, the result was a decrease in bacterial
species and their by-products.

[132]

Triclosan PLGA and PLA Hight root penetration. Hight encapsulation
efficiency. Large surface area. -

Beagle dogs with induced periodontitis were
treated showing a decrease in
gingival inflammation.

[134]

Chlorhexidine PLGA
Potent antibacterial efficacy. Slow degradation
and gradual chlorhexidine release profile.
Increased NPs penetration.

Extracted teeth were connected to experimental
setup simulating pulpal hydrostatic pressure,
the result was a potent antibacterial efficacy,
and gradual degradation pattern.

[135]

Methylene blue PLGA Potent antibacterial effects. Novel antimicrobial
endodontic treatment. -

E. faecalis infected root canals were treated and
irradiated with red light at 665 nm obtaining a
CFU levels significantly lower.

[139]
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5. Conclusions

Nanodentistry constitutes one of the most novel applications of nanotechnology. In
this area, NPs focused on dentistry and, more specifically, in dental disinfections, constitute
an important area that still needs to be explored. Nanomaterials offer a platform towards
the specific delivery of active compounds, being able to penetrate trough the root canals
and fight against biofilm resistance. Specifically, biodegradable NPs have demonstrated
biocompatibility and reduced toxicity. Among them, chitosan and PLGA NPs are the most
widely used for these purposes, demonstrating their efficacy towards dental infections.
However, only a reduced number of studies have been published in this area and, therefore,
further investigations are necessary in order to develop efficient nanomedicines to avoid
the high risk of failure associated with oral disinfection.

6. Future Perspectives

Nowadays, novel therapies in order to increase the success rates of endodontic disinfec-
tion constitute an unmet medical need. Among them, NPs are advocated as an innovative
and effective tool in order to overcome the complicated dental tubules anatomy and deliver
active compounds to the target site. Among several NPs types, metal NPs, especially silver
NPs, are one of the most currently studied due to their suitable antibacterial effects. How-
ever, they pose serious concerns due to their toxic effects on human health and towards the
environment. Therefore, efforts are being directed either to decrease the toxicity of silver
NPs using functionalization or coating strategies, or towards the study and development
of biodegradable NPs, such as chitosan-based NPs that possess a positive surface charge
and intrinsic antibacterial capacity. Furthermore, lipid NPs also offer an alternative that
might be worth exploring in order to deliver active compounds in a directed manner, using
natural compounds that are safe for human use.
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