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Abstract: Lung metastasis of colorectal cancer is common in the clinic; however, precise targeting for
the diagnosis and therapy purposes of those lung metastases remains challenging. Herein, cholera
toxin subunit b (CTB) protein was chemically conjugated on the surface of PEGylated liposomes
(CTB-sLip). Both human-derived colorectal cancer cell lines, HCT116 and HT-29, demonstrated high
binding affinity and cellular uptake with CTB-sLip. In vivo, CTB-sLip exhibited elevated targeting
capability to the lung metastasis of colorectal cancer in the model nude mice in comparison to
PEGylated liposomes (sLip) without CTB modification. CTB conjugation induced ignorable effects
on the interaction between liposomes and plasma proteins but significantly enhanced the uptake
of liposomes by numerous blood cells and splenic cells, leading to relatively rapid blood clearance
in BALB/c mice. Even though repeated injections of CTB-sLip induced the production of anti-CTB
antibodies, our results suggested CTB-sLip as promising nanocarriers for the diagnosis of lung
metastasis of colorectal cancer.

Keywords: lung metastasis; targeting; colorectal cancer; liposome; immunogenicity

1. Introduction

Colorectal cancer has become an increasing burden in public health, firmly ranking
in the top three of both the morbidity and the cause of death from malignant tumors [1].
Even worse, remote spreading of colorectal cancer is of high occurrence, which accelerates
the pathological progression and exacerbates the difficulty of clinical treatments. Lung
metastasis is among the most common in colorectal cancer patients even after surgical
resection [2], readily leading to rapid recurrence and disease progression. However, the
early stage of lung metastasis of colorectal cancer remains challenging to track even using
positron emission tomography [3]. Targeting the lung metastasis of colorectal cancer is of
crucial importance for the diagnosis and therapy purposes [4].

There are numerous ligands being developed to target colorectal cancer cells by recog-
nizing the corresponding receptors or antigens, including small molecules [5], peptides [6],
antibodies [7], and aptamers [8]. Such targeting ligands are conjugated with nanocarriers
for the delivery of imaging probes [9], therapeutic agents [10], or even both. Unfortunately,
none of them have been successfully approved for the clinical use. There are multiple
biological barriers hampering the efficient delivery of those targeted delivery systems [11].
We [12,13] and other groups [14,15] previously reported that ligand modification could
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severely alter the bio-nano surface properties, thus affecting the formation of protein
corona and enhancing the mononuclear phagocyte system recognition. Conversely, the
biological media that the targeted delivery systems encounter during in vivo circulation
can also destroy the ligands to compromise the bioactivity [16,17], leading to the loss of
targeting capability.

GM1 ganglioside is expressed on the membrane of various types of cells [18], acting
as the receptor for cholera toxin by strongly binding with the subunit b (CTB) [19]. In
our previous study [20,21], the CTB protein was conjugated on the surface of poly (lactic-
co-glycolic acid) (PLGA) nanoparticles to penetrate the blood–brain barrier and to target
glioma cells and neovasculature by recognizing GM1. The CTB protein not only preserved
bioactivity in the presence of mouse serum but also exhibited nonsignificant impacts on
the absorption of plasma proteins after conjugation on the surface of PLGA nanoparticles.
These results suggested that the CTB protein may be an appropriate ligand to efficiently cir-
cumvent the biological barriers in blood circulation by mitigating the reciprocal influences
between delivery systems and biological media.

The CTB protein was found to demonstrate high binding with intestinal cells in the
human histological sections [22,23], suggestive of the potential of the CTB protein for
targeting colorectal cancer. Liposomes are a class of commonly used nanocarriers in both
basic research [24,25] and the clinic [26], representing a class of versatile tools for the
delivery of imaging probes and therapeutic agents [27]. In the present study, the CTB
protein was chemically conjugated on the surface of PEGylated liposomes (CTB-sLip). We
investigated the targeting capability of CTB-sLip to colorectal cancer cells in vitro and lung
metastasis of colorectal cancer in vivo. In particular, the effects of serum were emphasized
on the bioactivity of the CTB protein, as well as the immunogenicity and in vivo fate
of CTB-sLip.

2. Materials and Methods
2.1. Animals and Cells

Adult male BALB/c mice and nude mice were purchased from Shanghai Laboratory
Animal Research Center (Shanghai, China) and raised under Specific Pathogen Free (SPF)
conditions. HCT116 and HT-29 cell lines were purchased from Shanghai Institute of Cell
Biology. Cells were cultured with McCoy’5A medium containing 10% fetal bovine serum
(FBS) at 37 ◦C with 5% CO2.

2.2. Materials

Cholesterol, mPEG2000-DSPE, Mal-PEG3500-DSPE, and HSPC were acquired from
Shanghai A.V.T. Pharmaceutical company (Shanghai, China). DiI (1,1′-Dioctadecyl-3,3,3′,3′-
tetramethylindocarbo-cyanine perchlorate), 2-iminothiolane hydrochloride (Traut’s Reagent),
and Sephadex® G50 were obtained from Sigma (St. Louis, MO, USA). Doxorubicin
HCl/Adriamycin (MB1087-S), DiO dye (MB4239), and DiR dye (MB12482) were bought
from Meilunbio Co. Ltd. (Dalian, China). HisSep Ni-NTA Agarose Resin 6FF (20503ES50)
and Ampicillin Sodium (60203ES10) were acquired from YEASEN Biotech Co., Ltd. (Shang-
hai, China). One-Step™ ABTS Substrate Solution (37615), Zeba™ Spin Desalting Columns
(7 kDa MWCO) and a Pierce TM BCA Protein Assay Kit (23225) were obtained from Thermo
Fisher Scientific (Rockford, IL, USA). TMB Substrate Solution for ELISA was obtained from
Beyotime Biotech Co. Ltd. (Shanghai, China). Anti-His tag antibody [M2] (HRP) (ab9108),
anti-mouse serum albumin (ab19194), and donkey polyclonal secondary antibody to Rabbit
IgG-H&L (Alexa Fluor® 647) (ab150075) were obtained from Abcam (Cambridge, MA,
USA). Mini-PROTEAN® TGXTM Precast Protein Gel 4–20% (4561093) was purchased from
Bio-Rad Laboratories Co., Ltd. (Shanghai, China). Polymyxin B sulfate (A610318), IPTG
(Isopropyl-beta-D-thiogalactopyranoside), and MOPS (4-Morpholinepropanesulfonic acid)
were purchased from Sangon Biotech Co., Ltd. (Shanghai, China). Tryptone (LP0042)
and yeast extract (LP0021) were obtained from Oxid Co., Ltd. (Hants, UK). Ganglio-
side GM1 was purchased from Avanti Co., Ltd. (Birmingham, UK). McCoy’5A medium
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(L630KJ) was obtained from Basal Media Co., Ltd. (Shanghai, China), and FBS was
obtained from Cytiva Co., Ltd. (Marlborough, MA, USA). APC anti-mouse CD3 an-
tibody (100235), Brilliant Violet 421TM anti-mouse CD19 antibody (115537), APC anti-
mouse/human CD11b antibody (101211), Brilliant Violet 421™ anti-mouse Ly-6G antibody
(127627), APC anti-mouse CD146 antibody (134711), Brilliant Violet 421™ anti-mouse F4/80
antibody (123131), anti-mouse CD11c recombinant antibody (161102), and Brilliant Violet
421™ anti-human CD326 (EpCAM) Antibody (369821) were purchased from BioLegend.
Co., Ltd. (San Diego, CA, USA).

2.3. Expression and Characterization of the CTB Protein

The plasmid was successfully constructed and cloned into PET-28a (kanamycin re-
sistance) containing a C-terminal His (6×) tag. The E. Coli cells were amplified at 37 ◦C
and induced at 15 ◦C by IPTG (1 mM) for 12 h. The crude protein was obtained by cen-
trifugation at 6000× g for 10 min and dissolved in buffer containing 50 mM Tris, 500 mM
NaCl, 2 M urine, and 10 mM 2-hydroxy-1-ethanethiol. The crucial protein was folded
by dialysis for 48 h and subsequently loaded in a Ni-NTA column according to manu-
facturer’s instructions (Yisen Co. Ltd., Shanghai, China). The CTB protein was collected
with elution buffer (250 mM imidazole in PBS) and ultrafiltrated at 8000× g with PBS
three times until complete replacement of the storing buffer by PBS. The gradient (4–20%)
polyacrylamide SDS-PAGE gel and Fast sliver staining kit were used to characterize the
purity and molecular weight of the CTB protein.

ELISA was used to determine the binding activity of CTB to GM1. GM1 was coated
on 96-well microplates with 1 µg per well at 4 ◦C overnight. After blockade with 5% BSA
(in PBS), serial dilutions of CTB in 0.1% BSA were added and incubated at 37 ◦C for 1 h.
HRP conjugated anti-His antibody was used to detect CTB at 405 nm (ABTS).

2.4. Preparation and Characterization of Liposomes

Plain PEGylated liposomes (sLip) were prepared by the lipid-film hydration method.
HSPC, cholesterol, and mPEG2000-DSPE (52:43:5 in molar ratio) were dissolved in chlo-
roform and formed a thin film through vacuum evaporation. Any residual chloroform
was removed overnight under vacuum. The film was hydrated with saline and extruded
through polycarbonate membranes (400 nm, 200 nm, and 100 nm) at 60 ◦C. The DiI-, DiR-,
and DiO-labelled sLip (sLip/DiI, sLip/DiR, and sLip/DiO) were prepared according to the
same procedure as above except by adding 100 µg mL−1 DiI, DiR, and DiO, respectively.
The 5-FAM-loaded sLip (sLip/FAM) were prepared using the same procedure as that used
for plain sLip, except using 5-FAM solution (2 mg mL−1 in deionized water) to hydrate
the film. A Sephadex-G50 column was used to remove the unloaded fluorescence dye.
Maleimide functionalized sLip were prepared by adding 1% mol Mal-PEG3500-DSPE before
vacuum evaporation.

CTB (775 µg, 14 nmol) was dissolved in 1.5 mL PBS (containing 5 mM EDTA, pH
adjusted to 8.0), and 9.7 µL Traut’s Reagent (14.5 mM in PBS) was added. The mixture was
reacted for 45 min at room temperature. A desalting column was used to remove un-reacted
Traut’s Reagent, and the thiolated CTB was collected by centrifugation. Mal-sLip (1 mL,
with 10 µmol HSPC) were mixed with thiolated CTB (1–4 nmol, resulted in a molar ratio
of 0.1–0.4‰ CTB to HSPC). The mixture was reacted at room temperature for 3 h. The
reaction solution was collected, and CTB-sLip were purified using a Sephadex-G50 column.
The size and zeta potential of liposomes (50 times dilution with deionized water) were
measured by a Zetasizer Nano ZS (Malvern Instruments, Malvern, UK).

2.5. Characterization of Liposome Stability in Mouse Serum

sLip/DiI and CTB-sLip/DiI were incubated with the same volume of BALB/c serum
for 24 h at room temperature, and PBS was set as a control. Liposomes were diluted
1000 times and detected by Nanoparticle Tracking Analysis (NTA 3.4 Build 3.4.003).
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2.6. Binding Activity of CTB-sLip with GM1 In Vitro

GM1 or BSA was coated in 96-well microplates with 1 µg per well. After blockade
with 5% BSA in PBS, serial dilutions of CTB-sLip/DiI were added and reacted at 37 ◦C
for 1 h; sLip/DiI were set as the controls. DiI was quantified by a microplate reader at
Ex/Em = 540/580 nm. To evaluate the effect of serum on GM1 binding, CTB-sLip were pre-
incubated with BALB/c serum or PBS for 24 h. Serial dilutions were added and incubated
with GM1-immoblized wells at 37 ◦C for 1 h. HRP conjugated anti-His antibody was used
to detect CTB at 450 nm (TMB).

2.7. Protein Corona Separation and Characterization

CTB-sLip with different CTB modification degrees or sLip were incubated with the
same volume of BALB/c plasma at 37 ◦C for 1 h. After centrifugation at 14,000× g for
30 min, the pellet was rinsed with cold PBS twice. The pellet was boiled in a mixture
containing SDS-PAGE 5 × sample buffer (5 µL), PBS (20 µL) and β-mercaptethanol (2 µL)
at 95 ◦C for 5 min. Electrophoresis was performed using gradient polyacrylamide gel,
which was stained with a Fast Silver Stain Kit.

2.8. Pharmacokinetic Profile of CTB-sLip/DiI

Male BALB/c aged 4–5 weeks were intravenously injected with CTB-sLip or sLip
(50 mg kg−1 lipid), and blood was sampled at 10 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h, and
24 h. The fluorescence of DiI in plasma was detected by a microplate reader at 540/580 nm.

2.9. Cellular Uptake and Binding of CTB-sLip/FAM In Vitro

HCT116 and HT-29 cells were cultured with McCoy’5A medium (10% FBS) at 5% CO2.
Cells were seeded into 12-well plates and incubated with CTB-sLip/FAM or sLip/FAM
(5 µM of FAM) in 0.1% BSA or 10% BALB/c serum for 2 h at 37 ◦C. Cells were harvested and
analyzed by flow cytometry. To assess the binding ability of CTB-sLip/FAM or sLip/FAM
with cells, liposomes (5 µM of FAM) in 0.1% BSA or 10% BALB/c serum were incubated
with HCT116 and HT-29 cells for 2 h at 4 ◦C.

2.10. Uptake of CTB-FITC to Colorectal Cancer Cell Lines

HCT116 and HT-29 cells were cultured and seeded as aforementioned. The FITC-
labeled CTB protein (CTB-FITC, 1 µM) was added and incubated with cells in the presence
of BSA or BALB/c serum for 2 h at 37 ◦C. FITC labeled BSA (BSA-FITC) was set as the
control. Flow cytometry was used to evaluate the uptake ability of the CTB protein in
colorectal cancer cells.

2.11. Uptake of Liposomes by Blood Cells of BALB/c Mice In Vivo

To investigate the cellular uptake of CTB-sLip in peripheral blood cells, male BALB/c
mice aged 4–5 weeks were intravenously injected with CTB-sLip/DiO (50 mg kg−1 lipid,
n = 3), and sLip/DiO were set as the control. Peripheral whole blood was sampled at 2 h or
24 h after injection and collected into PBS with 10 mM EDTA. Red blood cells were then
lysed twice with ACK Lysis Buffer. Fluorescent antibodies, including anti-mouse CD3/APC
for T cells, anti-mouse CD19/BV421 for B cells, anti-mouse CD11b/APC, and anti-mouse
Ly6G/BV421 for monocytes and neutrophils, were incubated with white blood cells at
4 ◦C for 30 min. The fluorescence of internalized DiO-labeled liposomes was evaluated by
flow cytometry.

2.12. Cellular Uptake of Liposomes in Liver and Splenic Cells In Vivo

BALB/c mice were intravenously injected with CTB-sLip/DiO (50 mg kg−1 lipid,
n = 3); sLip/DiO were the control group. Mice were sacrificed at 2 h or 24 h, and the
corresponding livers and spleens were dissected after perfusion with HBSS via postcava.
The livers were gently mashed and sieved through a 70 µm cell strainer. Hepatocytes
were collected by centrifugation (4 ◦C, 50× g, 3 min), and the supernatant containing
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nonparenchymal cells was collected and centrifuged at 650× g for 7 min. Kupffer cells
and liver sinusoidal endothelial cells (LSECs) were enriched in the middle layer by Percoll
gradient centrifugation (25%/50%). Hepatocytes were fixed in 4% PFA and permeabilized
with 0.5% Triton-X 100. Collected cells were strained with anti-mouse albumin and Alexa
Fluor 647 donkey anti-Rabbit IgG antibody. The enriched nonparenchymal cells were
strained with anti-mouse F4_80/BV421 and anti-mouse CD146/APC to mark Kupffer cells
and liver sinusoidal endothelial cells (LSEC).

The dissected spleens were sieved through a 70 µm cell strainer, and spleen cell
suspensions were incubated with anti-mouse CD3/APC, anti-mouse CD19/BV421, anti-
mouse F4_80/BV421, and anti-mouse CD11c antibody at 4 ◦C for 30 min to mark T cells, B
cells, Macrophages (Mφ), and DC cells. The fluorescence of internalized liposomes was
evaluated by flow cytometry (Agilent Technologies, Novocyte3000, Santa Clara, CA, USA).

2.13. Distribution of Liposomes in BALB/c Nude Mice with Lung Metastasis of Colorectal Cancer

Male BALB/c nude mice aged 6–8 weeks were injected with 2 × 106 HCT116 or
HT-29 cells per mice in the left lung, and distribution of liposomes was determined after
9–14 days. CTB-sLip/DiR or sLip/DiR (50 mg kg−1 lipid) were intravenously injected,
and organs were dissected at 24 h after administration. Opti-Scan Viewn Vivo superior
optics (vie-works, for HT-29 cells animal model) and Visque InVivio Elite (for HCT116
cells animal model) were applied to quantify the fluorescence intensity of organs. DiO-
labeled liposomes (50 mg kg−1 lipid per kg body weight of mice) were applied to evaluate
cellular distribution in vivo. Lungs were dissected at 24 h after injection and digested
with IV collagenase. The tumor cells were labeled with BV421 conjugated anti-CD236, and
DiO in tumor cells was analyzed by flow cytometry (Agilent Technologies, Novocyte3000,
Santa Clara, CA, USA).

2.14. Immunogenicity of Liposomes

Male BALB/c nude mice weighing ~20 g were intravenously injected through the tail
vein with CTB-sLip or sLip (50 mg kg−1) per week for 21 days, and the corresponding
serum of each group was sampled. sLip or CTB-sLip (20 µg lipid per well) were coated in
96-well microplates, and serial dilutions of corresponding serum were added and incubated
at 37 ◦C for 1 h. HRP-conjugated anti-mouse IgM and IgG antibody were utilized to detect
anti-PEG IgG/IgM and anti-CTB IgG/IgM in serum, respectively.

2.15. Statistical Analysis

Data are presented as the means ± standard deviations (SD) and were analyzed by
GraphPad Prism software 8.0.1 (GraphPad Software, San Diego, CA, USA). p < 0.05 was
considered statistically significant (ns: p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001).

3. Results and Discussion
3.1. Preparation and Characterization of CTB-Conjugated Liposomes (CTB-sLip)

The CTB protein is a homopentamer that binds GM1 in each monomer (Figure 1a). A
His (6×) tag was constructed in the CTB protein molecule for purification. After expression
via the E. coli system and protein refolding (see Methods), the CTB protein was purified by
the Ni-NTA column with good purity and correct molecular weight according to the SDS-
PAGE silver staining results (Figure 1b). The purified CTB protein was quantified by the
BCA method, demonstrating an expression yield of 10–15 mg L−1 in the present study. The
expressed CTB protein was further ascertained by measuring its binding affinity with GM1
using the ELISA method (see Methods). As shown in Figure 1c, the expressed CTB protein
demonstrated high binding affinity with GM1, registering an equilibrium dissociation
constant (Kd) of 39.2 pM. In contrast, the negative control protein, BSA, exhibited no
obvious binding with GM1.

To chemically conjugate the CTB protein on the surface of PEGylated liposomes,
the CTB protein was thiolated using Traut’s Reagent (see Methods) and reacted with the
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maleimide group of PEGylated liposomes (Figure 2a). As shown in Figure 2b, all popula-
tions of liposomes demonstrated a mean diameter ~130 nm with narrow size distributions.
The conjugation of CTB slightly increased particle sizes and zeta potentials. The binding of
CTB-sLip with GM1 was measured in the 96-well ELISA plates by reading the fluorescence
of DiI encapsulated in liposomes (Figure 2c). CTB-sLip demonstrated increasing fluores-
cence intensity of the encapsulated DiI in a concentration-dependent manner, indicating
preservation of CTB bioactivity after chemical conjugation with PEGylated liposomes.
In contrast, sLip and Mal-sLip (without CTB modification) displayed no binding with
GM1. Meanwhile, the nonspecific binding of all populations of liposomes was excluded by
measuring the interactions of liposomes with BSA-coated plates (Figure 2d).

Figure 1. Expression and characterization of the CTB protein. (a) Schematically illustration of the
structure of CTB. (b) Characterization of the expressed and refolded CTB by SDS-PAGE. (c) Binding
activity of the expressed CTB to GM1; BSA was set as the control. The Kd value was calculated using
GraphPad Prism 8.0.1. Data are means ± SDs, n = 3.

Figure 2. Preparation and characterization of CTB-conjugated PEGylated liposomes (CTB-sLip).
(a) Schematic illustration of the conjugation method of CTB to the maleimide group grafted on the
surface of PEGylated liposomes. (b) Size and zeta potential characterization of the prepared CTB-sLip
and fluorescence dye DiI-loaded CTB-sLip. The binding activities of CTB-sLip/DiI to GM1 coated
(c) and BSA coated (d) were performed by ELISA; sLip/DiI and Mal-sLip/DiI were set as the controls.
Data are means ± SDs, n = 3.
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3.2. Effects of Serum on the Targeting Capability of CTB-sLip

The effects of mouse serum on CTB-sLip were investigated in vitro. After incuba-
tion with BALB/c serum for 24 h, liposomal size and distribution were measured using
Nanoparticle Tracking Analysis (NTA). As shown in Figure S1, all particles in various
media displayed a major size distribution ranging from 50 nm to 300 nm. Pre-incubation of
CTB-sLip or sLip with BALB/c serum did not significantly alter the size distribution. The
effect of serum on CTB bioactivity was also determined. In comparison to PBS (Figure 3a),
pre-incubation with BALB/c serum only slightly affected the CTB binding to GM1. The
formed protein coronas on the surface of CTB-sLip and sLip were separated, and their
compositions were analyzed using SDS-PAGE. As shown in Figure 3b, the CTB protein
at different modification degrees did not induce obvious differences in the composition
of the formed protein corona in comparison to sLip. These results are consistent with our
previous report [20], where the CTB protein on the surface of the polymeric nanoparticles
preserved bioactivity with GM1 after interaction with serum.

Figure 3. Effects of BALB/c plasma proteins on the bioactivity of CTB-sLip. (a) Affinity characteri-
zation of CTB-sLip (pre-incubation with BALB/c serum and PBS for 24 h) to GM1 based on ELISA;
sLip were set as a control. Data are means ± SDs, n = 3. (b) Evaluation of protein corona of CTB-sLip
(with 0.1‰, 0.2‰ or 0.4‰ molar ratio CTB modification) by SDS-PAGE.

To study the targeting capability of CTB-sLip, two human-derived colorectal cancer
cell lines, HCT116 and HT-29, were cultured. As shown in Figure S2, both cell lines demon-
strated high uptake of CTB, suggesting GM1 expression on the cell membrane. The binding
of CTB-sLip with cells was studied at 4 ◦C. After 2 h incubation with FAM-encapsulated
CTB-sLip or sLip, the FAM fluorescence-positive cells were counted using a flow cytometer.
As shown in Figures S3 and S4, both HCT116 and HT-29 cells demonstrated significantly
higher binding with CTB-sLip than with sLip, suggesting the targeting capability of CTB-
sLip to human-derived colorectal cancer cells. The presence of BALB/c serum dramatically
decreased the binding of all populations of liposomes with cancer cells. However, CTB-
sLip still exhibited significant enhancement of cell binding compared with sLip, which
is consistent with the results shown in Figure 3. Cellular uptake of liposomes by cancer
cells was conducted at 37 ◦C (Figure 4). As expected, CTB demonstrated high targeting
capability to both HCT116 and HT-29 cells.
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Figure 4. Effect of BALB/c serum on the targeting capability of CTB-sLip to human-derived colorectal
cancer cells. CTB-sLip/FAM (5 µM 5-FAM) were prepared to study the in vitro uptake by HCT116
cell ((a), n = 3) and HT-29 cell ((b), n = 4) at 37 ◦C after 2 h incubation, in 0.1% BSA and 10% BALB/c
serum, respectively. Data are means ± SDs. * p < 0.05 and *** p < 0.001 based on one-way ANOVA
with Prism.8.0.1.

3.3. Pharmacokinetic Profiles of CTB-sLip

To study the in vivo fate of liposomes, the pharmacokinetic profiles and biodistribution
of both CTB-sLip and sLip were investigated in BALB/c mice. Liposomes at a dose of
50 mg kg−1 (lipid to mouse body weight) were injected into the tail vein, and blood was
sampled at the predetermined time points. As shown in Figure 5a, CTB-sLip demonstrated
a significant decrease of the area under the curve (AUC) in the plasma concentration–time
curve, suggesting relatively rapid clearance of CTB-sLip in mice. At the last time point
(24 h after injection), the biodistribution of liposomes in the main organs was measured
(Figure 5b). Most liposomes were, as expected, found in the liver and spleen, and CTB-sLip
still demonstrated higher distribution in both organs in comparison to sLip.
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Figure 5. Pharmacokinetic profiles (a) and biodistribution (b) of sLip/DiI and CTB-sLip/DiI in
major organs of BALB/c mice over 24 h after intravenous injection with 50 mg kg−1 lipids. Data are
means ± SDs, n = 5. * p < 0.05, *** p < 0.001; ns indicates non-significant based on Student’s t-tests.

To further understand the interaction of CTB-sLip with the body, the uptake of li-
posomes by blood cells was measured. At 2 h and 24 h after injection of DiO-labeled
liposomes, blood cells were collected and labeled with respective specific antibodies. The
uptake of liposomes was determined using a flow cytometer. As shown in Figure 6, CTB-
sLip demonstrated higher uptake of neutrophils, monocytes, B cells, and T cells to some
extent, suggesting extensive binding of CTB-sLip with cells in vivo.

Figure 6. Uptake of CTB-sLip by blood white cells of BALB/c mice in vivo. CTB-sLip/DiO were
injected with 50 mg kg−1 lipids. Uptake by neutrophils and monocytes (a), and T cells and B cells
(b) in peripheral blood at 2 h and 24 h after injection was determined by Flow Cytometry. Data
are means ± SDs (n = 3). ** p < 0.01, *** p < 0.001; ns indicates nonsignificant based on grouped
two-way ANOVAs.
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The biodistribution of liposomes in the liver and spleen of BALB/c mice was also
carefully studied. The hepatocytes, Kupffer’s cells, and liver sinusoidal endothelial cells
(LSECs) were separated according to the previously reported protocol with minor mod-
ification [28] (see Methods) and labeled with respective markers or antibodies. It was
interesting that only CTB-sLip demonstrated significant enhancement (88% vs. 70%) of
uptake by Kupffer’s cells in comparison to sLip (Figure 7a), while the other cells did not
exhibit significant uptake of CTB-sLip at both time points. In contrast, CTB-sLip displayed
significant enhancement of uptake by splenic cells, including splenic microphages, den-
dritic cells, and B cells (Figure 7b), which is consistent with the data shown in Figure 5b.
At 24 h after injection, CTB-sLip exhibited higher accumulation in the spleen than sLip.
These data also indicated that interaction of CTB-sLip with blood cells and splenic cells
may majorly contribute to the relatively rapid clearance of CTB-sLip (Figure 5a).

Figure 7. Uptake of CTB-sLip/DiO by hepatic cells and splenic cells. (a) Kupffer’s cells and liver
sinusoidal endothelial cells (LSECs) were marked with F4/80 and CD146, respectively. (b) Splenic
macrophages (MΦ), DC cells, splenic B cells, and T cells were marked with F4/80, CD11c, CD19, and
CD3, respectively. Data are means ± SDs (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001; ns represents
nonsignificant based on grouped two-way ANOVAs.
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3.4. Lung Metastasis Targeting of Colorectal Cancer by CTB-sLip

To evaluate the targeting capability of CTB-sLip to lung metastasis of colorectal cancer,
male BALB/c nude mice were injected with 2 × 106 HT-29 cells per mice in the left lung.
At nine days after injection, fluorescent dye (DiO for cellular study and DiR for in situ
imaging)-labeled liposomes (50 mg kg−1 lipid of mice body weight) were intravenously
injected, and the left lung with implanted colorectal cancer cells was dissected for in situ
imaging. As shown in Figure 8a,b, CTB-sLip demonstrated significant enhancement in the
cancer tissues compared with sLip. The cells were further separated, and cellular uptake
of liposomes was determined by a flow cytometer (Figure 8c,d). As shown in Figure S6,
BALB/c nude mice with lung metastasis of HCT116 also demonstrated significantly higher
distribution with CTB-sLip than with sLip at 24 h after injection, suggesting the targeting
capability of CTB-sLip to human-derived colorectal cancer cells. Both CTB-sLip and sLip
demonstrated higher uptake by cancer cells than the paracancerous lung tissues, which
may be attributed to the enhanced permeability and retention effect. As for the cancer cells,
CTB-sLip displayed significantly higher targeting capability than sLip, suggestive of the
targeting capability of the former for lung metastasis of colorectal cancer.

Figure 8. Targeting capability of CTB-sLip to lung metastasis of colorectal cancer in vivo. Male
BALB/c nude mice planted with HT-29 cells in left lungs were injected with CTB-sLip/DiR ((a,b),
n = 3) for in situ imaging and CTB-sLip/DiO ((c,d), n = 5) for cellular uptake study; sLip/DiR and
sLip/DiO were set as the controls. Data are means ± SDs. ** p < 0.01 based on Student’s t-tests.

3.5. Immunogenicity of CTB-sLip

Considering the high uptake of CTB-sLip by the splenic cells, immunogenicity was in-
vestigated by detecting the antibodies. Both CTB-sLip and sLip were intravenously injected
via the tail vein weekly, and blood was sampled one week after the third injection. The
anti-PEG and anti-CTB antibodies were measured using the ELISA methods (see Methods).
As shown in Figure 9, sequential injections of CTB-sLip induced significant anti-CTB IgG
and slight anti-CTB IgM antibodies. Meanwhile, CTB-sLip demonstrated slight enhance-
ment of anti-PEG IgG antibody in comparison to sLip, with no significant generation of
anti-PEG IgM antibody. These data suggested the immunogenicity of CTB-sLip, warning
the repeated injection when CTB-sLip were exploited as the targeted delivery system.
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Figure 9. Immunogenicity of CTB-sLip in vivo. BALB/c mice were sequentially injected with sLip or
CTB-sLip (50 mg kg−1 lipids) per week for 21 days. Anti-PEG IgG/M (a,b) and anti-CTB IgG/M
(c,d) in serum on day 21 were detected by ELISA. Data are means ± SDs (n = 3).

4. Conclusions

Herein, the CTB protein was chemically conjugated on the surface of PEGylated lipo-
somes, and their potential for targeting lung metastasis of colorectal cancer was evaluated.
Chemical conjugation of CTB did not significantly alter the interaction between liposomes
and plasma proteins. CTB-sLip demonstrated good stability in the presence of mouse
serum, which may be attributed to the high stability of the homopentamer structure and
low plasma protein binding on the surface of CTB-sLip. The presence of serum induced the
decrease of binding with colorectal cancer cells to some extent, while CTB-sLip still retained
targeting capability in comparison to sLip. As expected, CTB demonstrated high targeting
capability to lung metastasis of colorectal cancer. The extensive interaction of CTB-sLip
with blood cells and splenic cells may contribute to their relatively rapid blood clearance
from BALB/c mice. Even though immunogenicity of CTB-sLip warned their applications
when repeated treatments were indispensable, the present study provided a potential tool
to achieve lung metastasis targeting of colorectal cancer for diagnostic purposes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14040868/s1, Figure S1: Characterization of lipo-
somes stability in BALB/c serum in vitro. Figure S2: The uptake capability of CTB protein to HCT
116 and HT-29 cells in vitro. Figure S3: The binding capability of CTB-sLip to HCT 116 cells in vitro.
Figure S4: The binding capability of CTB-sLip to HT-29 cells in vitro. Figure S5: Characterization
of antibody strained cells by flow-cytometry. Figure S6: Targeting capability of CTB-sLip to lung
metastasis of colorectal cancer in vivo.

https://www.mdpi.com/article/10.3390/pharmaceutics14040868/s1
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