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Abstract: Specific targeting, selective stimuli-responsiveness, and controlled release of anticancer
agents are requested for high therapeutic efficiency with a minimal adverse effect. Herein, we
report the sophisticated synthesis and functionalization of fluorescent mesoporous silicon (FMPSi)
nanoparticles decorated with graphene oxide (GO) nanosheets. GO-wrapped FMPSi (FMPSi@GO)
was loaded with a cisplatin (Cis) anticancer agent, and Cis-loaded FMPSi@GO (FMPSi-Cis@GO)
exhibited the dual stimuli (pH and NIR)-responsiveness of controlled drug release, i.e., the drug
release rate was distinctly enhanced at acidic pH 5.5 than at neutral pH 7.0 and further enhanced
under NIR irradiation at acidic pH condition. Notably, dequalinium-conjugated FMPSi-Cis@GO
(FMPSi-Cis@GO@DQA) demonstrated an excellent specificity for mitochondrial targeting in cancer
cells without noticeable toxicity to normal human cells. Our novel silicon nanocarriers demonstrated
not only stimuli (pH and NIR)-responsive controlled drug release, but also selective accumulation in
the mitochondria of cancer cells and destroying them.

Keywords: mesoporous silicon; controlled drug release; graphene oxide; dequalinium; mitochondria
targeting

1. Introduction

Mitochondria are double-membrane-bound organelles for producing cellular ATP,
regulating intracellular calcium homeostasis, generating reactive oxygen species, activating
the intrinsic apoptotic pathway, and producing hormones; therefore, aberrations in mito-
chondrial physiology are involved in various diseases [1,2]. Cancer cells predominantly
produce chemical energy via a high rate of glycolysis, even in the presence of abundant
oxygen. Therefore, this organelle is increasingly paid attention as a “prime target” for
pharmacological intervention [3–5]. However, it is difficult for drug molecules to enter the
mitochondria due to the extensively folded and compartmentalized structure of the inner
mitochondrial membrane. The mitochondrial membrane potential of cancer cells is highly
negative, which is 3- to 5-fold higher than that of the plasma membrane. In this regard,
positively charged target molecules can easily accumulate in the mitochondria organelle [6].
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Several potential mitochondrial delivery systems have been developed using specific bio-
chemical agents such as triphenylphosphonium (TPP), mitochondria penetrating peptides
(MPPs), and mitochondria targeting signal peptides (MTS) [7]. Mitochondria-targeting
nanoparticles (NPs) should be developed to deliver the therapeutic agents to mitochondria
without significant drug resistance. As a result, they are localized in mitochondria to
damage the mitochondrial membrane, consequently inducing greater cytotoxicity and
apoptotic cell death [6].

Among current materials such as silica [8,9], metal organic frameworks [10–15], com-
posites [16–19], and metal compounds [20–22], mesoporous silicon NPs have received
considerable attention in the field of biomedical drug delivery due to their outstanding
properties such as in vitro biocompatibility, in vivo biodegradability, and high photother-
mal activity [23,24]. A complete magnesiothermic reduction of mesoporous silica NPs
(MSN) has provided a platform for the rational design of multifunctional silicon nanostruc-
tures for controlled and targeted delivery of therapeutic agents [25,26]. In the following
literature studies, anticancer drugs such as paclitaxel and doxorubicin were loaded into
porous silicon (PSi) NPs coated with Pluronic F-127, PEG, and hyaluronic acid layers,
but poor targeting to specific organs limited their applications to cancer therapy [27,28].
Alginate and chitosan were also coated on PSi with targeting ligands for the construction
of multi-responsive nanocarriers, but the PSi composites showed poor drug-capturing
ability due to their low porosity, resulting in inefficient cancer cell killing activity [24].
Undecylenic acid functionalized-PSi NPs were conjugated with β-cyclodextrin to study
the impact of surface polymeric functionalization on the physical and biological properties
of drug-loaded PSi, based on their anticancer effects on MCF-7 and MDA-MB-231 breast
cancer cells [29,30].

To enhance anti-cancer efficacy, various functional strategies of multiple integrations
are highly required [31,32]. The smart drug delivery systems (DDS) should possess can-
cer cell organelle-targeting specificity, bio-imaging, and therapeutic activity to achieve
excellent anticancer effects on the apoptotic death of cancer cells [33]. As one of the smart
DDS materials, graphene oxide (GO) has multiple hydrophilic groups that can facilitate
drug adsorption on its surface and edges via electrostatic, hydrogen bonding, and π–π
stacking interactions [19,34,35]. The hydrophilic groups (e.g., COOH and OH) of GO
improve the solubility in the aqueous phase and π conjugations contribute to the strong
NIR absorption of GO [36–38]. In this context, GO nanosheets conjugated with silicon-
based nanocarriers can provide strong anticancer efficacy, chemo-photothermal sensitivity,
and stimuli-responsive drug release [36,39]. Furthermore, GO can provide reactive sites
for surface modification and excellent biocompatibility, which are required for targeted
drug delivery [40].

Herein, we first synthesized mesoporous silicon (MPSi) NPs grafted with fluorescent
organic conjugates, so-called fluorescent MPSi (FMPSi), which were subsequently deco-
rated with GO nanosheets. The GO-wrapped FMPSi (FMPSi@GO) loaded with cisplatin
drug exhibited the dual stimuli (pH and NIR)-responsive controlled drug release, i.e., the
drug release rate was increased by pH lowering (from pH 7.4 to pH 5.5) and significantly
increased at acidic pH condition under NIR irradiation. Furthermore, dequalinium (DQA)-
conjugated FMPSi@GO, FMPSi@GO@DQA, provided the nanocarrier with remarkable
mitochondria targeting specificity, consequently leading to a significant decrease in cellu-
lar ATP production and damaging mitochondrial membranes of cancer cells. The FITC
fluorescence of isolated mitochondria from treated cells (HeLa, SH-SY5Y, and HEK293)
was detected using confocal microscopy to track the mitochondria binding capability of
the NPs. Cross-sectional TEM images were obtained to provide direct evidence for the
internalization of NPs in the mitochondria of cancer cells.
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2. Materials and Methods
2.1. Chemical Materials

The following chemicals were purchased from Sigma-Aldrich (Seoul, Korea) and were
used without further purification: 3-aminopropyltrimethoxysilane (APTMS, 97%), ammo-
nium fluoride (NH4F, 99.99%), cetyltrimethylammonium bromide (CTAB, 99%), cisplatin,
dequalinium (DQA, ≥95%), dimethyl sulfoxide (DMSO, ≥99.9%), powdered dopamine
hydrochloride, fluorescein isothiocyanate (FITC, 90%), graphene oxide (GO, 4 mg/mL),
magnesium (Mg, 20–230 mesh, 98%), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide
hydrochloride (EDC, crystalline), N-hydroxysuccinimide (NHS, 98%), sodium hydroxide
(NaOH, ≥98%), and tetraethyl orthosilicate (TEOS, 99%).

Phosphate-buffered saline (PBS) was obtained from Bioneer (Seoul, Korea). Commer-
cially available absolute ethanol (EtOH) and HPLC-grade H2O were used without further
purification. An acidic solution of HNO3:HCl (1:3 v/v) was used to clean the glassware
followed by deionized (DI) H2O.

2.2. Synthesis of Nanocarriers
2.2.1. Synthesis of Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSN) were synthesized using the cationic surfactant
CTAB via a sol–gel reaction with TEOS. Briefly, 0.30 g of CTAB and 0.80 g of NH4F were
mixed in 150 mL of deionized (DI) water and heated to 80 ◦C with vigorous stirring. When
they were dissolved completely, 3 mL of TEOS was added dropwise and mixed to achieve
a milky white solution at 80 ◦C for 12 h. To obtain the white solid of MSN, the milky
solution was centrifuged (8000 rpm, 10 min), followed by washing with DI H2O and EtOH
several times, and freeze-drying for 24 h. To allow the removal of the surfactant template
(CTAB), the white precipitate was dissolved in 150 mL of EtOH containing 2.0 mL of HCl
and refluxed for 24 h at 80 ◦C. This step was repeated to ensure the complete removal of the
surfactant. The obtained product was centrifuged, washed with DI water, and freeze-dried
for 24 h [8,41].

2.2.2. Magnesiothermic Reduction of MSN into MPSi

A 500 mg of MSN and 450 mg of magnesium powder (325 mesh) were mixed and
loaded into SS 316 Swagelok-type reactors filled with argon atmosphere in the glove box.
The SS 316 Swagelok-type reactor was heated in a tube furnace at 675 ◦C for 5 h (5 ◦C/min)
in an argon atmosphere and then cooled to room temperature (rt). The products were
immersed in 10 mL of HCl (2 M) for 7 h to remove MgO, Mg2Si, and undesired products,
followed by three times washes with DI water. The products were washed with copious
amounts of HF (5 wt%) solution to remove the residual silica. The powder was rinsed
several times with DI water, dispersed in ethanol, and finally dried using the freeze dryer
for 48 h [25,42,43].

2.3. Functionalization of Fluorescent Conjugates onto MPSi

Prior to surface functionalization, the MPSi samples were treated in a furnace at
100 ◦C for 1 h and then dispersed in DI water. This treatment increases the number
of hydroxyl groups on the surface of MPSi (MPSi-OH). Next, the hydrolyzed APTMS
solution was obtained by mixing 19 mL of ethanol and 5 mL of DI water, followed by
adding an aliquot of APTMS solution dropwise under continuous stirring. This reaction
resulted in the chemical modification of methoxy groups of APTMS ((OCH3)3-Si-(CH2)3-
NH2) into hydroxyl groups of silanetriols ((OH)3-Si-(CH2)3-NH2). Subsequently, MPSi-OH
NPs were incubated in the freshly hydrolyzed APTMS solution for 12 h under constant
stirring, and the product samples were rinsed with anhydrous ethanol to remove any
unbound APTMS-derivatives and dried in the freeze dryer. This treatment led to the
grafting of hydrolyzed APTMS groups onto the pore walls of MPSi, and the grafted MPSi
(MPSi@APTMS) was progressively conjugated with other functional molecules [44,45].
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FITC-conjugated APTMS (APTMS-FITC) was prepared by adding MPSi@APTMS
into FITC in ethanol (1.25 mg/mL). To obtain APTMS-FITC-grafted MPSi (MPSi@APTMS-
FITC), i.e., fluorescent MPSi (so-called FMPSi), the mixture was shaken at room temperature
(rt ~20 ◦C) in the dark for 12 h. The product was washed with ethanol, centrifuged to
remove excess FITC, and dried in the freeze dryer [8].

2.4. Drug Loadings and In Vitro Release Tests
2.4.1. Loading Cisplatin into FMPSi

Cisplatin is a weakly acidic drug with a pKa from 5.5 to 7.3 in its monohydrated and
dihydrated complex form [46]. Cisplatin solubility in DI water is 2.5 mg/mL (at 25 ◦C),
which increases up to 4 mg/mL when the temperature is increased up to 35 ◦C. The solu-
bility of cisplatin is notably increased in DMSO solvent (25 mg/mL) at 25 ◦C [47]. Cisplatin
is sensitive to light, and all the synthesis steps were performed without exposure to light.
For drug loading, 150 mg of the FMPSi sample was dispersed in 5 mL of DMSO containing
50 mg of cisplatin. The mixed solution was stirred at rt for 24 h to load maximum amounts
of cisplatin. The cisplatin-loaded FMPSi (FMPSi-Cis) was separated by centrifugation at
7000 rpm for 7 min. The supernatant was collected to determine the loading amount of
cisplatin by calculating the difference between the initial and residual amounts of cisplatin
in the solution [48].

2.4.2. Wrapping with GO Layers and Conjugation with QDA

GO (0.1 g; 0.025 mL of GO suspension) was sonicated in 2 mL of DI water for 3 min.
The FMPSi-Cis (50 mg) and GO solution were mixed and dispersed in DI water using
ultrasonic vibration for 3 min. After ultrasonic dispersion, the mixed solution was stirred
at 60 ◦C for 2 h. The precipitate was washed with DI water several times. Then, the
final product (FMPSi-Cis@GO) was collected by centrifugation and dried in the freeze
dryer system.

DQA is well-known for its mitochondria-targeting specificity. DQA-conjugated FMPSi-
Cis@GO (FMPSi-Cis@GO@DQA) was prepared using the coupling reaction between the
amine groups of DQA and the carboxyl group of GO using EDC-NHS agents [36]. Briefly,
5 mg of DQA was dissolved in 5 mL of DI water. To activate the carboxylic acid groups of
GO, EDC (20 µL of 1 mg/mL) was added to the FMPSi-Cis@GO solution (50 mg of NPs in
20 mL of DI water), then 50 µL of NHS (1 mg/mL) was added under continuous stirring.
The DQA solution was added dropwise into the solution. The reaction mixture was gently
stirred with a magnetic stirrer at rt for 2 h. Then, the final product was centrifuged and
washed with DI water several times to remove the residual impurities [49].

2.4.3. In Vitro Ph/Nir Irradiation-Controlled Drug Release

The FMPSi-Cis@GO were dissolved in 10 mL of PBS under constant stirring at
37± 1 ◦C. In vitro drug release test started immediately after the MPSi samples were added
to the PBS solution. The solution was periodically sampled to measure the absorbance
changes of the released cisplatin in the PBS solution at 301 nm by ultraviolet–visible (UV–
vis) spectroscopy (NanoDrop; NanoDrop Technologies, Wilmington, DE, USA) at the Smart
Materials Research Center for IoT at Gachon University. The absorbance values were
converted into the released amounts of cisplatin using the standard curve based on the
linear correlation between absorbance and corresponding concentration.

To investigate the stimuli (pH and NIR irradiation)-responsive drug release behavior
of as-prepared samples, in vitro release tests were carried out in 10 mL of PBS solutions at
different pHs (pH 5.5 and pH 7.4) using FMPSi-Cis@GO with (or without) NIR irradiation
at 808 nm (1.0 W/cm2) for 20 min. The NIR laser was periodically employed for 20 min
irradiation at the release times of 0, 5, 10, 20, and 30 h. During the continuous release
process, the solution was periodically sampled and the absorbance was measured at 301 nm
using UV–vis spectroscopy. Finally, the released amounts of drug were calculated based
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on the linear correlation of the standard curve, and the fractional release of the drug was
plotted versus corresponding times.

2.5. Cell Cytotoxicity Assay Using the MPSi-Drug System
2.5.1. Cell Viability Assay

Human cervical cancer (HeLa, American Type Culture Collection (ATCC CCL-2),
Manassas, VA, USA), neuroblastoma (SH-SY5Y, ATCC CRL-2266), and embryonic kidney
(HEK293T, ATCC CRL-1573) cell lines were incubated in Dulbecco’s modified Eagle’s
medium (DMEM) with 10% FBS and 1% antibiotics (penicillin-streptomycin, 10,000 U/mL)
at 37 ◦C in a humidified atmosphere containing 5% CO2. Briefly, different (HeLa, SH-SY5Y,
and HEK293) cell lines were cultured in 96-well plates with a density of 2 × 104 cells per
well. After incubation for 24 h, the old medium was replaced with fresh medium containing
different NP samples of various concentrations (100, 50, 25, 12.5, 6.5, 3.3, and 1.3 µg/mL).
After another 48 h of incubation, the old medium was removed, followed by washing thrice
with PBS, followed by the addition of 100 µL of fresh medium to each well. After incubation
for 30 min, CellTiter-Glo Luminescent reagent (100 µL) (Promega, Madison, WI, USA) was
added, followed by gentle shaking for 10 min at rt. The luminescence signal was measured
using a microplate reader (Perkin Elmer, Victor X5, Waltham, MA, USA). The percentage cell
viability was calculated based on the control (untreated) cells. The values were expressed
as mean ± SD of triplicate experiments.

2.5.2. Cellular Uptake and Intracellular Distribution

SH-SY5Y cells were seeded in full media to a final density of a 1 × 105 cells/well in
6-well plates in the presence of sterile rounded 22 × 1.5 mm glass coverslips. The next
day, the cells were treated with 25 µg/mL FMPSi, FMPSi-Cis, FMPSi-Cis@GO, and FMPSi-
Cis@GO@DQA for 4 h, 8 h, or 12 h. Next, each slide was washed thrice with PBS. For
staining the mitochondria, media was replaced with fresh media containing Mito-tracker
Deep red (Thermo Scientific, Waltham, MA, USA) staining solution (50 nM) and cultured in
the incubator for an additional 45 min. The cells were then washed with PBS (3×) and fixed
with 4% paraformaldehyde in PBS for 10 min at rt. The cells fixed on the slides were washed
with PBS (3×) followed by staining with DAPI in PBS (1 µg/mL) for 20 min at rt. The
slides were mounted with Eukitt® Quick-hardening mounting medium (Sigma-Aldrich,
St. Louis, MO, USA) for visualization by confocal microscopy. The mounted cells were
imaged at λ = 404, 488, and 638 nm to measure the fluorescence intensity of DAPI, FITC,
and Mito-Tracker Deep, respectively, using confocal microscopy (Nikon Eclipse TE2000-S,
C1 Plus; Nikon, Tokyo, Japan)

2.5.3. Mitochondria Isolation and Analysis of Fluorescence Intensity

To further validate the successful targeting of mitochondria in cancer cells, mitochon-
drial isolation was conducted in HeLa cells, following the instructions of the mitochondria
isolation kit (Thermo Scientific). HeLa cells were cultured in a T-75 cell culture flask at
a density of 1 × 107 cells/mL. Next, old media was replaced by fresh media containing
15 µg/mL of different FMPSi-Cis@GO and FMPSi-Cis@GO@DQA samples, and the cells
were further incubated for 24 h. Subsequently, old media was removed, and the cells
were washed thrice with PBS. The adherent cells cultured in a T-75 cell culture flask were
trypsinized, the cells were pelleted by centrifuging the cell suspension in a 2.0 mL cen-
trifuge tube at 850× g for 2 min, and the supernatant was carefully discarded. The pelleted
cells were treated with a cell rupturing reagent A (800 µL) by vortexing at medium speed
for 5 s, followed by ice water incubation for 2 min. Then, the mitochondrial isolation
reagent B (10 µL) was added, and the cell mixture was vortexed for 5 s. After ice incubation
for 5 min, 800 µL isolation reagent C was added to the cell-containing tube, and the mixture
gently inverted several times. The mixture was then centrifuged for 10 min at 700× g,
and the supernatant was collected in a new 2.0 mL tube. The isolated mitochondria were
pelleted by centrifuging the tube at 12,000× g at 4 ◦C for 15 min. Subsequently, the isolated
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mitochondria were resuspended in isolation reagent C and re-centrifuged twice to eliminate
the free nanoparticles. Then, the mitochondria-containing pellets were suspended in PBS
(200 µL) and transferred to a 96-well plate. The fluorescence intensity at an excitation
wavelength of 488 nm (FITC) was measured using a microplate reader (Perkin Elmer, Victor
X5, Waltham, MA, USA).

2.6. Data Analysis

Cell viability values were reported as the mean± standard deviations (SD) of triplicate
experiments. The 50% inhibitive concentrations (IC50) of the NPs were calculated using
a nonlinear regression curve fit (GraphPad Prism ver. 6, San Diego, CA, USA).

3. Results and Discussion
3.1. Synthesis and Characterization of Multifunctional Mesoporous Silicon (MPSi) NPs

MPSi samples were pre-treated in a furnace for 1 h at 100 ◦C and then dispersed in
water (Scheme 1). After thermal treatment to increase the number of surface OH groups,
the MPSi-OH was functionalized with 3-aminopropyltrimethoxysilane (APTMS), and the
resulting APTMS-MPSi was conjugated with fluorescein isothiocyanate (FITC), forming
fluorescent APTMS-FITC-conjugated MPSi (hereafter, APTMS-FITC will be abbreviated as
AP-FI). The fluorescent MPSi (FMPSi) can load high amounts of drug molecules due to the
increased surface area. Notably, the AP-FI conjugates can provide not only tortuous path-
ways through the porous channels of MPSi, but also control the release of drug molecules
via electrostatic and/or hydrogen bonding interactions [8]. To test the anticancer efficacy
of FMPSi-based nanocarriers, Cisplatin (Cis)-loaded FMPSi (FMPSi-Cis) was coated with
GO nanosheets, forming the FMPSi-Cis@GO. GO wrapping can enhance the efficiency of
photothermal therapy and cellular uptake of FMPSi [50,51]. To improve the mitochondrial
selectivity and cancer cell toxicity, DQA was further conjugated with FMPSi-Cis@GO to
develop mitochondria-targeted nanocarriers labelled as FMPSi-Cis@GO@DQA [52], which
can transport chemotherapeutics to mammalian mitochondria in living cancer cells [53,54].
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To verify the successful surface modifications during the consecutive synthesis of
multifunctional NPs, the zeta potential of the stepwise product was determined at neutral
pH 7.4, which is summarized in Table S1. The zeta potential of MPSi was measured to
be +0.90 mV, but the sign of zeta-potential was inverted to a negative value of −8.16 mV
after heat treatment at 100 ◦C, indicating the formation of hydroxyl groups on the surface.
However, the zeta potential of MPSi was slightly changed into a positive value of +3.85 mV
after the surface grafting of hydrolyzed APTMS with terminated amine groups. The
subsequent conjugation of fluorescent FITC with APTMS, i.e., forming AP-FI conjugates,
changed the zeta potential into a negative value of −14.95 mV, confirming the replacement
of positive amine groups with negative carboxylic acid groups, as illustrated in Scheme 1.
Finally, GO wrapping on the FMPSi further decreased the zeta potential to −34.80 mV. For
reference, pKa values of GO are known to be 4.3, 6.6, and 9.8, so GO have multiple negative
charges at neutral pH conditions [55].

Figure 1A illustrates the FTIR spectra of the samples MPSi, FMPSi, and FMPSi@GO.
The MPSi showed FTIR peaks at 802 cm−1 and 1294 cm−1, correlating to the Si-Si and
Si-O-Si bonds, respectively. After binding with AP-FI conjugates, the FMPSi exhibited
a new peak at 1585 cm−1 that was attributed to the C=S vibration. Moreover, the broad
bands at 1404 cm−1, 2314 cm−1, and 3662 cm−1 were assigned to C-N, N-C-N, and NH
groups of AP-FI conjugates, respectively. The FMPSi@GO exhibited three new peaks at
3550 cm−1, 2950 cm−1, and 2337 cm−1, which were attributed to the O-H, C-H, and COO
groups originating from wrapped GO nanosheets, respectively. Figure 1B shows the Raman
spectra of the samples. MPSi (or FMPSi) revealed a distinct Raman peak at ~500 cm−1,
indicating the successful transformation of Si nanocrystals from silicon oxide by the Mg
reduction process [56]. The Raman spectra of FMPSi@GO showed two broad bands at
1359 cm−1 (D band) and 1591 cm−1 (G band) that matched with the Raman bands of
pure GO [57].
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Figure 1. (A) FT-IR spectra of MPSi, FMPSi, and FMPSi-Cis@GO; (B) Raman spectra of MPSi, FMPSi,
and FMPSi-Cis@GO; (C) Nitrogen adsorption/desorption isotherms and pore size distribution using
the Barrett–Joyner–Halenda (BJH) analysis of as-prepared samples (MSN, MPSi, and FMPSi); and
(D) TEM images: (1) MSN, (2) FMPSi, (3) FMPSi@GO, and (4) FMPSi-Cis@GO@DQA.

Figure 1C shows the BET surface area and porosity of the samples MSN, MPSi, and
FMPSi. The N2 adsorption/desorption isotherm curve of MSN was similar to type III
isotherm, which did not exhibit any limiting adsorption at the high ratio of p/p0 [58].
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An increase in the adsorption capacity at the initial stage of adsorption isotherm manifested
an abundance of nanopores [36]. Moreover, the observed sharpness in the pressure range of
0.85–1.0 indicated the distribution of narrow pore size [8,59]. According to Barrett–Joyner–
Halenda (BJH) analysis (Figure S1), MSN has a mesoporous structure with a narrow pore
size distribution of ~2.78 nm. After the magnesiothermic reduction of MSN, the resulting
MPSi exhibited a hybrid type III/IV isotherm, displaying a characteristic desorption branch
associated with the hysteresis loop closure [60]. The MPSi showed a slightly narrow
pore size distribution of ~2.52 nm, indicative of distortion of the mesostructured MPSi
by Mg vapor-mediated de-oxidation of Si-O-Si bonds. After grafting with fluorescent
AP-FI conjugates, the FMPSi presented a typical type III curve representing the enlarged
mesopores, showing the pore size distribution of ~3.92 nm [58]. The specific surface areas
were measured as 1407 m2g−1 and 427 m2g−1 for MSN and MPSi samples, respectively
(Table S2). The MPSi has a relatively low surface area, probably due to the adventitious
pore-blocking by magnesium-reductive calcination effect. However, the FMPSi exhibited
an increased surface area of 807 m2g−1 because the pore size of FMPSi was increased by
pore wetting phenomena of grafted AP-FI conjugates [61]. It is expected that the highly
porous structure of FMPSi is beneficial for accommodating large amounts of anticancer
drugs as a controlled drug delivery system.

Figure 1D shows TEM images that depicted the structural evolution starting from MSN
to MPSi and FMPSi@GO. The TEM image of MSN (Figure 1D1) showed an average particle
size of ~100 nm and indicated the presence of uniformly distributed mesopores inside the
MSN [62]. The abundance of these mesopores is advantageous for the rapid diffusion of
Mg vapor and facilitated the dissipation of reaction heat, preventing excessive fusion of
reduced Si nanocrystals [63]. Judging from the overall morphologies and particle sizes, the
spherical shape of MPSi was preserved during the magnesium reduction process of MSN.
Figure 1D2 shows the TEM images of MPSi grafted with AP-FI conjugates. Figure 1D3
shows the TEM image of GO-wrapped FMPSi, showing the presence of ultrathin wrapping
of GO nanosheets. Figure 1D4 indicates TEM image of FMPSi-Cis@GO@DQA.

3.2. In Vitro Drug Release under pH/NIR Irradiation
3.2.1. Photothermal Heating by NIR Irradiation

To investigate the photothermal heating effect on silicon-based nanocarriers, as-
prepared samples were irradiated with NIR light (808 nm, 1.0 W/cm2) for 20 min, 22 cm
of NIR irradiation distance, and 12 J/cm2 of energy density. According to Figure 2A, the
temperatures of pure PBS and MSN solutions (4 mg/mL) were increased from 23.7 ◦C to
33.1 ◦C and 34.5 ◦C, respectively. On the other hand, the temperature of MPSi solution was
more significantly increased from 23.7 ◦C to 45.3 ◦C, and the GO-wrapped FMPSi exhibited
the maximal increase in temperature (up to 52.8 ◦C). These results indicate that silicon
nanostructure with numerous mesopores exhibits high photo-induced hyperthermia due
to its excellent photothermal conversion efficiency, high surface area, and low reflectivity
(or antireflection) [64,65]. GO wrapping can further increase NIR absorption through the
laser-induced reduction of GO [66,67].
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Figure 2. (A) Temperature changes of pure PBS, MSN, MPSi, and FMPSi@GO solutions during NIR
light exposure (808 nm) at a power density of 1.0 W/cm2 for 20 min; (B) Cis release profiles of FMPSi-
Cis@GO in PBS at pH 7.4 and pH 5.5; (C) Cumulative release fractions of FMPSi-Cis@GO in PBS at
pH 5.5 and pH 7.4 before and after NIR irradiation (808 nm laser, 1.0 W/cm2) for 20 min. The dotted
lines of purple color indicate the temperature changes of in vitro solution by the periodic irradiations
of NIR light for 20 min; (D) Model fits of release profiles of FMPSi-Cis at pH 5.5 and pH 7.4 and
release profiles of FMPSi-Cis@GO in PBS (pH 5.5) at 37 ◦C; and Schematic representation of stimuli-
responsive controlled drug release from FMPSi-Cis@GO; (E) pH effects on drug release mechanism
of FMPSi-based NPs; and (F) NIR irradiation effect on drug release mechanism of FMPSi-based NPs.

3.2.2. In Vitro Release Test by pH Changes

The FMPSi-Cis@GO was dissolved in 10 mL of PBS under constant stirring at 37 ± 1 ◦C.
During in vitro release test, the solution was periodically sampled to measure the ab-
sorbance changes at 301 nm by UV–Vis spectroscopy (NanoDrop; NanoDrop Technologies,
Wilmington, DE, USA). The calculated absorbance changes were converted as the released
amounts of Cis using the standard curve shown in Figure S1. According to Figure 2B, the
cumulative release fraction was 13.9% (at pH 7.4) and 29.6% (at pH 5.5) at 10 h. After that,
the release fraction was increased to 21.1% (at pH 7.4) and 39.6% (at pH 5.5) at 30 h, and
slowly approached an asymptotic value of 24.8% (at pH 7.4) and 50.1% (at pH 5.5) after 60 h.
At acidic pH 5.5, the carboxylic acid groups are prone to be protonated, possibly leading to
the aggregation of GO nanosheets with less hydrophilicity [68]. The self-aggregation of
GO weakens the intermolecular interactions of GO nanosheets with the FMPSi, resulting in
the fast drug release [36,69]. At neutral pH 7.4, however, the deprotonated carboxyl acid
groups are more hydrophilic, and the GO nanosheets tend to have stronger interactions
with the FMPSi, resulting in the slow drug release [70]. As a result, the FMPSi-Cis@GO
showed the larger difference of release fractions between pH 5.5 and pH 7.4, as shown
in Figure 2B.

3.2.3. In Vitro Release Test under NIR Irradiation

To investigate the dual stimuli (pH and NIR irradiation)-responsiveness of drug
release behavior, in vitro release tests of FMPSi-Cis@GO were carried out in PBS under
NIR irradiation (808 nm, 1.0 W/cm2) at different pHs (at pH 5.5 and 7.4). The NIR laser
was periodically irradiated for 20 min. During the in vitro release process, the solution
was periodically sampled, and the absorbance was measured at 301 nm using UV–vis
spectroscopy. As shown in Figure 2C, the release rate of FMPSi-Cis@GO (pH 7.4 and 5.5)
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was increased significantly under NIR light irradiation (808 nm, 1.0 W/cm2) for 20 min.
The short violet lines indicate the temperature changes of the pure solution by periodic
NIR irradiations at 0, 5, 10, 20, and 30 h.

For FMPSi-Cis@GO at pH 7.4, the solution temperature increased to the maximal value
of 52.8 ◦C under the NIR irradiation, followed by the decrease in solution temperature to
38.3 ◦C within 60 min (1 h) after removing the NIR laser. After the first NIR irradiation
for 20 min, the release fraction of FMPSi-Cis@GO reached 12.1%. After periodic NIR
irradiations, the release fraction increased drastically from 18.8% to 29.4% (second NIR
irradiation at 5 h), 32.1% to 43.0% (third NIR irradiation at 10 h), 47.5% to 55.6% (fourth NIR
irradiation at 20 h), and 60.9% to 66.4% (fifth NIR irradiation at 30 h). The release fraction
finally reached an asymptotic value of 75.7% at 60 h. In contrast, the release fraction of
FMPSi-Cis@GO without NIR irradiation slowly approached an asymptotic value of 24.8%
at 60 h.

At acidic pH 5.5, the release fraction of FMPSi-Cis@GO more rapidly reached 19.8% by
the first NIR irradiation, which continuously increased from 32.6% to 49.2% by the second
NIR irradiation, from 57.2% to 63.6% by the third NIR irradiation, from 69.5% to 72.8% by
the fourth NIR irradiation, and finally reached to 77.9% by the fifth NIR irradiation. The
release fraction gradually approached an asymptotic value of 79.2% after 40 h.

3.3. Release Kinetics and Stimuli-Responsive Mechanisms
3.3.1. Comparative Release Kinetics

The release kinetics of Cis from pure FMPSi was measured in PBS at pH 5.5 and
pH 7.4, respectively. According to Figure 2D, the initial burst of release was attributed
to the rapid dissolution of Cis located near the surface. The prolonged-release behavior
stems from the Cis entrapped inside the porous channels of FMPSi [8]. According to
Equation (S1) (Supporting Information Figure S2) for the Fickian diffusion model, the
FMPSi-Cis showed kF = 0.68 and 0.44 at pH 7.4 and 5.5, respectively. The difference of
these kF values indicated that the release rate of Cis at pH 5.5 was lower than that at pH
7.4, probably due to the slight difference of the chemical structure of Cis at different pH
conditions. At acidic pH 5.5, the hydrolysis of cis-PtCl2(NH3)2 leads to the formation of
various forms of cis-PtCl(NH3)2(OH2)+ and cis-Pt(OH)(NH3)(OH2)+ [71,72]. The surface of
FMPSi contains polar functional groups (such as OH, Si-O, and COO) that can participate
in polar and electrostatic interactions with the charged Cis complexes. As a result, Cis drug
tends to be released slowly through the porous channels at acidic pH 5.5 than at neutral
pH 7.4 [9]. The release kinetics of FMPSi-Cis@GO at pH 5.5 were analyzed by Equation (S2)
for a power–law diffusion model, which produced the fitted values of kR = 12 and n = 0.69,
indicative of non-Fickian diffusion caused by the retarded transmission of Cis through
the GO layer wrapped over the FMPSi. All fitted parameter values were summarized
in Table S3.

3.3.2. Stimuli (pH and NIR)-Responsive Drug Release Mechanisms

The drug release mechanisms of multifunctional MPSi are strongly dependent on pH
conditions, as shown in Figure 2E. At neutral pH 7.4, the release rate of FMPSi-Cis@GO was
significantly retarded due to the blocking layer of GO nanosheets. However, the release
rate of FMPSi-Cis@GO at pH 5.5 was increased significantly, indicating the disruption
of GO nanosheets on the FMPSi. The increase in protonated carboxylic acid groups at
acidic pH 5.5 induced the self-agglomeration of GO nanosheets, consequently leading to
the detachment of GO nanosheets from the FMPSi [73,74]. Meanwhile, the FMPSi-Cis@GO
under NIR irradiation exhibited a significantly enhanced release rate at pH 5.5 as compared
to that at pH 7.4, as shown in Figure 2F. GO nanosheets are known to absorb NIR light
efficiently due to the delocalization of electrons across all adjacent π bonds in the GO.
As a result, GO wrapping over the NPs can be weakened by the high thermal energy
converted from absorbed NIR light [68], which is more aggravated by the disruption of
GO nanosheets at acidic pH [75]. Our multifunctional NPs can be a prospective candidate
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for chemo-photothermal nanocarrier against cancer cells, because they can provide dual
stimuli (pH and NIR)-responsive controlled drug release.

In summary, GO-wrapped FMPSi (FMPSi-Cis@GO) exhibited the highest release rate
under NIR irradiation at pH 5.5. The photothermal synergy effect was attributed to high
NIR absorption and self-aggregation of GO at acidic pH. The release of Cis from FMPSi-
Cis@GO was facilitated by increasing the ratio of deprotonated to protonated carboxylic
acid groups in GO, i.e., the protonated GO is less hydrophilic and more self-agglomeration
state, leading to a detachment of GO from the FMPSi [61]. Thus, under NIR irradiation, the
release rates of FMPSi-Cis@GO reached 77.9% at pH 5.5 and 75.7% at pH 7.4, due to the
high photothermal conversion efficiency of GO [76].

3.4. Cell Targeting, Toxicity, and Mitochondrial Uptake
3.4.1. Confocal Microscopy for Mitochondria Targeting

For the cell experiments, the three cell lines HEK-293 (human embryonic kidney
cells), HeLa (human cervical cancer), and SY-SY5Y (human neuroblastoma) were utilized.
Cell experiments still proved to be the most economical and ethically viable method for
performing scientific research. The HEK-293 cell is widely used as standard for normal
human cells, whereas HeLa is a commonly used cancer cell line. Additionally, the SH-SY5Y
cell was also used as the research model for human neuronal tumors, and this is also
commonly used for toxicology evaluation.

To evaluate the cell targeting of the prepared NPs (MPSi, FMPSi, FMPSi-Cis@GO, and
FMPSi-Cis@GO@DQA), HeLa cells were incubated with the NPs (10 µg/mL) for 4 h, 8 h,
and 12 h, followed by treatment with Mito-Tracker Red. Mitotracker is a red fluorescent
dye that explicitly stains the mitochondria. Hence, the co-localization by both the NPs
(green fluorescence) and mitotracker (red fluorescence) can yield a yellow fluorescence
as the merged image. In Figure 3, clean green spots were attributed to the fluorescence of
FITC-labeled NPs, demonstrating the successful intracellular uptake of NPs. Importantly,
a higher intensity of FITC fluorescence was obtained from DQA-conjugated NPs (FMPSi-
Cis@GO@DQA) during the observation period. As shown in Figure 3A, green fluorescence
indicated the location of FITC-labeled NPs in the tested cells. Mito-Tracker Red was used to
track red-labeled mitochondria within live cells utilizing the mitochondrial membrane poten-
tial. The yellow dots in the merged image of green and red fluorescence (Figure 3A—right)
revealed that the FMPSi-Cis@GO@DQA were mostly accumulated around the cell nucleus,
demonstrating the successful localization of NPs and their targeting effectiveness to mito-
chondria. In the merged images, the yellow dots in the cytoplasm of the cells treated with
FMPSi-Cis@GO (Figure 3A—left) were less distinct than that of the FMPSi-Cis@GO@DQA.
The results demonstrated the efficient mitochondria–targeting of DQA conjugated NPs
in the HeLa cancer cells. A similar experiment was carried out using FMPSi (Figure S2a)
and FMPSi-Cis samples without DQA conjugation (Figure S2b). However, neither samples
showed the yellow fluorescence in the merged images, indicating that DQA-free NPs were
not effective for targeting the mitochondria.
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Figure 3. Cellular uptake and cytotoxicity studies: (A) Representative confocal microscopy image of
HeLa cells after treating with FMPSi-Cis@GO (left) and FMPSi-Cis@GO@DQA (right) at 4 h, 8 h, and
12 h incubation; (B) Cell viability profile of HeLa, SH-S5Y5, and HEK293 cells treated with different
concentrations of as-prepared NPs for 48 h. Data are represented as the mean ± SD (n = 3).

3.4.2. Cytotoxicity Assay

To investigate the anticancer activity of Cis-loaded NPs and the cytotoxicity of NP-
based delivery platforms, the cytotoxicity assay was performed using HeLa and SH-SY5Y
cancer cell lines, including normal HEK293 kidney cells (Figure 3B). In the Cell Titer-Glo®

Luminescence assay, the higher intensity in the cytotoxicity assay indicates the cell survival
ratio. In both HeLa and SH-SY5Y cancerous cells, more than 80–85% cells were alive
after being treated with MPSi (IC50 > 100 µg/mL) and FMPSi (IC50 > 100 µg/mL) at high
loading of NPs (50–100 µg/mL) for 48 h incubation, indicating good biocompatibility and
no obvious cytotoxicity of the NPs in the treatment of cancerous cells without drug loading.
FMPSi exhibited a slightly higher cell survival rate than that of MPSi in the concentration
range of 6.5–12.5 µg/mL.
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In the case of SH-SY5Y cells, FMPSi-Cis@GO (IC50 = 31.2 µg/mL) induced 24.1% cell
death at 6.5 µg/mL loading, but FMPSi-Cis@GO@DQA (IC50 = 29.2 µg/mL) increased
the rate of cell death up to 37.8% for the same loading amount due to the combination of
anticancer activity of Cis drug and mitochondrial targeting agent of DQA [77].

Utilizing the HeLa cells, FMPSi-Cis@GO@DQA (IC50 = 24.4 µg/mL) also exhibited
a higher cytotoxicity compared to FMPSi-Cis@GO (IC50 = 31.6 µg/mL) at 12.5–25 µg/mL
concentrations. The HeLa cells almost showed anti-proliferation at 50 µg/mL concentra-
tion, corroborating to the observed FITC fluorescence as shown in Figure 3A (right). In
addition, most HEK293 cells survived over the whole concentration range for all the NPs
(IC50 > 100 µg/mL), indicating no obvious cytotoxicity of NPs against normal cells, except
for the highest concentration of 100 µg/mL. These results indicate that the synthesized NP
can potentially prevent the in vitro proliferation of the cancer cell lines HeLa and SH-SY5Y
but are not harmful to normal HEK cells (IC50 > 100 µg/mL). Recently, high concentra-
tions of silicon NPs (at 30 and 100µg/mL) have been reported to have a cytotoxic effect
on HEK293 cells [78]. In contrast, FMPSi-based NPs in our study did not show obvious
cytotoxicity to normal cells.

We also investigated the cytotoxic effects of DQA on the three cell lines. As the amount
of DQA used in the preparation of the NP is at a maximum of 5%, 0–5 µg/mL concentrations
were used for the cytotoxicity assay. Interestingly, DQA only exhibited a minimal and
non-significant cytotoxic effects at 5 µg/mL (% inhibition < 50%) (Figure S3). Hence, the
observed cytotoxicity of the synthesized NP could be attributed to the synergistic effects of
the different ligands.

3.4.3. Mitochondria Isolation and Analysis of Fluorescence Intensity

To track the mitochondria binding capability of the NPs (FMPSi-Cis@GO and FMPSi-
Cis@GO@DQA), the FITC fluorescence was detected in isolated mitochondria from the
treated HeLa, SH-SY5Y, and HEK293 cells. The mitochondria of various cancer cells treated
with FMPSi-Cis@GO and FMPSi-Cis@GO@DQA were isolated using the mitochondria
isolation kit (Thermo Scientific). As shown in Figure 4A, FITC fluorescence intensities of
isolated mitochondria extracted from humane cells showed distinct differences between
the normal cells (control) and cancerous cells. After being treated with FMPSi-based NPs
(FMPSi-Cis@GO and FMPSi-Cis@GO@DQA), the FITC fluorescence intensity in the isolated
mitochondria from the cancer cell lines (HeLa and SH-SY5Y) was significantly higher than
that from the normal HEK293 cells. In addition, measurement of the FITC fluorescence
intensities of the mitochondria fraction isolated from cancerous cells showed that the
FMPSi-Cis@GO@DQA-treated subjects exhibited 50% higher fluorescent intensity than that
of FMPSi-Cis@GO-treated subjects.

As an early event in mitochondria triggered apoptosis, the loss of mitochondrial
membrane potential (∆ψm) is closely related to mtDNA expression alterations. To assess
mitochondrial dysfunction induced by the NPs, we measured the changes of intracellular
mitochondrial membrane potentials by treating FMPSi-Cis@GO and FMPSi-Cis@GO@DQA
for a short time of 24 h. TMRE mitochondrial membrane potential assay kit (Abcam) was
used to measure the mitochondrial potentials of cancerous HeLa and SH-SH5Y cells. Then,
FCCP was used as a positive control in this KIT, and fluorescence intensity was used for
assessing mitochondrial membrane potentials (∆ψm) [79]. As shown in Figure 4B, the
mitochondrial membrane potentials of cells treated with the NPs (FMPSi-Cis@GO and
FMPSi-Cis@GO@DQA) were significantly decreased compared to those of the negative
control group, and there was no noticeable difference of fluorescence intensity between
in HeLa and SH-SY5Y cells apoptosis. This result indicated that the mitochondrial inner
membranes were damaged by the short-term treatment (24 h) with FMPSi-based NPs.
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Figure 4. The rationale for mitochondria-targeting of multifunctional mesoporous silicon nanopar-
ticle system to assess ∆ψm. (A) FITC fluorescence absorption intensities of isolated mitochondria
measured from HeLa, SH-SY5Y, and HEK293 cells without and with the indicated treatments;
(B) Mitochondrial membrane potential of HeLa and SH-SY5Y cells after treatment with FMPSi-
Cis@GO and FMPSi-Cis@GO@DQA for a short time of 24 h incubation. PBS treatment was the
negative (control) group; FCCP treatment was a positive control. ∆ψm was measured by fluorescence
intensity after cells were stained with TMRE. Data are represented as the mean ± SD (n = 3); and
(C) Schematic illustration of specific mitochondrion targeting and therapeutic effects of multifunc-
tional mesoporous silicon nanoparticle system.

Owing to the amphiphilic nature of DQA, it can be self-assembled as liposome-like
cationic vesicles, taking advantage of the highly negative ∆ψm in cancer cells [80]. That is,
DQA-conjugated NPs can be an effective mitochondriotropic carrier that delivers cytotoxic
drugs into cancerous cells by activating nucleases in the inner membrane and the matrix
of mitochondria [81,82]. That is, the DQA-conjugated NPs can selectively accumulate in
mitochondria by reducing the membrane potential and damaging mitochondrial mem-
brane, finally activating reactive oxygen species (ROS) production, which can inhibit the
production of ATP and induce apoptotic cell death (Figure 4C). Hence, it is tentatively
concluded that DQA-conjugated NPs (FMPSi-Cis@GO@DQA) have the excellent capa-
bility of targeting the mitochondria of cancerous cells, as well as equipping them with
stimuli-responsive controlled drug release.

To obtain direct evidence for NPs internalization into human cells, HeLa cancer cells
were co-cultured with 50 µg/mL of FMPSi-Cis@GO and FMPSi-Cis@GO@DQA for 24 h.
Subsequently, the cross-sectioned cells were analyzed using a low-resolution TEM [83]. As
shown in the left panels of Figure 5, the localization of aggregated NPs (FMPSi-Cis@GO
and FMPSi-Cis@GO@DQA) were observed in specific areas in the cell (Figure 5c,e). On
the other hand, control NPs (MPSi) were dispersed in the whole cytoplasmic area in the
HeLa cell (Figure 5a). As shown in the right panels of Figure 5, the magnified TEM
images indicated the accumulation of the FMPSi-based NPs in the mitochondria region
of cancer cells (Figure 5d,f). Furthermore, changes in cell morphology and damages to
the mitochondrial structure were induced by intracellular NPs. Structural changes in cell
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membranes (such as mitochondrial swelling and cristae rupturing) are observed in the left
panels of Figure 5c,e. In summary, the NPs entered the cells through different pathways
and were dispersed in the cytoplasm and accumulated inside mitochondria. The delivered
cytotoxic NPs consequently led to mitochondrial damages, which were caused by oxidative
stress and/or direct injurious effect of the NPs [52,53].
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4. Conclusions

In this work, silicon-based nanocarriers were developed for the specific mitochondria-
targeting in cancer cells, as well as being designedwith dual stimuli-responsive controlled
drug release. Specifically, mesoporous silicon NPs were prepared via magnesium reduction
of mesoporous silica NPs, which was subsequently functionalized with internal fluorescent
conjugates and external graphene oxide nanosheets, so-called fluorescent mesoporous
silicon (FMPSi) NPs. Notably, GO-wrapped FMPSi (FMPSi@GO) exhibited the dual stim-
uli (pH and NIR)-responsive drug release behaviors, i.e., the release rate at pH 5.5 was
higher than that at pH 7.4 and significantly enhanced under NIR irradiation at acidic pH
5.5. Furthermore, DQA-conjugated FMPSi@GO NPs demonstrated an excellent mitochon-
drial targeting specificity and highly selective accumulation in the cancer cells, leading to
apoptotic death of cancer cells while there was no noticeable toxicity to normal cells. Our
innovative silicon nanocarriers displayed not only regulated drug release in response to
dual stimuli (pH and NIR), but also targeted accumulation and destruction of cancer cell
mitochondria. This research contributes to develop the advancement of cancer treatment in
a more promising, effective, and rapid way.
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from MPSi-Cis at pH 5.5 and pH 7.4; cisplatin release from FMPSi-Cis@GO at pH 5.5; Table S4.
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