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Abstract: This study aimed to develop a miltefosine-eluting contact lens (MLF-CL) device that
would allow sustained and localized miltefosine release for the treatment of Acanthamoeba keratitis.
MLF-CLs were produced in three different miltefosine doses by solvent-casting a thin miltefosine-
polymer film around the periphery of a methafilcon hydrogel, which was then lathed into a contact
lens. During seven days of in vitro testing, all three formulations demonstrated sustained release
from the lens at theoretically therapeutic levels. Based on the physicochemical characterization
of MLF-CLs, MLF-CL’s physical properties are not significantly different from commercial contact
lenses in terms of light transmittance, water content and wettability. MLF-CLs possessed a slight
reduction in compression modulus that was attributed to the inclusion of polymer-drug films but
still remain within the optimal range of soft contact lenses. In cytotoxicity studies, MLF-CL indicated
up to 91% viability, which decreased proportionally as miltefosine loading increased. A three-day
biocompatibility test on New Zealand White rabbits revealed no impact of MLF-CLs on the corneal
tissue. The MLF-CLs provided sustained in vitro release of miltefosine for a week while maintaining
comparable physical features to a commercial contact lens. MLF-CL has a promising potential to be
used as a successful treatment method for Acanthamoeba keratitis.

Keywords: acanthamoeba keratitis; controlled drug delivery; contact lens; miltefosine; PLGA

1. Introduction

Acanthamoeba keratitis (AK) is a rare but potentially blinding corneal infection caused
by free-living Acanthamoeba amoebae [1,2]. Inadequate disinfection of commercial contact
lenses is one of the most common risks of AK [3–5]. With the increasing number of
people wearing contact lenses, the prevalence of Acanthamoeba infections in the world
is on the rise [6–10]. AK treatment at present is suboptimal and the prognosis of this
condition is often poor [11]. First-line therapies for AK include topical polyhexamethylene
biguanide (PHMB), propamidine isethionate, chlorhexidine, dibromopropamidine, and/or
hexamidine [12,13], often requiring two or more drugs. However, the treatment duration is
lengthy, complicated, and is often ultimately unsuccessful in complete eradication. Frequent
eye drop instillation, as often as hourly throughout the day [14] is used in clinical practice,
in part because of the limited bioavailability of topical eye drops [15]. Bioavailability
from eye drops is estimated to be less than 5% because of the anatomic barriers in the
anterior segment of the eye (e.g., tear film barrier and corneal barrier) [16,17]. In addition,
trophozoites and cysts (two forms of Acanthamoeba’s lifecycle) can remain in the cornea
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for over two years [2,18]. Non-adherence can lead to suboptimal dosing. In general, killing
of amoebic trophozoites and cysts is a challenge.

Miltefosine is an alkylphosphocholine agent with a broad spectrum of antiparasitic
properties, which has recently been used in AK. This drug is commonly used as an oral
medication to treat leishmaniasis [19]. After obtaining orphan drug designation from
the FDA in 2016, oral miltefosine has been shown to be effective in refractory AK in
several recent case reports [20–23]. However, systemic administration can produce severe
inflammatory responses [24,25]. Providing a topical treatment could mitigate or even
eliminate miltefosine’s systemic side effects. Although miltefosine eye drops were effective
in the management of AK in hamster [26] and rat [27] models, a clinical study failed to
replicate the results in the humans [28]. The ineffectiveness observed may be attributed
to the low bioavailability of eye drops in general and the fact that all studied cases had
advanced keratitis at the time of initiation of the topical miltefosine therapy.

Previously, we have described a contact lens drug delivery system involving the incor-
poration of a thin drug-poly[lactic-co-glycolic acid] (PLGA) film into a poly[hydroxyethyl
methacrylate] (pHEMA) hydrogel. This system has previously been used to achieve
zero-order release kinetics at therapeutically relevant concentrations with fluorescein and
ciprofloxacin for up to one month [29].

In this study, we incorporated miltefosine into this contact lens system to create a
therapeutic contact lens (MLF-CL) for the treatment of AK. Miltefosine was loaded at differ-
ent concentrations and the physicomechanical properties (hydration, water contact angle,
mechanical strength) of the MLF-CLs were investigated and compared with commercial
contact lenses. Drug release kinetics were measured for a period of one week. In addition,
the cytocompatibility and in vivo biocompatibility of the MLF-CL was evaluated.

2. Materials and Methods
2.1. Materials

Miltefosine was purchased from Cayman Chemical (Ann Arbor, MI, USA). Liquid
methafilcon and methafilcon contact lens blanks were purchased from Kontur Kontact
Lens (Hercules, CA, USA). Poly(lactide-co-glycolide), 85% lactide, 15% glycolide (MW
190 KDa) was purchased from Merck and Cie (Schaffhausen, Switzerland). Hexafluo-
roisopropanol (HFIP) was purchased from Oakwood Chemical (Estill, NC, USA). Gibco
phosphate-buffered saline (PBS), Dulbecco’s Modification of Eagle’s Medium, penicillin-
streptomycin, and L-glutamine were purchased from Thermo Fisher Scientific (Waltham,
MA, USA). Biopsy punches were purchased from Sklar Instruments (Westchester, PA, USA).
All other reagents were purchased from Millipore-Sigma (St. Louis, MO, USA), except
where otherwise noted.

2.2. MLF-CL Fabrication

The drug-polymer solution was created by dissolving miltefosine and PLGA in HFIP,
in ratios provided in Table 1. The polymer concentration was kept at 50 mg/mL. The film
was created by using solvent casting. 50 µL of solution was then pipetted into a concavity
lathed into a cylinder of dry polymerized methafilcon After 6 min of rotation on a spin coater
(Model SC100, Best Tools LLC, St. Louis, MO, USA), the liquid HFIP evaporated, leaving
a drug-polymer film. A 4 mm biopsy punch was used to define and remove the central
diameter of the drug-polymer film to create a clear central aperture. The hydrogel blanks
containing the films were placed on a desiccator under vacuum for two weeks to remove
residual HFIP. The side of the film that was not yet in contact with methafilcon was then
encapsulated in methafilcon through ultraviolet (UV) photopolymerization using ethylene
glycol dimethacrylate (0.3%, crosslinker), Irgacure® 2959 (9 mg/mL, photoinitiator) and
3.5 min of UV light exposure at 120 mW/cm2 applied within a Zeta 7401 UV chamber
(Loctite, Düsseldorf, Germany) for 3.5 min at 120 mW/cm2. The methafilcon cylinder was
then lathed into a contact lens that consisted of the drug-PLGA film fully encapsulated
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within methafilcon, with the initial cylinder on the front curve and polymerized methafilcon
on the back curve (Scheme 1).

Table 1. MLF-CL formulations.

Formulation Name Drug: Polymer Ratio

Commercial contact lens N/A
MLF-CL2 2:25
MLF-CL4 4:25
MLF-CL8 8:25
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Scheme 1. Schematic illustration of the designed miltefosine-eluting contact lens (MLF-CL).

2.3. Optical Coherence Topography

To evaluate MLF-CL morphology and film thickness, all formulations were imaged
using anterior segment optical coherence topography (AS-OCT, RTVue, Optovue, Fremont,
CA, USA) to assess the morphology. Non-hydrated MLF-CLs were positioned with the
convex side of the lens facing the OCT camera. Raster scanning imaging was used in four
segments for each contact lens to obtain cross sectional images of the contact lens and
drug-polymer film.

2.4. MLF-CL Release

In vitro release of the MLF-CLs was conducted by hydrating MLF-CLs in 5 mL phos-
phate buffered saline (PBS) and placing in an incubator shaker at 37 ◦C at 64 rpm. At
predetermined time points, the MLF-CLs were removed from PBS and immersed in fresh
PBS. Release buffer aliquots were stored at 4 ◦C until drug concentration was quanti-
fied. Four lenses were used per formulation. Release quantification was performed by a
colorimetric method.

2.5. Water Content

Water content of the MLF-CLs was performed by gravimetric method, according to
ISO-18369-1 guidelines [30]. MLF-CLs were immersed in PBS until reaching equilibrium
swelling, defined by a less than 5% change in mass in a 24 h period. Weight was recorded,
then MLF-CLs were dried at 60 ◦C overnight and re-weighed. Weights were taken immedi-
ately after removal from the oven to prevent atmospheric moisture from influencing the
results. All weights were recorded in duplicate. Four lenses were used per formulation.
Percent water content was calculated by the following formula

Ws − Wd
Ws

× 100%

where Ws = weight at equilibrium swelling and Wd = dry weight.
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2.6. Light Transmission

Light transmission was measured through commercial contact lenses and the central
aperture of the hydrated MLF-CL using SpectraMax M3 [31]. The average light transmission
was calculated by averaging the transmission over the visible light spectrum (390–700 nm).

2.7. Water Contact Angle

MLF-CLs were hydrated in PBS until they reached equilibrium swelling. A drop
of distilled water (about 5 µL) onto the surface via a syringe. Then, a high-resolution
image was captured from the side using the Dino-Lite Edge camera. The contact angle for
each formulation (n = 4 and 5 measurements per specimen) was determined using ImageJ
software (NIH, Bethesda, MD, USA) as a function of time.

2.8. Mechanical Properties

The mechanical features of the MLF-CLs were determined at room temperature using a
Mark-10 ESM 303 motorized test stand (Mark-10 Corporation, Copiague, NY, USA). Before
analysis, samples were hydrated by immersing them in PBS for 2 days. The compression test
was conducted on rings with 7 mm and 6 mm external and internal diameter, respectively
and with a crosshead speed of 1 mm/min. The Compression Modulus was obtained
from the linear derivative of the stress–strain curve in the low stiffness range (less than
10% strain). Three independent measurements were conducted for each group.

2.9. Cytotoxicity

L929 murine fibroblasts (American Tissue Culture Collection, Manassas, VA, USA)
were used to assess the cytotoxicity of MLF-CLs. L929 cells were grown in Dulbecco’s
Modification of Eagle’s Medium (DMEM), supplemented with 10% fetal bovine serum,
1% penicillin-streptomycin, and 4 mM L-glutamine. Cytotoxicity was measured by the
minimum elution media method, described by ISO 10993-5 guidelines [32]. MLF-CLs or
vehicle lenses (with the polymer film but no drug) were immersed in supplemented DMEM
in a volume of 1.8 mL for each MLF-CL. The MLF-CLs were incubated at 37 ◦C for 24 h
to capture eluted drugs and leachables. The elution media (extract) was applied neat to
L929s plated in 96 well plates at 1 × 105 cells/mL the day prior. The cells with extract
were incubated for 24 h. Cell viability was measured by CellTiter 96® Non-Radioactive
Cell Proliferation Assay (MTT) (Promega, Madison, WI, USA). Results were expressed as
percentage viability of L929 controls that were not exposed to extract. Four lenses were
used for each formulation, with six replicates per lens.

2.10. Animals

The study protocol #2021N000159 was approved on 7 July 2021 by the Institutional An-
imal Care and Utilization Committee at Schepens Eye Research Institute of Massachusetts
Eye and Ear Infirmary (Boston, MA). All animals were treated according to the Association
for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in
Ophthalmic and Vision Research (ARVO Handbook, 1993). New Zealand white rabbits
(NZW) (Charles River Laboratories, Boston, MA, USA) age four months, each weighing
3–5 kg, were used for the biocompatibility study. Only one eye in each NZW was used
to prevent bilateral vision restriction. The contralateral eye was untreated and served
as a control. NZWs were singly housed in a climate-controlled environment with free
access to food and water during acclimation and throughout the experiment. NZWs were
acclimated for seven days prior to experiments. In each of the studies, intramuscular injec-
tion of 30 mg/kg ketamine, 5 mg/kg xylazine, and 1 mg/kg acepromazine were used for
anesthesia. 0.05 mg/kg Buprenorphine HCl was used for pain control prior to tarsorrhaphy.

Only MLF-CL4 was used for the biocompatibility study. Under anesthesia, NZWs
had baseline photos taken by a Topcon DC-3 digital camera attachment for slit lamp. The
MLF-CL was placed on the cornea, with care to place it under the nictating membrane. The
MLF-CL was evaluated to ensure free movement on the cornea without fluting or bubbling.
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To improve lens retention, eyes with contact lenses received a temporary tarsorrhaphy in
which the eyelids were closed with one to two 5-0 Nylon sutures. NZWs were evaluated
daily for signs of discomfort. After three days, the tarsorrhaphy and MLF-CL and re-
imaged. NZW eyes were evaluated for redness, edema, discharge, and fur matting. NZWs
were euthanized with 120 mg/kg pentobarbital, and the corneas were removed from both
eyes. The eyes were fixed in 10% formalin, embedded in paraffin, and cut into 10-micron
sections in an anterior to posterior fashion so that the pupil and the optic nerve were in one
section (PO section). Slides were stained with hematoxylin and eosin (H&E) to visualize
ocular structures.

2.11. Statistics

For all continuous data, nonparametric descriptive statistics were used to determine
statistical significance. Kruskal–Wallis Test was calculated, and if significant, followed by
pairwise comparisons to determine significant differences between groups. A p-Value of
less than 0.05 was considered significant.

3. Results
3.1. MLF-CL Was Successfully Encapsulated in Contact Lens Hydrogels

Three dosages of MLF-CLs were created by changing the drug amount loaded in
each lens while keeping PLGA concentration constant (Table 1). Drug-polymer (PLGA)
films were created through solvent casting, then encapsulated in methalfilcon hydrogel
using ultraviolet (UV) polymerization of hydroxyethylmethacrylate (HEMA) (Figure 1).
When hydrated, the MLF-CLs expanded from 11.3 mm to 14.5 mm diameter and from
4 mm to 5 mm central aperture diameter and maintained a normal shape (Figure 1a).
Anterior segment ocular coherence tomography (AS-OCT) images demonstrated uniform
drug-polymer films completely within the methafilcon hydrogel and a clear aperture to
preserve light transmission to the visual system (Figure 1b). Film thickness was roughly
the same for all groups: MLF-CL2: 83.30 ± 6.08 µm, MLF-CL4: 81.11 ± 1.15 µm, MLF-CL8:
85.03 ± 5.62 µm) (p = 0.779, Kruskal–Wallis, n = 4). When imaged by OCT, no delamination
of the film from the hydrogel was observed before hydration or after the lens was hydrated
(Figure S1), indicating the film had sufficient adherence to the hydrogel that allow the
film to maintain the same configuration during the hydration process which increased the
diameter of the lens.
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Figure 1. Miltefosine-eluting contact lens (MLF-CL). (a) Photographs of dry (left) and hydrated (right)
contact lens. (b) An ocular coherence tomography (OCT) image of a section of a dry MLF-CL showing
an encapsulated miltefosine-polymer film and central aperture to allow for unimpeded vision.

Drug release from MLF-CLs was studied in PBS at 37 ◦C. Because miltefosine aqueous
solubility is relatively high (reported as 440 mg/mL [33]), frequent buffer changes were
performed to preserve infinite sink conditions. All formulations demonstrated relatively
constant state release through seven days (Figure 2). Cumulative 7-day miltefosine release
ranged from 156.0 ± 4.7 µg (MLF-CL2) to 470.3 ± 39.8 µg (MLF-CL8) (Figure 2). We
analyzed the miltefosine release kinetics from the MLF-CL using zero-order, first-order,
Higuchi, and Korsmeyer-Peppas mathematical models (Table S1). Considering the highest
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value of R2-adjusted, the lowest Akaike Information Criterion (AIC) values and the largest
Model Selection Criterion (MSC) [34], the release data fit well to the Korsmeyer-Peppas
model for all formulations (Figure S2 and Table S1). The predicted release based on
Korsmeyer-Peppas model was shown in Figure S2. These results indicated the diffusional
release of miltefosine from contact lens, which was consistent with other drugs released
from therapeutic contact lenses [31,35].
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Figure 2. In vitro miltefosine (MLF) release from MLF-CLs. (A) the cumulative release and (B) the
daily release rate. Quantitative data are expressed as mean ± standard deviation (SD), n = 4/group
per time point.

3.2. MLF-CL Water Content Was Comparable to Commercial Contact Lenses

The water content of contact lenses is reported to have a significant impact on oxy-
gen permeability and contact lens wearing comfort [36,37]. MLF-CL water content was
assessed by the gravimetric method [38] and the results were compared to commercial
methafilcon contact lenses (Kontur) (n = 4/group). Commercial contact lens had a water
content (53 ± 1.6%) comparable to the reported value (55%) [39,40]. There was no signifi-
cant (p = 0.49, Kruskal–Wallis Test) difference in the water content between MLF-CLs and
commercial methafilcon lenses (Figure 3).
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3.3. MLF-CL Light Transmittance Was comparable to Commercial Contact Lenses

The light transmittance properties of contact lenses are clearly important for visual
performance. MLF-CL maintained light transmittance >95% through the central aperture
between 390 nm to 700 nm (Figure 4A). The difference in average light transmittance
between the commercial contact lenses and MLF-CL was negligible (p = 0.15, Kruskal–
Wallis Test, n = 4 per group, Figure 4B), which was in agreement with our previous
reports [35,41].
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3.4. Compression Modulus Was Similar between MLF-CLs and Commercial Contact Lenses

Excessive stiffness in a contact lens can result in discomfort. Compression tests [42]
were performed on the various MLF-CLs formulations to estimate their mechanical proper-
ties. The stress–strain curves of the different lenses were plotted, hence providing a visual
display, indicating their strength and elasticity. MLF-CLs were compared to commercial
CLs (n = 3/group, Figure 5). All groups were compared by Kruskal–Wallis Test. Commer-
cial CLs demonstrated the highest modulus at 491 ± 140 kPa. MLF-CL2 (220 ± 50 kPa),
MLF-CL4 (296 ± 92 kPa) and MLF-CL8 (255 ± 30 kPa) with no significant differences
among them (p = 0.1, Kruskal–Wallis Test).
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contact lenses (MLF-CLs) compared to commercial contact lenses. Quantitative data are expressed as
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Pharmaceutics 2022, 14, 2750 8 of 14

3.5. MLF-CL Surface Wettability was Comparable to Commercial Contact Lenses

Water contact angle is a measure of the wettability of a surface. Poor wettability can
break up the tear film, leading to dry eyes [36,43]. Water contact angle was measured in
MLF-CLs and commercial contact lenses using sessile drop technique, the most commonly
used method for biomaterials [44]. All contact lenses were cut to lie flat to ensure the
most accurate measurements. Compared to commercial contact lenses (26.2 ± 4.0◦), there
were no significant differences (p = 0.06, Kruskal–Wallis Test) among the MLF-CL groups
(n = 4/group) (Figure 6).
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3.6. MLF-CL Exhibited Dose-Dependent In Vitro Cytotoxicity to L929 Murine Fibroblasts

Because miltefosine or MLF-CL leachables such as unreacted monomer, photoinitiator,
or residual solvent could potentially cause toxicity, we tested the cytotoxicity of MLF-CLs
by the minimum elution media method, where the extract from hydrated MLF-TCLs was
exposed to L929 murine fibroblasts [45,46]. The L929 murine fibroblast cells are highly
proliferative and frequently used in cytotoxicity testing to evaluate cellular viability and
proliferation [47]. Results were compared to L929 cells not exposed to extract. Vehicle
lenses showed no cytotoxicity (98.7 ± 7.3%). MLF-CLs showed viability that was inversely
proportional to MLF content, with viabilities of 90.6 ± 3.3%, 72.7 ± 4.8%, and 29.8 ± 1.9%
for MLF-CL2, MLF-CL4, and MLF-CL8, respectively (Figure 7).

3.7. MLF-CLs Demonstrated Suitable Biocompatibility In Vivo

Potential risks with contact lens wear include corneal edema, cornea abrasions, and
microbial keratitis and there is also the risk of local or systemic toxicity from topically
delivered miltefosine. Normal New Zealand White (NZW) rabbits were used to assess
biocompatibility as rabbits are the lowest order mammal that can wear a contact lens.
In addition, NZW eye dimensions are comparable to those of a human [48]. MLF-CL4s
were chosen to be evaluated in vivo as they had demonstrated suitable physicochemical
properties similar to other commercial contact lenses while maintaining an acceptable
cytotoxicity level. NZWs (n = 3, two females, one male) wore the MLF-CL4s continuously
for three days. One eye showed erythema throughout the conjunctiva, on day 3. In the
other two rabbits, no abnormalities were seen in daily observations during the lens wear
period. No erythema, discharge, lid edema, or epithelial defects were noted on slit lamp
exam after three days of continuous wear.
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Pathology revealed normal corneas and irises in all NZWs. No changes in the corneal
epithelium, stromal lamellae, Descemet’s membrane, and endothelium were observed
(Figure 8). Results were compared to the contralateral eyes of each rabbit, showing no
difference between eyes that wore the MLF-CL and untreated eyes.
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4. Discussion

In this work, we have encapsulated miltefosine in a contact lens hydrogel. This device
provides sustained release of miltefosine for one week and may be of use in the treatment
of AK. To our knowledge, this is the first report of a miltefosine sustained release system
for the treatment of ocular disease.

PLGA was chosen due to its safety and excellent sustained drug release profiles [49].
PLGA is a component of numerous FDA- and European Medicine Agency (EMA)- approved
drug delivery devices. The ratio of lactide to glycolide of 85:15 in PLGA was chosen
because higher lactide content is associated with a decrease in degradation rate and drug
release rate [49]. PLGA can degrade into its two monomeric constituents (lactic acid and
glycolic acid) via hydrolysis reactions, which in turn can be easily metabolized via the
Krebs cycle. Therefore, PLGA produces minimal systemic toxicity when used in biological
applications [50], and showed no toxicity in our studies. The films were made by solvent
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casting and lathing, but other approaches could be employed, such as 3D printing of the
film and producing contact lenses from molds [51].

In a miltefosine-loaded nanostructured lipid carriers release system [52], most drugs
were released within a few hours. Miltefosine-loaded alginate nanoparticles sustained
the release of miltefosine for 24 h [53]. In contrast, our MLF-CLs achieved a stable re-
lease rate over a period of 7 consecutive days. The sustained release of MLF-CLs may
be attributed to the high partition coefficient (logP of 3.8) of miltefosine and interaction
between drug and PLGA [54]. Miltefosine was miscible with PLGA in the drug-polymer
film (Figure 1), indicating the interaction between drug and PLGA. Considering the hy-
drophobic properties of miltefosine and PLGA, this suggests drug-polymer interactions
were due to this shared hydrophobicity with charge interactions as a secondary effect. The
drug-polymer interaction can be investigated by Fourier-transform infrared spectroscopy
(FTIR) and Differential Scanning Calorimeter (DSC) [55,56]. These results were consistent
with our previous reports that PLGA films in contact lenses were able to sustain the re-
lease of hydrophobic drugs such as dexamethasone and latanoprost [35,41,57,58]. While
AK often requires a treatment duration of weeks to months, extended wear of a single
contact lens is limited to seven days to prevent complications from contact lens overwear,
including corneal edema and microbial keratitis. In practice, a patient with AK could
wear consecutive MLF-CLs—exchanged once weekly by an ophthalmologist—until AK
is eradicated.

Previous studies have reported a minimum amebicidal concentration (MAC) of
16 µg/mL for clinical and environmental isolates [59–61]. The formulations MLF-CL2, MLF-
CL4 and MLF-CL8 released 24, 85 and 151 µg of miltefosine on the first day, respectively.
The daily release rate thereafter ranged from 17-26 µg/day for MLF-CL2, 24–42 µg/day
for MLF-CL4, and ranged from 41-89 µg/day for MLF-CL8 (Figure 2B) after one week of
testing, well above the MAC. Based on the design of contact lens drug delivery, the fluid
exchange in the post-lens tear film that exists between the cornea and the contact lens
has been shown to be slower than fluid exchange on the surface of the eye [62,63], which
may improve the drug bioavailability compared to topical eye drops. In our previous
study with a latanoprost contact lens, we found that contact lenses with drug-polymer
films had high correlation coefficients between drug release in vitro and drug absorption
in vivo [57]. We expect that the amount of miltefosine released by MLF-CLs in the eye may
reach therapeutic amounts in vivo.

The light transmittance of central aperture was above 95% for all three formulation
and was comparable to commercial lens, though the film-embedded part of the MLF-CL
showed semitransparency (Figure 1). We also have the flexibility to increase the MLF-CL
central aperture size to further increase visual performance.

Wettability and mechanical properties of the lenses are critical for the physiological
compatibility, handling, durability, and comfort of wearing the lenses. In fact, oxygen
diffusivity and water content are key parameters influencing the comfort and safety of a
lens [36]. MLF-CLs showed similar water content compared to commercial methafilcon
contact lenses of about 53% water uptake. At a range of 26–33◦, MLF-CL wettability
was also similar to commercial contact lenses. One of the limitations to our study is
that we did not directly measure oxygen transmittance, which has been associated with
wearing comfort.

The modulus range for the MLF-CLs we measured was between 210 kPa and 300 kPa.
We found that MLF-CLs are softer than commercial contact lenses (490 kPa) as they showed
a significantly lower modulus. This decrease in modulus is most likely the result of
increased chain mobility in the contact lens hydrogel. Nonetheless, the modulus of MLF-CL
is still within the acceptable range of values reported in the literature for the currently
available contact lens materials (300 to 600 kPa) [64].

MLF-CL showed cell viability inversely proportional to dose: MLF-CL2 had the highest
cell viability (91%) and MLF-CL8 had the lowest cell viability (36%). Given that the vehicle
lens had cell viability of close to 100%, the decreased cell viability is solely associated with
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increased miltefosine dose. Nonetheless, MLF-CL4 had an acceptable level (73%) of cell
survival by ISO standards [65]. In addition, Miltefosine was significantly less toxic than
0.02% (200 µg/mL) chlorhexidine, a standard concentration of chlorhexidine drops used
to treat AK [66]. In our own studies, chlorhexidine showed significant toxicity at 0.005%
(50 µg/mL), compared to miltefosine alone, which did not demonstrate cytotoxicity until
90 µg/mL (Figure S3). This is higher than the believed efficacious dose of 65.12 µg/mL.
Previous in vitro studies on anti-AK drugs have shown low cell viability of 21% with 0.02%
chlorhexidine (CHX) and 38% with both 0.02% polyhexamethylene biguanide (PHMB) and
0.01% (100 µg/mL) propamidine isethionate (PI). Given the favorable physicochemical
properties of MLF-CL4, combined with minor in vivo toxicity, additional formulations can
be investigated with changing miltefosine concentrations to reduce cytotoxicity. We also
have the flexibility to adjust the MLF-CL central aperture size to achieve this purpose.

In the biocompatibility experiment for this study, one of three rabbits exhibited adverse
effects after three days of wear. Miltefosine acts as an immunomodulator, activating Type 1
T-helper cells (Th1) which in turn increase the recipient’s inflammatory response. Cytokines,
particularly interferon gamma and interleukin 12 have been observed to be elevated with
oral miltefosine use [67]. However, pathology did not reveal any abnormalities in the
cornea and iris, indicating the adverse effects of miltefosine were self-limiting. In clinical
practice, the severe inflammation reaction is alleviated by prescribing oral and/or topical
steroids [24], though the practice is often contested, as steroids can dampen the body’s
natural immune response [68,69]. Topical steroids could be prescribed, or potentially
include steroids in the MLF-CL. In vivo and in vitro correlation can be poor, which also
supports testing in vivo biocompatibility. More research is needed (i.e., evaluating long-
term outcomes of MLF-CL wear) to determine the appropriate course of action.

5. Conclusions

We incorporated the miltefosine-PLGA film into a commercially available hydrogel
material to form a delivery system that can slowly release miltefosine. MLF-CL’s physical
properties were not significantly different from commercial contact lenses in terms of light
transmittance, water content, and wettability. This ocular drug delivery system provides
a slow and steady release of miltefosine over the course of a week and has the safety
profile to serve as a promising drug treatment platform for AK. More critical efforts are
needed to develop an efficient and safe MLF-CL device that can be validated in animals and
clinics. In accordance with the outcomes of this investigation, we envision that the MLF-
CL4 lens is very suitable for further in vivo and clinical studies, as it shows comparable
physicomechanical properties to the commercial contact lens, optimal biocompatibility, and
an enhanced and sustained drug release over a period on one week.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14122750/s1, Figure S1: The OCT image of hy-
drated MLF-CL; Figure S2: In vitro release profiles (actual cumulative release %) of MLF-CL and
mathematical modeling (predicted release %) of the miltefosine release profiles. The in vitro release
profiles of miltefosine from MLF-CL fit to the Korsmeyer-Peppas model. Data are shown as the means
± SD, n = 4 for each group; Figure S3: Cell viability of L929s subjected to different concentrations
of (A) Miltefosine (µg/mL) and (B) Chlorhexidine free base drug (µg/mL); Table S1: Mathematical
model examination for the miltefosine release from MLF-CL. R2-adjusted, Akaike Information Crite-
rion (AIC) and the Model Selection Criterion (MSC) employed for model selection (n = 4). The best
model possesses the highest value of R2-adjusted, the lowest AIC value and the largest MSC [34].
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