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Abstract: Bioactive glasses (BGs) are being increasingly considered for numerous biomedical ap-
plications. The loading of natural compounds onto BGs to increase the BG biological activity is
receiving increasing attention. However, achieving efficient loading of phytotherapeutic compounds
onto the surface of bioactive glass is challenging. The present work aimed to prepare novel amino-
functionalized mesoporous bioactive glass nanoparticles (MBGNs) loaded with the phytotherapeutic
agent Boswellia sacra extract. The prepared amino-functionalized MBGNs showed suitable loading
capacity and releasing time. MBGNs (nominal composition: 58 wt% SiO2, 37 wt% CaO, 5 wt%
P2O5) were prepared by sol-gel-modified co-precipitation method and were successfully surface-
modified by using 3-aminopropyltriethoxysilane (APTES). In order to evaluate MBGNs loaded
with Boswellia sacra, morphological analysis, biological studies, physico-chemical and release stud-
ies were performed. The successful functionalization and loading of the natural compound were
confirmed with FTIR, zeta-potential measurements and UV-Vis spectroscopy, respectively. Struc-
tural and morphological evaluation of MBGNs was done by XRD, SEM and BET analyses, whereas
the chemical analysis of the plant extract was done using GC/MS technique. The functionalized
MBGNs showed high loading capacity as compared to non-functionalized MBGNs. The release
studies revealed that Boswellia sacra molecules were released via controlled diffusion and led to
antibacterial effects against S. aureus (Gram-positive) bacteria. Results of cell culture studies using
human osteoblastic-like cells (MG-63) indicated better cell viability of the Boswellia sacra-loaded
MBGNs as compared to the unloaded MBGNs. Therefore, the strategy of combining the properties of
MBGNs with the therapeutic effects of Boswellia sacra represents a novel, convenient step towards the
development of phytotherapeutic-loaded antibacterial, inorganic materials to improve tissue healing
and regeneration.

Keywords: bioactive glass; functionalization; Boswellia sacra; phytotherapeutics; antibacterial

1. Introduction

Bone-tissue engineering is an interdisciplinary field, providing an alternative approach
for bone repair and regeneration. Fifty years ago, the first man-made material that bonds
strongly to bone was invented, namely silicate bioactive glass (BG) [1]. Bioactive glass dissolves
in physiological conditions, releasing ions that stimulate gene-controlling osteogenesis and
angiogenesis, making it a very attractive material for bone-regeneration applications [2,3].

Mesoporous bioactive glasses (MBGs) are a special class of BGs exhibiting porosity on
the nanoscale, being appealing materials for bone repair and regeneration [4–6]. It is proven
that MBGs have the ability to support differentiation of osteogenic cells [7,8]. Additionally,
the properties of MBGs can be tailored toward specific applications by the functionalization
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of MBGs with therapeutically active compounds or ions [9,10]. In this context, the synthesis
of MBGs in nanoparticulate form, e.g., mesoporous bioactive glass nano particles (MBGNs),
is an appealing approach to develop nanocarriers/delivery systems for various biological
agents [11]. Based on the approach of using MBGNs as carriers for the release of active
compounds and the remarkable efficacy of medicinal plants, MBGNs are being considered
as effective candidates for the incorporation of natural herbs and plant extracts aiming to
enhance the biological performance and to provide an alternative biomaterial for a variety
of applications, including bone regeneration [10].

Plant-derived medical agents are generally known as phytotherapeutic compounds.
The use of phytotherapeutic compounds combined with bioactive glasses is at the center of
interest of many researchers to provide alternative, synthetic, drug-free biomaterials for a
variety of applications, as reviewed elsewhere [10]. Among a number of phytotherapeutic
compounds, frankincense (resin of Boswellia species) has been used as an anti-arthritic,
anti-inflammatory, analgesic and antibacterial agent [12,13]. Moreover, this compound is
commonly used to relieve pain and improve blood circulation [13]. Frankincense is an
oleogum resin obtained from the different species of Boswellia genus [14]. Boswellia resin es-
sential oils contain several pharmacologically active compounds (monoterpenes, sesquiter-
penes, ketones) that have antimicrobial properties against both fungi and bacteria, for
example, Escherichia coli, Staphylococcus aureus, Candida albicans and Proteus vulgaris [15,16].

The aim of this study was to prepare extract of frankincense from Boswellia sacra
and to develop a method to load the prepared extract onto the surface of amino-group-
functionalized MBGNs of 58S composition (58 wt% SiO2, 37 wt% CaO, 5 wt% P2O5).
Focusing on the functionalization of MBGNs, an effective grafting procedure was developed
in order to obtain enhanced biological properties. A release study was carried out to confirm
the controlled release of the phytotherapeutic agent. Furthermore, antibacterial properties
and the cell-biology response to the phytotherapeutic-laden MBGNs were investigated.

2. Materials and Methods
2.1. Synthesis of Mesoporous Bioactive Glass Nanoparticles

Synthesis of mesoporous, bioactive glass nanoparticles (MBGNs) (nominal compo-
sition 58S: 58 wt% SiO2, 37 wt% CaO, 5 wt% P2O5) was carried out by sol-gel-modified
co-precipitation method. This method of synthesizing 58S MBGNs has been reported
previously [17]. Briefly, 21 mM of tetraethyl orthosilicate (TEOS 99% Sigma Aldrich, Darm-
stadt, Germany) was added into ethanol (99.8% Alfa Aesar, Kandel, Germany), and the pH
was adjusted to 2 by adding 1 M nitric acid (HNO3). The solution was stirred for 20 min.
Separately, 13 mM calcium hydroxide Ca(OH)2 (99% Aldrich, Darmstadt, Germany) was
dissolved in 40 mL of distilled water and then stirred with the TEOS solution until a
homogenous mixture was obtained. This solution was added dropwise in ammonium
dibasic phosphate (99% Aldrich, Germany) solution (1.72 mM) with a pH of 11. Finally,
the precipitates were collected after 48 h of stirring, filtration was performed to collect the
precipitate and washing was subsequently performed with deionized water. MBGNs were
dried in the oven at 60 ◦C. Subsequently, the dried MBGNs were calcined at 680 ◦C to
remove the organic substances and residual nitrate.

2.2. Plant Extraction Method

Superior Hojari Frankincense, Boswellia sacra gum from Dohfar mountains in Oman,
was used (Jeomra Verlag, Georg Huber, Hessen, Germany). The dried gum was frozen
overnight to facilitate its grinding process into a powder without sticking to the electric
blender. A total of 60 g from the produced resin powder was extracted using a Soxhlet
extractor (Carl Roth GmbH + Co. KG, Karlsruhe, Germany) for 4 h with 200 mL ethyl
alcohol (70%). Then, the extracted crude gum was removed from the Soxhlet extractor and
allowed to soak inside the same alcohol for 4 more days under rotary vibration (CATVM4,
Ingenieurbüro CAT, M. Zipperer GmbH, Ballrechte-Dottingen, Germany). The extract was
then filtered using Whatman-No. 1 filter paper, and the alcohol was evaporated using a
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rotary evaporator. The resultant extract was refrigerated at 4 ◦C in a sealed glass bottle
until use.

2.3. Surface Functionalization of Mbgns and Loading of Boswellia Sacra Extract

The amino-group functionalization of the MBGN surface was done with (3-Aminopropyl)
triethoxysilane (APTES) (Sigma Aldrich, Darmstadt, Germany) [18]. For this purpose, 0.5 g
MBGNs was dispersed in 20 vol% APTES solution in acetone for 30 min. The solution was
stirred at 70 ◦C for 6 h under reflux. The functionalized MBGNs were washed three times
with deionized water, collected by using a centrifuge and finally dried overnight at 37 ◦C.

The extract of Boswellia sacra for MBGN loading was prepared by adding dried extract
into methanol (10% w/v) and by stirring the solution for 24 h. After that, functionalized
MBGNs were added to the solution, and 5 min ultrasonication was performed. Afterwards,
the solution was magnetically stirred at 400 rpm at room temperature for one hour. Finally¸
the product was collected by centrifugation at 2000 rpm and dried at room temperature [19].

2.4. Characterization
2.4.1. Scanning Electron Microscopy

Field emission scanning electron microscope (FESEM), (Carl Zeiss™ AG, Jena, Germany)
was used to evaluate the MBGNs after synthesis and functionalization with Boswellia sacra
extract. Before analysis, gold sputtering was performed on samples by using a sputter coater
(Q150/ S, Quorum Technologies™, Lewes, UK) in order to prevent the charging effect.

2.4.2. Structural and Chemical Analysis

The assessment of the composition of MBGNs was done with the help of energy-
dispersive X-ray spectroscopy (EDX) at 20 KV. Moreover, the chemical analysis of the
alcoholic extract of Boswellia sacra was performed using gas chromatography/mass spec-
trometry (Agilent Technologies 7890A/Agilent Technologies 7890A) (at the Agriculture
Research Centre, Giza, Egypt). The gas chromatography (GC) instrument was equipped
with polar Agilent HP-5ms (5%-phenyl methyl polysiloxane) and a capillary column of
30 m in length, 250 µm in diameter and 0.25 µm in thickness. One ml of Boswellia sacra
extract was diluted in diethyl ether and injected at an injector temperature of 200 ◦C and
detector temperature of 250 ◦C. Pure helium was used as the carrier gas at a linear velocity
of 1 mL/min. Mass spectra were obtained at high-ionization energy of 70 eV (electron
Volts), acquisition mass range of 50–800 m/z in positive mode and an interface temperature
of 250 ◦C. The phytochemical compounds present in the test samples were identified and
quantified based on comparison of their retention time (min), peak area and spectral-pattern
height and mass with the databases of the authentic compounds stored in the National
Institute of Standards and Technology (NIST) library and WILEY library, as well as spectral
data reported in literature [20]. Furthermore, functional-group analysis was performed
by Fourier transform infrared spectroscopy (FTIR) (Shimadzu IRAffinity-1S, Shimadzu
Corp, Tokyo, Japan). Spectra were taken in the range of 4000 to 400 cm−1 in absorbance
mode. X-ray diffraction (XRD) analysis was carried out to evaluate whether MBGNs were
amorphous. For this purpose, an X-ray diffractometer (Miniflex 600, Rigaku Corporation,
Europe, Neu-Isenburg, Germany) was used. The diffraction patterns were obtained in the
2θ range of 10◦ to 80◦ by using Cu Kα radiation.

The pore size, distribution and surface area of MBGNs were evaluated (ASAP2460, Micromet-
rics Instrument, Unterschleissheim, Germany) by observing the nitrogen-adsorption/desorption
isotherms and measured with the Barrett–Emmett–Teller (BET) method. Zetasizer Nano ZS
instrument (Malvern Instruments, Malvern, Worcestershire, UK) with light-scattering detector po-
sitioned at 90◦ was used to assess the zeta potential of MBGNs. For the measurement, 1 mgmL−1

sample concentration was dispersed in deionized water. The analyses were performed in triplicate.
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2.4.3. In Vitro Release Studies

The amount of adsorbed Boswellia sacra was evaluated by using UV-Vis spectroscopy
at 215 nm wavelength. For this purpose, 50 mg of Boswellia sacra-loaded MBGNs was
compressed into 6 mm molds, and then the obtained pallets were immersed in 10 mL
phosphate buffer solution (PBS) in an incubator at 37 ◦C for 2, 4, 6, 24, 48, 72, 96, 120, 144
and 168 h. After each time point, 2 mL solution was taken out and replaced with fresh
2 mL of PBS. The loading capacity of MBGNs and functionalized MBGNs was evaluated
by measuring the absorbance of Boswellia sacra solution before and after the addition of
MBGNs. The release study was done in triplicate.

2.4.4. Antibacterial Characterization

Two classic pathogenic bacteria, Staphylococcus aureus (S. aureus) and Escherichia coli
(E. coli), were used to assess the antibacterial activity of MBGNs before and after loading
with Boswellia sacra extract. The evaluation of the antimicrobial activity was done by
an agar diffusion test. Both bacteria were grown at 37 ◦C for 24 h in lysogeny broth
medium (Luria/Miller) (LB Medium) (Carl Roth GmbH, Karlsruhe, Germany), a medium
for bacterial culture. Samples were prepared in a 6 mm diameter disc by compacting
MBGNs in a mold. The disc diffusion method was used for the antibacterial evaluation of
MBGNs, functionalized MBGNs and Boswellia sacra-loaded MBGNs. Three discs of MBGNs
from each group were placed on the surface of lysogeny broth agar (Luria/Miller) (LB
Agar) (Carl Roth GmbH, Karlsruhe, Germany) plates that had been seeded previously
with the tested strain of bacteria. A well diffusion method was used for the antibacterial
assessment of the Boswellia sacra extract. Wells with a diameter of 4 mm were created. After
spreading the tested strain of bacteria, the wells were filled with the Boswellia sacra extract.
The agar plates were then placed in an incubator at 37 ◦C for 24 h. The inhibition of growth
was confirmed by observing the presence of a clear zone around the samples. This zone
was measured to indicate the degree of inhibition against the bacterial species.

2.4.5. In Vitro Cytocompatibility

Human osteoblast-like cells (MG-63) (Sigma Aldrich, Germany) were used to evaluate
the in vitro cytocompatibility of the samples. Cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM, Gibco, Thermo Fisher Scientific, Schwerte, Germany) at 37 ◦C in an
incubator. The cytotoxicity of as-synthesized MBGNs and Boswellia sacra-loaded MBGNs
was assessed by following the standard elution test protocol (ISO 10993–5) [21]. To obtain
the extracts, as-synthesized MBGNs and Boswellia sacra-loaded MBGNs were incubated
in DMEM. A concentration of 0.1 mg mL−1 was used for both samples and incubated in
falcon tubes for 24 h at 37 ◦C. In the meantime, 5 × 104 cells were seeded in a 24-well
plate. After the given time, samples were centrifuged, and extracts were collected. The
obtained eluate was placed in a pre-cultured cell monolayer without any solid particles
and jointly incubated for 24 h and 72 h in a cell culture incubator at 37 ◦C. Subsequently,
medium from all wells of the well plate was removed and cells were then thoroughly
washed with PBS (phosphate-buffered saline). Cells in untreated condition were used as
control. Mitochondrial activity of the cells was evaluated by using the WST-8 method “2-(2-
methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium” (CCK-8
Kit, Sigma Aldrich, Germany). The reaction product was measured at 450 nm after 4 h of
incubation at 37 ◦C. Relative cell viability was calculated according to the equation:

Relative viability o f cells (%) =
ODsample −ODblank

ODre f erence −ODblank
× 100 (1)

where ODsample is the optical density of cells grown in cell culture medium containing the
eluate, ODblank is the optical density of WST reactant and ODreference is the optical density of
cells grown in cell culture medium with no eluate.
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The qualitative assessment of cell viability and morphology was done via live staining
with Calcein AM (Life Technologies, Darmstadt, Germany) and DAPI (4′,6-diamidino-2-
phenylindole). The process of cell staining was according to the supplier’s manuals. Once
the staining was done, a fluorescence microscope (Axio Scope A1, Carl Zeiss Microimaging
GmbH, Jena, Germany) was used to obtain fluorescence images.

2.5. Statistical Analysis

The experiments were performed in triplicate; all results are represented as mean and
standard deviations (SDs). The statistical significance of biological studies was evaluated
by using one-way ANOVA test with p < 0.05 (*) considered statistically significant.

3. Results and Discussion
3.1. Morphological Analysis

SEM micrographs of MBGNs and Boswellia sacra-loaded MBGNs are presented in
Figure 1. It is evident from SEM observations that MBGNs are agglomerated. Moreover,
the prepared MBGNs have a heterogeneous particle size, which turned the MBGNs into
a multilevel pore structure. The controlled aggregation model explains the production
of nanoparticles with spherical agglomerates and heterogeneous particle sizes [22,23].
According to this model, the formation of silicate particles involves two stages: nucleation
and growth. The first stage (nucleation of silicate particles) occurs during the entire course
of reaction. Initially, primary particles or small nuclei are formed. After that, dimer, trimer
and ultimately larger particles or secondary particles are formed by combination of primary
particles via condensation reaction. The formation of spherical particles depends on the
reaction conditions, such as the pH of the medium. It was observed in previous studies
that the pH of the medium is capable of modulating the hydrolysis and condensation
reactions [24]. In this study, the addition of ammonia solution to the acid-catalyzed sol
increased the pH of the reaction medium to greater values than the isoelectric point of
silicate particles [24]. Therefore, the increased rate of condensation reactions caused a
decrease in gelation time. Consequently, a controlled rate of aggregation of primary particles
resulted in the production of MBGNs [23]. Moreover, Figure 1 shows SEM images of
Boswellia sacra-loaded MBGNs. It can be observed that the morphology of MBGNs changed
after loading the Boswellia sacra extract. This change in morphology is likely due to the
surface-layer formation after loading the functionalized MBGNs [25].
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Figure 1. SEM images showing surface morphology of MBGNs at two magnifications (a,b) and
Boswellia sacra-loaded MBGNs (c).

3.2. Chemical Analysis

The EDX spectra of as-synthesized MBGNs are shown in Figure 2, which proves
the presence of Si, Ca and P in the nanoparticles. The chemical composition (wt%) was
estimated based on the atomic ratio obtained and is listed in the table shown in Figure 2.
The comparison of EDX values with the theoretical values of the MBGN composition
indicates the successful synthesis of 58S MBGNs.
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The chemical characterization of the phytochemical compounds of Boswellia sacra ex-
tract was performed using a combination of two analytical techniques: gas chromatogra-
phy/mass spectrometry (GC/MS). Gas chromatography has the ability to separate com-
pounds with high resolution, while mass spectrometry can accurately identify and quan-
tify them. Chemical analysis revealed the presence of 43 volatile and semi-volatile active
compounds (Table 1). Terpenes were detected in considerable amounts in the extract, in-
cluding hydrocarbons (α-pinene, β- pinene (Myrtenol), limonene, p-cymene), monoterpene
alcohols (linalool, α-terpineol), phenols (7-Hydroxychromanone) and sesquiterpene (Him-
baccol, α-Selinene, α-Cadinol, Juniperol). Terpenes and their derivatives are known for their
satisfactory antimicrobial activities [26]. Coumarins (Dimethyl-4-hydroxycoumarin, 3-(3,4-
Dimethoxyphenyl)-7-hydroxy-4-phenylcoumarin, 7-Methoxy-3-(4-methoxyphenyl) coumarin,
5,7-Dihydroxy-4-methylcoumarin) have profound antibacterial activity against both vulnera-
ble and resistant pathogens by damaging the bacterial cell membrane, causing denaturation
of proteins and affecting cell-membrane permeability [27]. Saponins (Squalene, Kaur-16- ene)
cause alteration of the bacterial cell wall and leakage of proteins and certain enzymes [28],
whereas, flavonoids (2′- Hydroxy-2,4,4′,5-tetramethoxychalcone, Quercetin 3′-methyl ether,
Isovitexin, Tetramethoxyflavanone, Trimethoxyflavone and Apigenin 8-Cglucoside) trigger
inhibition of nucleic-acid synthesis and cytoplasmic-membrane dysfunction [29].

3.3. FTIR

MBGN functionalization by APTES was confirmed by using FTIR and recording
spectra before and after functionalization. The FTIR spectra are shown in Figure 3a. A peak
at 1029 cm−1 can be seen, which is mainly due to the Si-O-Si stretching vibrations. The
band at 801 cm−1 represents the Si-O symmetric stretching vibration in MBGNs [30], and
the Si-O bending vibration can be detected from the presence of a peak at 447 cm−1. After
functionalization, the additional peaks can be seen at 698, 1589 and 2928 cm−1, confirming
the APTES modification of MBGNs [31]. These peaks are associated to deformation-mode
NH2 groups and the stretching mode of C-H bonds. Therefore, these peaks confirm the
functionalization of MBGNs by the adsorption of APTES onto the surface of the glass
particles [30]. The symmetric and asymmetric stretching bands of Si-O-Si for physiosorbed
APTES appeared at 1035 cm−1 and 1081 cm−1, respectively [30]. Besides, the broad band at
3431 cm−1 is ascribed to the N-H stretching that overlapped with the stretching peak of the
O-H group [30].
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Table 1. Results of the gas chromatography–mass spectrometry (GC/MS) analysis of Boswellia Sacra.

Retention Time (Min) Compounds % Area
1 4.633 α-Pinene 36.96
2 5.092 7-Methoxy-3-(4-methoxyphenyl)coumarin 1.81
3 5.724 Limonene 4.92
4 6.741 Myrtenol 0.45
5 6.999 5,7-Dihydroxy-4-methylcoumarin 1.34
6 7.364 α-Thujenal 0.51
7 7.581 p-Cymen-7-ol 0.89
8 8.184 Bornyl acetate 0.41
9 8.93 α-Terpineol 0.37
10 9.25 α-Selinene 0.42
11 9.406 δ-Guaiene 1.39
12 9.673 Caryophyllene 0.51
13 9.964 Humulene 0.49
14 10.099 Longifolene 0.47
15 10.23 γ-Gurjunene 1.59
16 10.468 Epicubebol 0.66
17 10.956 cis-Sesquisabinene hydrate 0.53
18 11.161 Farnesol 0.67
19 11.342 Himbaccol 0.66
20 11.506 α-Cadinol 0.97
21 11.891 (-)-Spathulenol 0.48
22 12.621 Thunbergene 0.41
23 13.441 β-Santalol 0.50
24 13.667 Lanceol, cis 0.52
25 13.691 β-Elemen 0.77
26 13.888 α-Terpinyl acetate 0.67
27 13.966 3,6,3′,4′-Tetrahydroxyflavone 0.63
28 14.249 β Carotene 3.12
29 14.512 Kaur-16-ene 0.97
30 14.815 Squalene 3.66
31 14.922 Ledol 13,22
32 15.11 7,3′,4′,5′-Tetramethoxyflavanone 0.59
33 15.398 Quercetin 3′-methyl ether 0.52
34 16.414 Ledene 12.46
35 17.657 Apigenin 8-C-glucoside 0.42
36 18.006 2′-Hydroxy-2,4,4′,5-tetramethoxychalcone 0.48
37 18.309 Juniperol 0.68
38 18.752 Isovitexin 0.51
39 19.814 6,2′,3′-Trimethoxyflavone 0.54
40 20.118 (-)-Globulol 0.50

41 21.315 3-(3,4-Dimethoxyphenyl)-7-hydroxy-4-
phenylcoumarin 0.83

42 22.546 7-Hydroxychromanone 0.75

43 22.878 4-Hydroxy-7-methoxy-3-(4-
methoxyphenyl)coumarin 0.77

FTIR spectra of dried extract of Boswellia sacra and Boswellia sacra-loaded MBGNs are
shown in Figure 3b. The FTIR spectra of Boswellia sacra showed peaks at 2917 cm−1 and
1662 cm−1, corresponding to C-H stretching and C=O stretching of aryl acid [32], respec-
tively. Moreover, spectra showed the characteristic peaks of carboxylate COO symmetric
stretching at 1388 cm−1, stretching at 1252 cm−1 related to the C-CO-C in aryl ketone.
Moreover, the 1026 cm−1 peak is associated to the ring structures of cyclohexane [32]. It can
be observed that after loading Boswellia sacra extract onto MBGNs, some of the characteristic
peaks of Boswellia sacra disappeared or changed their position and intensity, which indicates
that the plant extract established an interaction with the bioactive glass surface.
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3.4. XRD Analysis

The XRD patterns of MBGNs before and after functionalization and of Boswellia sacra-
loaded MBGNs are shown in Figure 4. In order to confirm whether the synthesized MBGNs
and Boswellia sacra-loaded MBGNs are amorphous, samples were characterized with XRD.
The XRD pattern of MBGNs shows no sharp diffraction peaks, which demonstrates that the
MBGNs have an amorphous structure (broad band at 2θ~28◦ represents typical amorphous
characteristics of a glass). Moreover, functionalized MBGNs and Boswellia sacra-loaded
MBGNs exhibit no crystalline diffraction peaks. This demonstrates that the functional-
ization of MBGNs and loading of Boswellia sacra extract did not have any effect on the
amorphous structure of MBGNs.
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3.5. Textural Properties

From the BET analysis of prepared MBGNs, the nitrogen-adsorption/desorption
isotherm was obtained that demonstrated IUPAC type IV isotherm, indicating that the
synthesized MBGNs are mesoporous. The isotherm showed the characteristic hysteresis
loop. The loop had a different path for the desorption and adsorption branches at relatively
high P/P0 values. According to IUPAC classification, an isotherm with that kind of hystere-
sis loop signifies that the material has pores in the mesoporous range (2 nm–50 nm) [23].
From the adsorption isotherm, the pore size distribution was measured by employing
the BJH method for MBGNs, and results are presented in Figure 5. It can be noticed that
the pore-size distribution of the prepared MBGNs is in the mesoporous range. Moreover,
the pore-size distribution for the MBGNs showed multimodal distribution. For example,
the highest mode was in the mesoporous range (20.2 Å), while the other mode was less
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prominent but had a larger pore size (326.5 Å). In Table 2, the textural properties are listed,
indicating that MBGNs and functionalized MBGNs are in the mesoporous range. How-
ever, after functionalization, MBGNs showed a marked mesoporous character, including
larger pore size, as well as higher surface area and pore volume. As APTES is a coupling
agent with amino groups that react with OH groups on the surface of BG particles, a
change in the mesoporous characteristics appears after functionalization [33]. According to
Zhang et al., collision of molecules during the grafting process may also cause the change
in pore size [34].
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Table 2. Textural properties of the MBGNs developed according to the results of the BET analysis.

Type of BG Pore Size (nm) Pore Volume (cm3 g−1) BET Surface Area (m2/g)

MBGNs 2.02 0.2 100.5
Functionalized MBGNs 5.69 0.29 111.2

3.6. Zeta Potential

The measurement of zeta potential (see Table 3) is a convenient approach to deter-
mine the presence of silane molecules on the surface of BGs. Furthermore, glass-surface
modification or change in glass-surface charge can be effectively identified by using this
technique [25]. It was observed that the surface of the MBGNs present a negative zeta
potential value (−21.7 mV). Therefore, to load the negatively charged organic compounds
onto the surface of MBGNs was a challenge due to the intrinsic repulsion caused by the
compounds [35]. In order to alter the charge of the surface of MBGNs, amino groups
should be grafted. The amino group had a nitrogen atom with lone-pair electrons that
could be combined with the proton from water to produce a positively charged NH3+.
The surface of the MBGNs was grafted with amino groups after surface modification,
which was confirmed by the FTIR evaluation (Figure 3). As result of the functionalization,
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the zeta potential of the MBGNs became less negative (−11.8 mV), which confirms the
functionalization of MBGNs with NH3+. This functionalization strategy should enable
loading of negatively charged drugs or other organic compounds [31]. On the other hand,
Boswellia sacra-loaded MBGNs showed a more negative zeta potential value (−32.2 mV).
According to Kaasalainen et al. [36], this may be because of termination of hydrocarbon
chains with a –COOH functional group onto the surface of the molecules (Boswellia sacra).
This effect turns the zeta potential to a more negative value.

Table 3. Zeta potential of MBGNs before and after loading of Boswellia sacra extract.

Samples Zeta Potential (mV) Std. Dev.

MBGNs −21.7 ±0.8
Functionalized MBGNs −11.8 ±0.2

Boswellia sacra-loaded MBGNs −32.2 ±1.0

3.7. In Vitro Release Studies

Maximum absorbance (λmax) of Boswellia sacra extract was observed at a wavelength
of 215 nm. By using this λmax, a calibration curve was plotted by using solutions with
known concentration of Boswellia sacra in order to find the unknown concentration for the
release study. A release study for MBGNs before and after functionalization was carried
out in order to evaluate the effect of functionalization on drug loading and its release.
The Boswellia sacra release profile is shown in Figure 6b. The release study was done at
2, 4, 6, 24, 48, 72, 96, 120, 144 and 168 h. An initial burst release was observed in the
case of functionalized Boswellia sacra-loaded MBGNs (about 52% in 6 h), followed by a
constant and slower release up to 168 h. The initial burst release indicates that some
Boswellia sacra molecules that were adhered onto the surface of the MBGNs diffused out
rapidly into the solution [31]. This might be the main cause of the faster release of Boswellia
sacra molecules in the early stage. After that, a controlled release of extract from MBGNs
was measured. The reason for the controlled release might be that most of the Boswellia
sacra molecules adsorbed onto the surface of the MBGNs via electrostatic interactions or
were accumulated in the mesoporous channels [31]. However, the cumulative release from
MBGNs reached 99.9% of the total loading after 144 h. On the other hand, in case of non-
functionalized MBGNs, 96.6% of the drug was released within 24 h. It has been observed
in previous studies that a significant amount of drug can be released from MBGNs within
24 h [37]. Jiang et al. [31], for example, observed that after amino functionalization, the
drug-loading capacity, as well as drug release time, of MBGNs increased significantly. It
was also seen in the current study that the loading capacity on functionalized MBGNs
was higher (9.9 ± 0.1 mg) than that on MBGNs (1.9 ± 0.2 mg) (on 500 mg MBGNs). The
reason might be the change in the surface charge after functionalization. Thus, the modified
MBGNs were able to load a higher concentration of drug molecules [31,38].

Furthermore, the release of Boswellia sacra from mesoporous channels was controlled
by Fickian diffusion. The first 6 h were chosen to assess the Boswellia sacra release kinetic
from MBGNs (functionalized and non-functionalized), for which the data were fitted by
using the Higuchi model [31,38]:

Q = kt1/2

where Q is the amount of extract released from the MBGNs in time, t, and k is the Higuchi
dissolution constant. According to Figure 6c and Table 4, the cumulative amount of released
Boswellia sacra is linearly proportional to the square root of time, which indicates that the
drug release is governed by a diffusion mechanism. Thus, the initial release of Boswellia
sacra from both the MBGNs and functionalized MBGNs can be effectively controlled
and predicted.
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Table 4. The Higuchi dissolution constant and regression factor of MBGNs and functionalized MBGNs.

Equation Q = Kt(1/2)

Functionalized MBGNs
K 32.61819
R2 0.99347

MBGNs
K 51.77643
R2 0.99989

3.8. Antibacterial Studies

The antibacterial behaviour of MBGNs, functionalized MBGNs and Boswellia sacra-
loaded MBGNs was evaluated with the method of zone-of-inhibition formation. The results of
antibacterial studies against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria after
24 h of incubation are shown in Figure 7. Results revealed that MBGNs and functionalized
MBGNs did not show a significant zone of inhibition. However, after loading MBGNs with
plant extract, the antibacterial properties were significantly enhanced. Antibacterial studies
showed that Boswellia sacra-loaded MBGNs have a significant antibacterial effect against
S. aureus (Gram-positive) bacteria. The zone of inhibition is clearly visible in the case of
S. aureus. However, a slight depletion of Gram-negative (E. coli) bacterial colonies was also
observed. Several studies have been reported regarding the antibacterial activity of extracts
from different species of Boswellia sacra, and it is proven that, as compared to Gram-negative
bacteria, extracts exhibit better antibacterial activity against Gram-positive bacteria [39–41].

The antibacterial activity of Boswellia sacra-loaded MBGNs could be explained on the basis
that it possesses different biologically active constituents, including monoterpenes (α-pinene,
limonene), sesquiterpenes and pentacyclic triterpene (alpha-boswellic acid and beta-boswellic
acid). The antibacterial activity of these terpenoids could be attributed to cell-membrane
disruption and the increase in cell-membrane permeability causing the release of vital intra-
cellular constituents [42]. Moreover, the detected coumarins, saponins and flavonoids might
have played an important role in the enhancement of the antibacterial activity through their
ability to damage the bacterial cell wall and inhibit nucleic-acid synthesis. [27–29].

Conversely, the lower antibacterial activity of the Boswellia sacra-loaded MBGNs
against Gram-negative bacteria can be explained by the presence of the external lipophilic
membrane of E. coli. This outer layer is mainly composed of lipopolysaccharide molecules
that form a hydrophilic permeability blockade, which protects against the effects of highly
hydrophobic compounds [41].
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3.9. Cytotoxicity Analysis

An indirect cytotoxicity assessment was carried out according to ISO 10993-5 standard.
In these tests, 0.1 g of each sample in 1 mL culture medium was used. The eluate was
diluted, and two concentrations (12.5% and 6.25%) were used, which gave rise to MBGN
concentrations of 12.5 mg/mL and 6.25 mg/mL, respectively. Cell viability was assessed
after 24 h and 72 h. It was observed that a lower concentration (6.25%) of eluate from
Boswellia sacra-loaded MBGNs significantly increased cell viability after 24 h of incubation.
However, no significant change in cell viability was observed from the same concentration
of eluate from non-loaded MBGNs (Figure 8). It has been reported that boswellic acid,
which is the main component of the Boswellia sacra extract, might stimulate osteoblast cell
differentiation and be capable of inhibiting osteoclastogenesis by suppressing NF-κB and
TNF-α signaling [43,44]. However, a higher concentration of eluate (12.5%) shows cytotoxic
behavior of drug-loaded MBGNs. This result confirms the concentration-dependent cyto-
toxic behavior of the drug. Interestingly, the higher concentration of eluate from MBGNs
enhanced cell viability after 24 h of incubation (Figure 8). There are numerous examples
that prove the ability of bioactive glasses to boost osteoblast activity considering the release
of Ca and Si ions [2,3,11]. Furthermore, the lower concentration (6.25%) of drug-loaded
MBGN eluate did not show cytotoxic effects, even after 72 h of culture. In conclusion, it can
be stated that the cytotoxic behavior of drug-loaded MBGNs is concentration-dependent. A
possible synergistic effect of Boswellia sacra extract and ions released from MBGNs remains
an interesting subject for future research.
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Figure 8. Graphs representing the time- and concentration-dependent effect of Boswellia sacra-
loaded MBGNs on the MG-63 cell line and morphological responses of cells exposed to different
concentrations after 24 h, presented in Ctrl (a), MBGNs 6.25% (b), MBGNs drug 6.25% (c), MBGNs
12.5% (d), MBGNs drug 12.5% (e), and after 72 h are presented in Ctrl (f), MBGNs 6.25% (g), MBGNs
drug 6.25% (h), MBGNs 12.5% (i) and MBGNs drug 12.5% (j). Significant differences in cell viability
values are marked by an asterisk (*).

4. Conclusions

This work developed a facile approach to load the phytotherapeutic agent Boswellia sacra
onto surface-modified mesoporous bioactive glass nanoparticles. Surface functionalization of
MBGNs with amino groups was performed successfully by using APTES and was confirmed
by FTIR and zeta-potential analysis, which showed NH group attachment onto the bioactive
glass surface. The phytotherapeutic agent Boswellia sacra was successfully loaded onto the
amino-group-modified MBGNs. SEM micrographs showed that after loading Boswellia sacra,
the morphology of MBGNs changed; a layer was formed on the surface of MBGNs, which
confirmed the loading of the phytotherapeutic agent. Antibacterial studies revealed that drug-
loaded MBGNs exhibited antibacterial properties against Gram-positive (S. aureus) bacteria. A
slight depletion of Gram-negative (E. coli) bacterial colonies was also observed around Boswellia
sacra-loaded MBGNs. Boswellia sacra has strong antibacterial properties against Gram-positive
bacteria. The drug-release study indicated a burst release (70% of drug) at 24 h. After that, a
sustained release of the drug was observed. MG-63 cell viability using two different eluate
concentrations was assessed after 24 h and 72 h. It was observed that the high-concentration
(12.5%) eluate gave rise to a cytotoxic effect, even after 24 h. However, a lower-concentration
eluate (6.25%) showed cell viability until 72 h. The present study suggests that amino-group-
functionalized mesoporous bioactive glass nanoparticles loaded with phytotherapeutic agents
represent a versatile combination for antibacterial and tissue-engineering applications.
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