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Abstract: Subunit vaccines require particulate adjuvants to induce the desired immune responses.
Pre-clinical manufacturing methods of adjuvants are often batch dependent, which complicates
scale-up for large-scale good manufacturing practice (GMP) production. The cationic liposomal
adjuvant CAF09b, composed of dioctadecyldimethylammonium bromide (DDA), monomycoloyl
glycerol analogue 1 (MMG) and polyinosinic:polycytidylic acid [poly(I:C)], is currently being clinically
evaluated in therapeutic cancer vaccines. Microfluidics is a promising new method for large-scale
manufacturing of particle-based medicals, which is scalable from laboratory to GMP production,
and a protocol for production of CAF09b by this method was therefore validated. The influence
of the manufacture parameters [Ethanol] (20–40% v/v), [Lipid] (DDA and MMG, 6–12 mg/mL) and
dimethyl sulfoxide [DMSO] (0–10% v/v) on the resulting particle size, colloidal stability and adsorption
of poly(I:C) was evaluated in a design-of-experiments study. [Ethanol] and [DMSO] affected the
resulting particle sizes, while [Lipid] and [DMSO] affected the colloidal stability. In all samples,
poly(I:C) was encapsulated within the liposomes. At [Ethanol] 30% v/v, most formulations were
stable at 21 days of manufacture with particle sizes <100 nm. An in vivo comparison in mice of
the immunogenicity to the cervical cancer peptide antigen HPV-16 E7 adjuvanted with CAF09b
prepared by lipid film rehydration or microfluidics showed no difference between the formulations,
indicating adjuvant activity is intact. Thus, it is possible to prepare suitable formulations of CAF09b
by microfluidics.
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1. Introduction

The liposomal vaccine adjuvant CAF09b (Statens Serum Institut, Copenhagen, Denmark) is
capable of inducing robust cytotoxic T-lymphocyte (CTL) responses [1], and is currently in first-in-man
phase I clinical trials in a therapeutic vaccine combined with the peptide-based tumor associated
antigen BCL-Xl against prostate cancer (NCT03412786) and in a neoepitope-based peptide cancer
vaccine (NCT03715985). It is composed of the lipid surfactants dioctadecyldimethylammonium
bromide (DDA) and monomycoloyl glycerol analogue 1 (MMG) combined with the TLR3 agonist
polyinosinic:polycytidylic acid [poly(I:C)] electrostatically adsorbed to the cationic DDA headgroups [1,2].

CAF09b is prepared using bulk lipid hydration with high shear mixing (HSM) to produce
liposomes at nanoscale size [1,3]. Similar to extrusion, sonication or vortexing, which are also methods
often used to produce liposomes, the mechanism of action for high shear mixing is to break apart
preformed large vesicles to form small-sized liposomes by using shear forces [4,5]. With this method,
a lipid film is formed by evaporating organic solvent from dissolved lipids, forming sheets of stacked
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lipid bilayers deposited on the surface of the preparation vial [5]. The dry lipid film is rehydrated
in a suitable aqueous buffer above the transition temperature of the lipids in the formulation with
simultaneous application of shear forces to dislodge the lipid bilayers. Continued application of shear
forces further reduces the size of the formed liposomes. The process is characterized as a top-down
process, as larger structures of lipid bilayers are broken apart to form smaller liposomes [4]. Reduction
of liposome particle sizes is regulated by varying the energy input, i.e., the applied shear force in high
shear mixing.

In contrast, manufacture of liposomes using microfluidic hydrodynamic focusing facilitates
self-assembly of liposomes when mixing lipids dissolved in an organic solvent with an aqueous buffer
by lamellar mixing [6,7]. One hypothesis is that the liposomes are formed initially from organic
solvent-stabilized lipid discs, which bend and close to globules upon the subsequent depletion of the
organic solvent [8]. Thus, this method is a bottom-up method, as the liposomes are assembled from
monomeric lipids and the final liposomes are the largest structure in the process. Some physicochemical
characteristics, particularly the particle size, of liposomes prepared by microfluidics can be influenced
by the variables; total flow rate (TFR), flow rate ratio (FRR) between the two phases, choice of aqueous
buffer and organic solvent, and lipid concentration in the organic solvent [7,9]. The microfluidics
method is suitable to prepare liposomes complexing nucleic acids, either formulated from preformed
liposomes mixed with, e.g., RNA or DNA [10,11] or by directly complexing the nucleic acids during
liposome formation [12]. In the latter situation, the result might be formation of lipid nanoparticles
rather than liposomes, due to the interior complexation of nucleic acids with the cationic lipids [12].

An important difference between the two manufacturing methods is the homogeneity of the
conditions each lipid molecule experiences during the formulation process. When liposomes are
prepared by microfluidics, the continuous unidirectional movement of the formulation components
within the narrow channel facilitates reproducible conditions across the stream independent of lapsed
time [4], and consequently each lipid molecule will experience very similar conditions during the
self-assembly into liposomes. In contrast, during the rehydration of a dry lipid film by high shear
mixing, the lipid molecules may experience very different conditions depending on their location in the
sample, e.g., the distance from the shearing tool or position within the dry lipid bilayer in relation to the
water interphase. This reduces control of process, possibly resulting in larger and more heterogeneous
particle suspensions.

The microfluidic method has some manufactural advantages as compared to the lipid film
rehydration methods used for liposomes. Importantly, the microfluidics method is, in contrast to the
lipid film rehydration methods, easily scalable and can be set up for continuous production [13,14].
Furthermore, the microfluidics method is often reported to result in highly controlled and reproducible
particle sizes and with low polydispersity indexes, a feature that can be very important in manufacturing
as it can have great impact on both stability and functionality of the formulation [15–17]. Depending
on the adjustment of the different process parameters, the microfluidics method can often be optimized
to produce liposomes with particle sizes less than 100 nm [9,12,18,19]. This is an attractive feature for
CAF09b, which when produced by high shear mixing, has an average particle size of 200–250 nm [1,3].

In the present study, we evaluate the effect of varying microfluidic process parameters on
resulting physicochemical characteristics of CAF09b. The process parameters evaluated are the EtOH
concentration (FRR), lipid concentration, and dimethyl sulfoxide (DMSO) concentration, which were
incorporated into a design of experiments (DoE) study to investigate how variation of the parameters
interact. The aim was to establish which combinations of the variable parameters that result in
colloidally stable particles with acceptable particles sizes, i.e., ideally less than 100 nm. The ability to
induce CTL responses by CAF09b prepared by the microfluidics method and HSM was assessed to
find out whether the novel manufacturing method altered the CAF09b adjuvanticity.

When employing a novel manufacturing method, it is necessary to not only evaluate the
physicochemical parameters but also to consider if the induced immune responses are impacted upon.
For CAF09b, the most relevant correlate of immunity is the antigen-specific CD8+ T-cell response after
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i.p. immunization [1]. Therefore, this administration route was used to compare the ability to induce
CD8+ T-cell responses by CAF09b prepared by the microfluidics and HSM methods.

2. Materials and Methods

2.1. Materials

Dimethyldioctadecylammonium bromide and monomycoloyl glycerol analogue 1 were obtained
from NCK A/S (Farum, Denmark) and poly(I:C) was purchased from Sigma-Aldrich (St. Louis, MO,
USA). All other chemicals were used at analytical grade and purchased from commercial suppliers.

2.2. Preparation of Liposomes Using Microfluidics

Weighed amounts of DDA and MMG were dissolved in EtOH 99%, while polyI:C and, if required,
DMSO were diluted in Tris-buffer (10 mM, pH 7.4). The liposomes were prepared by using a
NanoAssemblrTM Benchtop with NanoAssemblr software v. 1.0.8 (Precision NanoSystems, 2018,
Vancouver, Canada) at a TFR of 12 mL/min. The FRR, [Lipid] in the organic phase and [DMSO] were
varied according to the design of experiments protocol (Table 1). The formulations were directly diluted
by dispensing them from the chip into a vial pre-filled with Tris-buffer, and the final formulations
contained 2.5/0.5/0.125 mg/mL DDA/MMG/poly(I:C). Samples in the DoE study were split in two and
stored at either room temperature (RT) or at 4 ◦C.

Table 1. A design of experiments (DoE) with CAF09b was designed with the parameters concentration
of EtOH [EtOH], total lipid concentration after microfluidics [Lipid] and DMSO concentration [DMSO].
FRR: Flow rate ratio.

Parameter Abbreviation Low Level Middle Level High Level

EtOH conc. % v/v
(corresponding FRR) [EtOH] 20 (4:1) 30 (2.35:1) 40 (1.5:1)

Total lipid conc. after
microfluidics *, mg/mL [Lipid] 6 9 12

DMSO conc. % v/v [DMSO] 0 5 10

* The concentration of lipids (DDA and MMG) in the formulation after assembly on microfluidics but prior to
dilution. However, the dilution was immediate in the collection vial and resulted in a final lipid concentration of
2.5/0.5/0.125 mg/mL DDA/MMG/poly(I:C).

2.3. Preparation of Liposomes with High Shear Mixing

For comparison in the in vivo vaccination studies, CAF09b was prepared with the HSM method,
essentially as described elsewhere [3]. Briefly, weighed amounts of DDA and MMG were dissolved
in EtOH and dried overnight in a vial under a gentle N2 stream. The lipid film was rehydrated in
Tris-buffer at 60 ◦C for 15 min using a Heidolph Silent Crusher equipped with a 6F shearing tool
(Heidolph Instruments GmbH, Schwabach, Germany) at 26,000 rpm. Subsequently, the poly(I:C) was
slowly added over 30 min by using a pump, while maintaining the mixing conditions. The final
formulations contained 2.5/0.5/0.125 mg/mL DDA/MMG/poly(I:C).

2.4. Physicochemical Characterization of Liposomes

The average hydrodynamic diameters (z-average), polydispersity indexes (PDI) and zeta potentials
of the liposomes were determined on a Zetasizer Nano ZS (Malvern Instruments Ltd, Worcestershire,
UK) equipped with a 633 nm laser and 173◦ detection optics. The samples were diluted 10 times in
milliQ water prior to measurement, and the complex buffer function in the instrument software was
used to calculate the viscosity and refractive indexes based on the residual [EtOH]. Zetasizer Software
v7.12 (Malvern Instruments Ltd) was used for acquisition and analysis of the software.
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2.5. Quantification of Poly(I:C)

The recovery of poly(I:C) from CAF09b formulations was evaluated using the Quant-iTTM

RibogreenTM assay (ThermoFisher Scientific Inc., Waltham, MA, USA) essentially according to the
manufacturer’s manual. The CAF09b samples were assayed either untreated or after treatment with
1% w/v sodium dodecyl sulfate (SDS, Sigma-Aldrich). The samples were diluted 100× in RNAse free
TE-buffer and a 100 µL of sample or poly(I:C) standard were mixed with 100 µL Ribogreen reagent in a
black 96-well plate. The samples were analyzed using a Polarstar Omega (BMG Labtech, Ortenberg,
Germany) at excitation/emission wavelengths 485/520 nm.

The release of poly(I:C) from CAF09b by treatment with varying concentrations of SDS was
evaluated using agarose gel and detection with ethidium bromide. The agarose (Sigma-Aldrich) was
dissolved in TAE-buffer (Tris-acetate 40 mM, 1 mM EDTA, pH 8.0) and ethidium bromide was added
at a concentration of 0.2 µg/mL gel. The CAF09b and poly(I:C) standard was diluted to an equivalent
of 1 µg poly(I:C) in Tris-buffer with 17% v/v glycerol and a final concentration of SDS ranging from
0–3% w/v. The samples were run in the gel for 20 min at 100 V, and the gel was visualized using a UV
table VWR Genosmart (VWR, Radnor, PA, USA).

2.6. Immunogenicity Studies

The adjuvanticity of CAF09b prepared by the microfluidics or HSM method were compared.
The in vivo studies were conducted at Statens Serum Institut in accordance with regulations imposed by
the national animal protection committee and European Community Directive 86/609. The study design
was approved by the governmental Animal Experiments Inspectorate under license 2017-15-0201-01363.
Groups of six female, 7–9-week-old C57BL/6 mice (Envigo, Horst, the Netherlands) were immunized
intraperitoneally with 10 µg/dose of a 15-mer peptide containing the CD8 epitope RAHYNIVTF from
HPV-16 E7 (JPT, Berlin, Germany), without adjuvant as a negative control or adjuvanted with CAF09b
prepared by microfluidics (CAF09b MF) or high shear mixing (CAF09b HSM). The adjuvant doses
were 250/50/12.5 µg/dose DDA/MMG/poly(I:C) in a total volume of 200 µL. The vaccine was prepared
by admixing the HPV-16 E7 peptide antigen with CAF09b over 30 min with intermittent vortexing to
allow electrostatic adsorption of the peptide onto CAF09b. The vaccines were administered within 2 h
of admixing. The mice were immunized twice with a two-week interval and the immune responses
were assessed one week after the final immunization.

The blood, spleens and draining mediastinal and tracheobronchial lymph nodes (LNs) were
removed and processed to single cell suspensions, the blood by treatment with Lympholyte (Cedarlane,
Burlington, CA, USA) and the organs by passing through a nylon mesh cell strainer (Corning Inc.
Corning, NY, USA). The cells were subsequently washed with PBS and RPMI 1640 (Invivogen,
San Diego, CA, USA).

The frequencies of antigen-specific CD8+ T cells in blood, spleens and LNs were analyzed by
using multimer flow cytometry. The cells (106 cells/well) were stained with H2-Db-RAHYNIVTF:PE
(ProImmune, Oxford, UK), anti-mouse CD19:PerCP-Cy5.5 antibody (Ab, 1D3) and CD4:eFluor780 Ab
(RM4-5) from eBiosciences (San Diego, CA, USA), and CD8:BV421 Ab (53-6.7), CD44:APC Ab (IM-7),
and CD62L:FITC Ab (MEL-14), all from BD Biosciences (San Jose, CA, USA). Data were acquired by
using a BD Fortessa flow cytometer (BD Biosciences) and analyzed by using the FlowJo vX software
(Tree Star, Ashland, OR, USA) identifying immune cell subsets.

Splenocytes (2 × 105 cells/well) were stimulated with 2 µg/mL RAHYNIVTF peptide (JPT, Berlin,
Germany) in RPMI 1640 supplemented with 10% (v/v) heat-inactivated fetal calf serum, 5 × 10−6 M
β-mercaptoethanol, 1% (v/v) penicillin-streptomycin, 1% (v/v) sodium pyruvate, 1 mM L-glutamine,
and 10 mM HEPES (cRPMI), as described elsewhere [2]. Cells incubated with cRPMI medium or
3 µg/mL Concanavalin A (Sigma Aldrich) were used as negative and positive controls, respectively.
The cells were incubated at 37 ◦C and 5% CO2 for three days, then the supernatants were harvested
and analyzed for IFN-γ levels using ELISA. Briefly, Maxisorp plates (Nunc, Hillerød, Denmark) were
coated with capture IFN-γ antibody (BD Biosciences) overnight before being blocked with 2% skim
milk in PBS. Diluted supernatants in PBS with 2% bovine serum albumin (BSA) were added to the
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wells along with IFN-γ standards and incubated at room temperature (rt) for 2 h. The samples were
incubated with biotin-conjugated anti-mouse IFN-γ detection Ab (BD Biosciences) for 1 h, followed by
streptavidin-conjugated horseradish peroxidase incubation for 30 min. Detection was performed with
3,3′,5,5′-tetramethylbenzidine (Kem-En-Tec, Taastrup, Denmark), and the reaction was stopped with
0.2 M H2SO4. The optical density was read at 450 nm with 570 nm correction.

2.7. Statistical Analysis

The DoE investigating the interaction of selected process variables for the microfluidics method
(Table 1) were evaluated with the particle size on day of manufacture (day 0) and on day 1, 7, 14
and 21 with the corresponding particle size ratios calculated in relation to the particle sizes at day 0,
zeta potential on day 0, and poly(I:C) quantification on day 7. The results of the DoE were analyzed
using face-centered response surface methodology (RSM) with backward elimination using Minitab
18.1 (Minitab, Inc, State College, PA, USA). The quality of the models was assessed based on the
adjusted R2 and lack-of-fit, and if these were unacceptable, the model was rejected. The particle size
ratios were additionally modeled for [DMSO] and [Lipid] for each of the three [EtOH] levels using
2-parameter response surface modeling. For all models in the manuscript, the statistical significance of
each parameter is stated in Table S1.

3. Results

3.1. The Concentration of EtOH Significantly Affected the Particle Sizes, Polydispersity and Zeta Potentials of
Freshly Prepared Formulations

Manufacture of CAF09b by the high shear mixing method is a several step process performed in
batches involving the formation of a dry lipid film, a rehydration step to prepare the liposomes and a
subsequent step for addition of poly(I:C) [1]. Furthermore, the lipid film rehydration and addition
of poly(I:C) has to be done at elevated temperatures due to the high phase transition temperature of
DDA (approximately 45 ◦C) [20]. A GMP production would benefit from the ability to easily scale
manufacture in a batch-independent manner and to be able to keep the entire process at ambient
temperature. Therefore, microfluidics pose a promising manufacturing method for establishing a
one-step process for the preparation of CAF09b.

The liposomal adjuvant CAF09b could be formulated with the microfluidics method in a one-step
process, and the concentration of EtOH, the lipid concentration and the DMSO concentration were
shown to influence the resulting particle sizes and colloidal stability, measured as change in particle size,
in relation to storage conditions. The TFR, on the other hand, was found not to affect the physicochemical
characteristics of the liposomes. This is in accordance with a study applying microfluidics to formulate
a variety of liposomes composed of different lipids, which showed that the FRR was the main factor
affecting the particle size, whereas TFR mainly had an impact on the speed of manufacture [21].

Therefore, a design of experiments was set up to investigate how these variables co-affect the
colloidal stability, zeta potential, and association of poly(I:C) of the resulting particles (Table 2).
The parameters were varied as described in Table 1, and all possible combinations with six repeats at
the center point were prepared, resulting in 32 different samples. The samples were physicochemically
characterized measuring the average particle sizes (z-average), polydispersity indexes, and zeta
potentials on the day of manufacture. A face-centered RSM was chosen for DoE analysis because it
covered the whole design space and incorporate curvature in the responses, which could not be further
expanded as i) the minimum level of [DMSO] was 0% and ii) the high level of [Lipid] could not be
further increased, as pilot studies had indicated that this would cause aggregation and clogging of the
microfluidic chip. For each modeled response, graduated plots were established indicating intervals
of changes across the levels of the applied parameters with significant effect (Table of significance of
parameters in the RSM models; Table S1). The quality of the model was expressed as lack-of-fit, which
should have p > 0.05 and adjusted r2, which should approach 100%. The plots may be used to identify
patterns in the responses as a function of the parameter levels.



Pharmaceutics 2020, 12, 1237 6 of 17

Table 2. The parameter settings employed in the DoE and the results used for response surface methodology (RSM) analysis. The concentrations of the parameters;
lipid, DMSO and EtOH, were measured after formulation on the microfluidic chip but prior to dilution in the collection vial. The formulations were directly diluted to
a final concentration of 2.5/0.5/0.125 mg/mL DDA/MMG/poly(I:C), reducing the EtOH concentration accordingly while maintaining the DMSO concentration constant.
The samples were analyzed on the day of manufacture, Day 0, for particle size, polydispersity index (PDI) and zeta potential (Zp). On Day 1 and Day 21, the particle
size was measured for samples stored at 4 ◦C and RT, and the size ratio was calculated in relation to the particle size measured on Day 0. On Day 7, the concentration
of poly(I:C) was measured on samples stored at 4 ◦C.

Sample
No.

DoE Parameters Day 0 Day 1 4 ◦C Day 21 4 ◦C Day 1 RT Day 21 RT Day 7 4 ◦C
[Lipid]
mg/mL

[DMSO]
% v/v

[EtOH]
% v/v

Size,
nm PDI Zp,

mV
Size,
nm PDI Size

Ratio
Size,
nm PDI Size

Ratio
Size,
nm PDI Size

Ratio
Size,
nm PDI Size

Ratio
Poly(I:C),
mg/mL

1 6 0 40 186 0.34 66 185 0.38 1.0 7082 0.87 38.1 187 0.38 1.0 6350 0.93 34.2 79
2 6 5 40 322 0.48 82 521 0.55 1.6 3319 1.00 10.3 313 0.87 1.0 1121 0.94 3.5 87
3 6 10 40 158 0.26 57 155 0.26 1.0 474 0.51 3.0 159 0.28 1.0 742 0.78 4.7 69
4 9 0 40 181 0.36 61 171 0.44 0.9 175 0.42 1.0 176 0.41 1.0 173 0.41 1.0 131
5 9 5 40 174 0.33 72 174 0.31 1.0 200 0.38 1.2 181 0.39 1.0 276 0.61 1.6 148
6 9 10 40 198 0.35 59 183 0.36 0.9 961 0.78 4.9 191 0.40 1.0 505 0.52 2.6 126
7 12 0 40 183 0.40 68 186 0.33 1.0 204 0.37 1.1 184 0.42 1.0 220 0.41 1.2 119
8 12 5 40 194 0.36 58 202 0.32 1.0 209 0.36 1.1 206 0.33 1.1 234 0.39 1.2 105
9 12 10 40 138 0.20 58 150 0.21 1.1 144 0.22 1.0 154 0.24 1.1 185 0.31 1.3 103
10 6 0 30 59 0.25 64 55 0.22 0.9 61 0.22 1.0 58 0.23 1.0 71 0.21 1.2 124
11 6 5 30 52 0.17 45 53 0.18 1.0 55 0.16 1.1 56 0.19 1.1 77 0.34 1.5 101
12 6 10 30 83 0.13 54 84 0.15 1.0 90 0.17 1.1 85 0.15 1.0 94 0.21 1.1 67
13 9 0 30 82 0.24 62 103 0.26 1.3 150 0.23 1.8 59 0.24 0.7 68 0.24 0.8 107
14 9 5 30 58 0.24 65 67 0.22 1.2 100 0.22 1.7 59 0.23 1.0 68 0.25 1.2 110
15 9 5 30 56 0.23 45 76 0.23 1.4 112 0.22 2.0 64 0.27 1.2 71 0.27 1.3 75
16 9 5 30 65 0.22 56 69 0.21 1.1 98 0.20 1.5 66 0.23 1.0 74 0.25 1.1 108
17 9 5 30 49 0.19 45 75 0.22 1.5 116 0.22 2.3 58 0.23 1.2 68 0.25 1.4 81
18 9 5 30 62 0.23 55 64 0.19 1.0 96 0.21 1.5 61 0.20 1.0 71 0.23 1.1 86
19 9 5 30 52 0.22 60 67 0.22 1.3 102 0.20 1.9 55 0.22 1.0 65 0.23 1.2 110
20 9 10 30 52 0.27 52 53 0.28 1.0 60 0.34 1.2 54 0.25 1.0 64 0.21 1.2 109
21 12 0 30 57 0.25 50 130 0.28 2.3 235 0.37 4.1 55 0.28 1.0 64 0.28 1.1 121
22 12 5 30 71 0.28 57 94 0.22 1.3 144 0.23 2.0 72 0.24 1.0 79 0.26 1.1 140
23 12 10 30 56 0.17 52 69 0.19 1.2 99 0.17 1.8 61 0.17 1.1 67 0.16 1.2 142
24 6 0 20 42 0.25 59 121 0.24 2.8 3400 1.00 80.3 48 0.26 1.1 75 0.33 1.8 118
25 6 5 20 47 0.43 55 79 0.28 1.7 114 0.24 2.4 61 0.35 1.3 66 0.50 1.4 133
26 6 10 20 40 0.29 49 45 0.25 1.1 62 0.25 1.5 45 0.25 1.1 64 0.38 1.6 129
27 9 0 20 60 0.36 58 355 0.61 5.9 3157 1.00 52.3 45 0.32 0.8 87 0.35 1.4 124
28 9 5 20 55 0.28 53 130 0.27 2.4 244 0.34 4.4 47 0.36 0.9 72 0.33 1.3 122
29 9 10 20 44 0.36 45 108 0.27 2.5 929 0.81 21.1 52 0.31 1.2 81 0.49 1.8 124
30 12 0 20 49 0.27 53 1123 0.84 23.0 2887 1.00 59.3 58 0.32 1.2 117 0.33 2.4 143
31 12 5 20 43 0.30 52 124 0.27 2.9 586 0.65 13.7 44 0.27 1.0 52 0.27 1.2 134
32 12 10 20 48 0.27 53 97 0.28 2.0 175 0.28 3.7 48 0.27 1.0 56 0.30 1.2 153
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It was possible to use RSM to model the effect of the variables on the particle sizes of the
freshly prepared formulations (Figure 1a). Thus, the concentration of EtOH was found to be highly
significant for the particle sizes, and displayed curvature ([EtOH]*[EtOH], p ≤ 0.0001). The [DMSO]
was also significant and interacted with the [EtOH], with high [EtOH] and [DMSO] resulting in the
smallest particle sizes. The RSM model for the corresponding PDI values showed significant lack-of-fit,
indicating the data do not fit the suggested model fully (Figure 1b), however, the PDI model has been
included to complement the particle size model. It does appear that in addition to the [EtOH] and
[DMSO], the [Lipid] may affect the resulting PDI values.
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Figure 1. Modeling of physicochemical data for formulations at the day of manufacture (day 0) from
design of experiments were analyzed using face-centered response surface methodology to evaluate
the effects of the parameters [EtOH], [Lipid], and [DMSO]. Contour plots for the read outs for (a)
particle size, lack-of-fit p = 0.177, adj. r2 = 97.62%, (b) polydispersity indexes (PDI), lack-of-fit p = 0.044,
adj. r2 = 66.84%, and (c) zeta potential, lack-of-fit p = 0.962, adj. r2 = 46.35%.

Though all formulations were highly cationic, variations in the zeta potentials were observed,
which were directed by the [EtOH] and [DMSO] (Figure 1c). Thus, it appears that the concentration
of EtOH (equivalent to the FRR) and the concentration of DMSO are the main factors impacting the
evaluated physicochemical characteristics of CAF09b when manufactured via microfluidics.

3.2. Addition of DMSO Stabilized CAF09b Formulations Stored at 4 ◦C

When CAF09b was prepared by microfluidics, the storage conditions were shown to affect the
colloidal stability of the liposomes. Thus, the particle sizes of pilot study samples analyzed one day
after preparation did not change for formulations stored at RT, whereas the particle sizes would
increase when they were stored at 4 ◦C. However, it was shown that addition of DMSO to the Tris-buffer
diminished the changes in particle sizes upon storage at 4 ◦C. The colloidal stability of the formulations
in the present study were assessed as the ratio of the particle sizes measured upon storage to the particle
sizes of the freshly prepared formulations. It was not possible to do RSM modeling of the particle
size ratios for all parameters at once, but when the [EtOH] was kept constant at 30%, it was possible
to model the [Lipid] and the [DMSO] (Figure 2). Both parameters significantly affected the changes
in particle sizes for formulations stored at 4 ◦C, with high concentrations of lipid and low [DMSO]
conferring low colloidal stability at both day 1 and day 21 after manufacture (Figure 2a,b). In the RSM
model, the pattern of changes in particle sizes were similar at day 1 and day 21, indicating there were no
changes in the development of particle sizes after the initial increase. Therefore, DMSO had a stabilizing
effect on the liposomes at 4 ◦C storage. The RSM models of the particle size ratio of formulations stored
at RT has low predictable value (Figure 2c,d), but there was not the same stabilizing effect of DMSO as
was observed for formulations stored at 4 ◦C. However, the pattern of changes in the particle size ratio
was similar at day 1 and day 21 for samples stored at RT, indicating that the mechanisms of particle
size changes were similar with time. Interestingly, it appeared that the mechanisms of particle size
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changes were very different depending on the storage temperature, which may be due to temperature
induced differences in how the lipids and poly(I:C) within the particles interact.
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Figure 2

Figure 2. The data from design of experiments were analyzed using face-centered response surface
methodology to evaluate the effects of the parameters [Lipid] and [DMSO] at a fixed [EtOH] of 30%
v/v. Contour plots for the size ratios at (a) day 1, storage at 4 ◦C, lack-of-fit p = 0.320, adj. r2 = 63.68%,
(b) day 21, storage at 4 ◦C, lack-of-fit p = 0.145, adj. r2 = 72.73%, (c) day 1, storage at room temperature
(RT), lack-of-fit p = 0.179, adj r2 = 20.88% and (d) day 21, storage at room temperature (RT), lack-of-fit
p = 0.081, adj. r2 = 18.93%. Particle stability of samples stored at 4 ◦C for 21 days was evaluated
qualitatively. Samples prepared at (e) 20% EtOH (FRR 4:1), (f) 30% EtOH (FRR 2.35:1) and (g) 40%
EtOH (FRR 1.5:1) after 21 days stored at 4 ◦C. Green circles: particle sizes ≤100 nm, yellow squares:
100–250 nm, red triangles: >250 nm.

3.3. Formulations Prepared with 30% v/v EtOH Have Most Samples at Less Than 100 nm after Storage at 4 ◦C
for 21 Days

One aim of the study was to establish the process parameters that resulted in particle sizes at
less than 100 nm, which are optimal for delivery of vaccine to draining lymph nodes and the spleen.
The particle sizes for formulations stored at 4 ◦C for 21 days were plotted in a heat-map like style to
give an overview of the process parameters that resulted in particle sizes of less than 100 nm (green
circles), 100–250 nm (yellow squares) and more than 250 nm (red triangles) (Figure 2e–g). Formulations
prepared with 30% v/v EtOH (FRR 2.35:1) resulted in most samples with particle sizes less than 100 nm
as compared to using 20% v/v or 40% v/v EtOH, with lower [Lipid] and higher [DMSO] promoting
this (Figure 2e–g). In contrast, formulations prepared with 20% v/v EtOH showed formulations at
100–250 nm when formulated with high [Lipid] and lower [DMSO], while other samples were larger
than 250 nm (Figure 2e–g).
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3.4. Poly(I:C) Is Completely Encapsulated Inside the Liposomes after Manufacture by Microfluidics

We wished to establish whether the poly(I:C) in the formulations could be recovered after the
microfluidics manufacturing procedure. The concentration of poly(I:C) in the samples was determined
using the Ribogreen assay, evaluating both untreated samples and samples treated with SDS, 1% (w/v)
after storage at 4 ◦C or RT for 7 days. In the Ribogreen assay, the reagent binds within the dsRNA
resulting in a fluorescent signal. The levels of poly(I:C) were below the detection limit for all untreated
samples, indicating the fluorescent dye was not able to interact with the poly(I:C) in the CAF09b
formulations. The samples were subsequently treated with the negatively charged SDS, which disrupts
the liposomes and can displace nucleic acids by binding to the positively charged lipid headgroups [22].
Different levels of poly(I:C) were detectable in the samples treated with SDS (averaging 116 ± 22 µg/mL
for samples stored at 4 ◦C, and 103 ± 36 µg/mL for samples stored at RT, corresponding to 93 ± 18%
and 83 ± 29% of the theoretical concentration, respectively). It was possible to use face-centered RSM
to model the poly(I:C) content in samples stored at 4 ◦C for all variables. The [EtOH] and [Lipid]
were found to significantly affect the levels of detected poly(I:C) in SDS treated samples stored at 4 ◦C
(Figure 3a), with higher levels of poly(I:C) detected at high [Lipid] and low [EtOH]. Thus, it is the
samples with the lowest residual EtOH content that display the highest levels of recoverable poly(I:C),
which may imply that the EtOH denatures or in other ways affects the poly(I:C). The RSM modeling of
the size ratio of the samples at day 7 stored at 4 ◦C and prepared at [EtOH] 30% v/v showed a similar
pattern as seen for the size ratio at day 1 and day 21 (Supplementary Figure S1). Thus, any possible
effects of the particle sizes on poly(I:C) loading are likely to be constant with time. The levels of
poly(I:C) detected in SDS treated samples stored at RT could not be modeled.

Pharmaceutics 2020, 12, x  4 of 20 

 

respectively. For the samples treated with 0.1–1% SDS a stronger signal was present in the well. 
Hence, poly(I:C) could be detected by ethidium bromide while still associated to CAF09b, evident 
from the signals observed in the wells of SDS treated samples. This indicates no poly(I:C) was 
adsorbed to the surface of the liposomes as there was no detectable signal in the untreated samples. 
Thus, the gel electrophoresis results confirm that poly(I:C) is completely complexed inside the 
liposomes and therefore inaccessible for the detecting agent ethidium bromide. 

The pattern of poly(I:C) detection and displacement did not change upon storage for 21 days, 
except poly(I:C) was detectable in the SDS untreated sample 1, which was highly aggregated (approx. 
4000 nm) at that point. Thus, poly(I:C) does not appear to change the pattern of association with DDA 
upon storage. 

 
Figure 3. Poly(I:C) (125 µg/mL) in samples treated with 1% w/v SDS or untreated was quantified with 
the Ribogreen assay. Poly(I:C) could not be detected in untreated samples. (a) RSM model of the 
amount of poly(I:C) in samples stored at 4 °C for 7 days, lack-of-fit p = 0.082, adj. r2 = 44.03%. (b) A 
representative sample (sample 13) was treated with 0, 0.1, 0.25, 0.5, 1, 2, and 3% SDS, and analyzed 
with agarose (1%) gel electrophoresis the day after preparation and 21 days after preparation, storage 
at 4 °C. Lane 1: Poly(I:C) control, lane 2–8: CAF09b treated with 3, 2, 1, 0.5, 0.25, 0.1 and 0% SDS, 
respectively. Three other representative samples are depicted in Figure S2. The particle sizes, PDIs, 
and size ratio of samples at day 7 stored at 4 °C and the RSM model of the size ratio of the samples 
prepared at 30% EtOH is shown in Figure S1. 

3.5. Antigen-Specific CD8+ T-Cell Immune Responses Induced by CAF09b Prepared by the Microfluidics or 
High Shear Mixing Methods are Comparable 

Figure 3. Poly(I:C) (125 µg/mL) in samples treated with 1% w/v SDS or untreated was quantified with
the Ribogreen assay. Poly(I:C) could not be detected in untreated samples. (a) RSM model of the
amount of poly(I:C) in samples stored at 4 ◦C for 7 days, lack-of-fit p = 0.082, adj. r2 = 44.03%. (b) A
representative sample (sample 13) was treated with 0, 0.1, 0.25, 0.5, 1, 2, and 3% SDS, and analyzed with
agarose (1%) gel electrophoresis the day after preparation and 21 days after preparation, storage at 4 ◦C.
Lane 1: Poly(I:C) control, lane 2–8: CAF09b treated with 3, 2, 1, 0.5, 0.25, 0.1 and 0% SDS, respectively.
Three other representative samples are depicted in Figure S2. The particle sizes, PDIs, and size ratio of
samples at day 7 stored at 4 ◦C and the RSM model of the size ratio of the samples prepared at 30%
EtOH is shown in Figure S1.

From the Ribogreen assay it was not possible to tell whether poly(I:C) was encapsulated inside
the liposomes or if some of it was adsorbed to the liposomal surface. Therefore, representative samples
were qualitatively evaluated by agarose gel electrophoresis using ethidium bromide to visualize the
poly(I:C). Sample 13 ([EtOH] 30% v/v, [Lipid] 9 mg/mL, [DMSO] 0%, v/v) was chosen as a representative
sample, and release of poly(I:C) was evaluated at day 1 and 21 after manufacture (Figure 3b). Other
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samples were chosen to evaluate the effect of adding DMSO (samples 13 and 20), furthermore, sample
20 was colloidally stable at both 4 ◦C and RT for 21 days. Sample 1 was colloidally unstable at both
4 ◦C and RT, whereas sample 24 was colloidally stable at RT but unstable at 4 ◦C (Figure S2).

All samples had similar patterns of poly(I:C) release after SDS treatment. No poly(I:C) could be
detected in the untreated samples the day after preparation stored at 4 ◦C and RT, while progressively
more poly(I:C) was detectable at treatment with increasing concentrations of SDS (0.1–3%) (Figure 3b,
Figure S1). Treatment with just 0.1% SDS induced detection of poly(I:C) inside the liposomes in
addition to detection of released poly(I:C) in the gel. At concentrations of 2 and 3% SDS, almost
all poly(I:C) appeared to have been displaced from the liposomes. This was determined based on
the poly(I:C) signal detected in the wells, which was very low for the samples treated with 2 or 3%
SDS, respectively. For the samples treated with 0.1–1% SDS a stronger signal was present in the well.
Hence, poly(I:C) could be detected by ethidium bromide while still associated to CAF09b, evident from
the signals observed in the wells of SDS treated samples. This indicates no poly(I:C) was adsorbed
to the surface of the liposomes as there was no detectable signal in the untreated samples. Thus,
the gel electrophoresis results confirm that poly(I:C) is completely complexed inside the liposomes and
therefore inaccessible for the detecting agent ethidium bromide.

The pattern of poly(I:C) detection and displacement did not change upon storage for 21 days,
except poly(I:C) was detectable in the SDS untreated sample 1, which was highly aggregated (approx.
4000 nm) at that point. Thus, poly(I:C) does not appear to change the pattern of association with DDA
upon storage.

3.5. Antigen-Specific CD8+ T-Cell Immune Responses Induced by CAF09b Prepared by the Microfluidics or
High Shear Mixing Methods Are Comparable

Lipid rehydration by high shear mixing has until now been the manufacturing method of choice
to prepare CAF09b, whereas we have shown in the present paper that preparation by microfluidics
resulted in acceptable formulations. However, comparing the immune responses induced by CAF09b
prepared by the two manufacturing methods is necessary to evaluate whether they are interchangeable
for manufacture of vaccine adjuvants.

A 15-mer peptide of the cervical cancer protein, HPV-16 E7, which contains the CD8 epitope
RAHYNIVTF, was used as a model antigen. The antigen was administered twice with two-week-
intervals intraperitoneally (i.p.) to female C57BL/6 mice either unadjuvanted as negative control
or adjuvanted with CAF09b prepared by either high shear mixing (CAF09b HSM) or microfluidics
(CAF09b MF). The CAF09b MF, sample 32 (Table 2) with 12 mg/mL lipids, 20% v/v EtOH and 10% v/v
DMSO was used to reduce the residual EtOH content as much as possible (2.5% v/v in the final vaccine),
while DMSO stabilized the formulations. New CAF09b formulations were prepared a couple of days
prior to each immunization and stored at 4 ◦C. The CAF09b formulations were used within seven
days, where complete poly(I:C) loading was shown, while admixing of the adjuvant and antigen was
performed within two hours of administration. The CAF09b formulations were therefore assumed to
retain full adjuvant potential. One week after the final immunization the mice were euthanized and
the spleen, draining lymph nodes (the tracheobronchial and mediastinal lymph nodes), and blood
were harvested, and the levels of antigen-specific CD8+ T cells were analyzed by RAHYNIVTF-H2-Db

multimer flow cytometry (Figure 4a).
There were no significant differences between the immune responses induced by CAF09b prepared

by the two different manufacturing methods (Figure 4). Only CAF09b MF was significantly different
from the unadjuvanted HPV-16 E7 peptide control, whereas CAF09b HSM did not induce a significant
immune response in the blood and spleen (Figure 4b,c). Adjuvanting the antigen with CAF09b MF
or CAF09b HSM did not induce significantly more antigen-specific CD8+ T cells in the draining LNs
as compared to unadjuvanted antigen (Figure 4d). There was no significant difference in the IFN-γ
levels between the CAF09b HSM and CAF09b MF, but CAF09b MF was significantly higher than the
unadjuvanted antigen group (Figure 4e).
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Figure 4. Evaluation of the CD8+ T-cell responses induced by CAF09b prepared by either the lipid
film rehydration or microfluidics methods. Groups of six female C57BL/6-mice were immunized
intraperitoneally (i.p.) twice with two-week-intervals with 10 µg/dose 15-mer peptide containing
the HPV-16 E7 minimal epitope RAHYNIVTF either unadjuvanted or adjuvanted with CAF09b
prepared by the high shear mixing (CAF09b HSM) or the microfluidics (CAF09b MF) methods. (a) The
antigen-specific CD8+ T-cell responses (defined as CD19−, CD4−, CD8+) were analyzed as CD44+,
RAHYNIVTF-H2-Db-PE multimer+ by flow cytometry, representative samples of the responses in
each group in the blood. The analyses were performed in (b) the blood, (c) spleen, and (d) draining
mediastinal and tracheobronchial lymph nodes. (e) Production of IFN-γ by splenocytes stimulated
with RAHYNIVTF analyzed by ELISA. n = 6, bars represent mean ± SEM. * p ≤ 0.05, ** p ≤ 0.01.

4. Discussion

Manufacture of liposomal formulation by using microfluidics has potential benefits for large-scale
production as compared to the standard lipid rehydration methods, as it is readily scalable and
reduces loss of material [23]. In the present study, we have shown that it is possible to manufacture
CAF09b by using hydrodynamic focusing microfluidics, with the resulting particles in the nanometer
range that were colloidally stable depending on the process parameters. Acceptable physicochemical
characteristics were achieved within a range of process parameters, thus CAF09b formulated with
30% EtOH at lipid concentrations of 6–9 mg/mL and 5–10% DMSO resulted in liposomes remaining
at <100 nm at 21 days after manufacture. Thus, we have identified a design space within which it is
possible to manufacture formulations with acceptable physicochemical properties. This allows for
further optimization of the CAF09b manufacture protocol based on other parameters and may be used
as a guideline for manufacture optimization of similar formulations.

It was not possible to use RSM to model the changes in particle sizes at storage, which indicates
the aggregation pattern does not follow a set model. Furthermore, the measurement of large and
polydispersed particle suspensions becomes imprecise when using DLS. Therefore, the deviation in
the measurements from the actual particle sizes might interfere with the modeling. However, it was
possible to model the changes in particle size relative to the initial sample sizes when keeping [EtOH]
constant at 30% v/v. This emphasizes the substantial impact the [EtOH] has on the formation and
stability of the liposomal particles.

The concentration of EtOH is the process parameter, which had the greatest influence on the
physicochemical formulation outcomes, such as particle size, zeta potential, and colloidal particle
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stability. This is in accordance with several publications showing that altering FRR enables precise
tuning of the resulting particle sizes. Generally, increased concentrations of EtOH results in an increase
in the particle sizes, though the exact particle sizes achieved also depend on the microfluidic system,
and the type and concentration of lipids and other components [6,21,24,25]. The RSM modeling
showed a positive correlation between the [EtOH] and initial particle sizes (Figure 1a). This might be
due to the mechanics of liposome formation from lipid discs, as the critical precipitation concentration
of the lipids will be reached quicker at low [EtOH] [7]. Thus, there will be a limited time for disc
formation before they close up to form liposomes, which will then be of limited size.

In the formulations prepared in the present paper, the EtOH was not removed after liposome
formation. Rather, the formulations were prepared at a sufficiently high lipid concentration that
enabled dilution of the liposomes to a final concentration of the adjuvant of 2.5/0.5/0.125 mg/mL
DDA/MMG/poly(I:C), which is the concentration usually used for CAF09b analogues [3]. The resulting
EtOH concentrations in the formulations were 5–20% depending on the initial [Lipid] and FRR.
The presence of EtOH in the final formulations might have had an effect on the colloidal stability
of the liposomes, as it would be expected to interact with the lipid bilayers and possibly destabilize
them. Phospholipid bilayers were destabilized by increasing concentrations of EtOH and the bilayer
thickness was reduced [26]. Furthermore, ethanol may interact with the lipid bilayers resulting in
interdigitation induced by EtOH insertion in the bilayer close to the head-groups, which has been
shown for a range of phospholipids [27–29]. This in turn affects the surface area of each lipid within
the bilayer, which increases at addition of EtOH accompanied by a decrease in bilayer thickness [29].
These effects may also be present in CAF09b, which might contribute to the reduced colloidal stability
observed at high [EtOH].

The choice to add DMSO to the aqueous phase of CAF09b was based on studies with
phospholipid-based liposomes, which showed that DMSO has a stabilizing effect on the lipid
membrane [30,31]. This includes direct interaction with the lipid headgroups and carbon chains, which
promotes stabilization in the gel phase and possibly formation of bilayers rather than interdigitated
membranes [31,32]. We hypothesized that the stabilizing effect of the lipid membrane would translate
to a stabilizing effect on the particle sizes at increased DMSO content, as the probability of membrane
fusion and aggregation might be lowered. Indeed, addition of DMSO in the aqueous phase had a
significant correlation with the colloidal stability of the particles.

The particle sizes were the physicochemical characteristic that was most varied by using different
microfluidic parameters. Particle sizes have been reported to have substantial impact on the induced
immune responses [33–36], which can be attributed to the effect on the biodistribution patterns and
cellular uptake mechanisms [37,38]. Particles at <200 nm may be able to drain away from the injection
site [39], and larger particles are more susceptible for uptake by phagocytic cell populations such as
macrophages [37]. However, in the particular case of i.p. vaccination with cationic particles, the initial
particle sizes are not expected to have a significant impact on the induced immune responses as they
will likely aggregate immediately upon contact with interstitial proteins [40]. Thus, the particles
encountered by the immune cells in the peritoneal cavity will likely be vastly different from the particles
in the formulation.

While the particle sizes might not have an impact on the adjuvanticity of CAF09b, it is
useful as a parameter for manufacturing control. An often-evaluated quality of hydrodynamic
focusing microfluidics is the ability to precisely and reproducibly engineer particles in the nanometer
range [6,12,13,41]. This may be used as a control parameter for manufacturing and scale-up studies,
as any great variation from the expected particle sizes might indicate a faulty formulation. Reducing
the particle sizes might also have a positive effect on the colloidal stability and might thus prolong
shelf life; smaller particles might not sediment as quickly as larger particles and aggregates.

The adjuvanticity of CAF09b prepared by microfluidics was compared to preparation by the
previously used lipid film rehydration by high shear mixing method. CAF09b prepared by the two
methods appeared to induce similar CD8+ T-cell responses against the model antigen following i.p.
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administration (Figure 4). The immunogenicity of the HPV-16 E7 peptide antigen was not altered by
the formulation method of CAF09b. Thus, the level of immune responses observed in the present study
was comparable to previous studies with HPV-16 E7 adjuvanted with CAF09 [1]. It was expected that
the adjuvanticity of the two CAF09b formulations were similar, as CAF09b MF maintained the high
cationic surface charge, which has been identified as a very important physicochemical characteristic for
adjuvanticity [42], as the cationic charge enables high loading efficiencies of the antigen and poly(I:C)
by electrostatic interactions. Most protein and peptide antigen have isoelectric points at approximately
4–6, which have been shown to readily adsorb to the surface of different CAF formulations upon
admixing [42–44], due to the opposite charges of the cationic DDA and anionic antigen at neutral pH.
The theoretical pI of the HPV-16 E7 peptide antigen used in this study is 5.38, and it will therefore
adsorb to a similar high level to CAF09b prepared by either HSM or MF. While the [DMSO] and
[EtOH] had an effect on the measured zeta potentials, they remained highly cationic across all prepared
formulations (Figure 1c). The observed differences in the measured zeta potentials depending on
the [DMSO] and [EtOH] might be explained by considering how the zeta potential is defined; as
the thickness of the layer of structured water molecules surrounding a charged particle. Possibly,
the interaction of DMSO and EtOH with the surface of the lipid membrane, but also the mode of
incorporation of dissolved molecules within the water lattice, affects the thickness and stability of the
structured water layer. The samples were diluted in mQ-water prior to zeta potential measurement,
which presumably will reduce the contribution from dissolved organic solvents.

The cationic liposomal adjuvant, CAF01, containing DDA and trehalose-6,6-dibehenate was
prepared by both the microfluidics and lipid film rehydration methods [45]. The immune responses
to the recombinant M. Tuberculosis antigen H56 adjuvanted with the two CAF01 formulations were
compared in C57BL/6 mice. Antigen-specific IgG1 and IgG2c responses were similar for mice vaccinated
with the two CAF01 formulations. In the spleens, antigen-specific stimulation of IL-17 and IFN-γ
production were also similar between the CAF01 formulations, whereas a significantly higher IL-17
and IFN-γ production was stimulated in the draining lymph nodes after immunization with H56
adjuvanted with CAF01 manufactured by the microfluidics method. Thus, the adjuvanticity of CAF01
appears to be retained or even slightly improved upon manufacture by the microfluidics method.
This indicates that altering the manufacturing method does not compromise the adjuvanticity of
CAF adjuvants.

In this paper, we have shown that it is possible to prepare the complex formulation CAF09b in a
single-step process by using hydrodynamic focusing microfluidics. In the protocol, the concentration of
EtOH was reduced by diluting the samples with Tris-buffer after formulation. EtOH is a class 3 solvent
according to the ICH Q3C-R6 guideline, and may be administered at a dose of 50 mg/day without
further justification [46]. The CAF09b dose in clinical trials is up to 1000 µL. Thus, only some samples
prepared in this study complied with the ICH guidelines, as the EtOH content after dilution was
5–20% v/v. However, it would still be beneficial to remove residual EtOH during GMP manufacture.
This may be achieved by dialysis, which has the disadvantages of being time-consuming and is often
not applicable for continuous production. An alternative method for solvent removal and exchange is
tangential flow filtration, which can be incorporated into a continuous manufacturing protocol [19,47].
However, application of tangential flow filtration requires evaluation of the filters used, as they have
to be compatible with all components in the formulation in question to avoid, e.g., clogging. Another
hindrance for transferring CAF09b manufacture to GMP production is the requirement of DMSO
in the aqueous buffer to stabilize the liposomes. The effects of DMSO on lipid membranes, which
stabilize the liposomes in formulation, may cause adverse effects on the cells at the injection site upon
administration. Therefore, it is necessary to identify an alternative to DMSO for liposome stabilization
in a GMP-approved formulation. Finally, the sterility of the product must be considered. Terminal
sterilization of a formulation is preferred. However, even though several of the CAF09b samples
prepared by microfluidics had particles sizes less than 200 nm, sterile filtration is not an obvious
option due to the cationic nature of CAF09b. An alternative is γ-irradiation, which has been applied to
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CAF01, however the adjuvant was freeze-dried prior to sterilization [48]. Therefore, another strategy
may be aseptic production, which requires that the components are sterile prior to commencement
of manufacture and the manufacturing equipment is sterilized. A possibility for microfluidic GMP
production is to utilize pre-sterilized single-use parts, which are in direct contact with the formulation,
e.g., the microfluidic chip, tubing and containers.

5. Conclusions

The manufacturing methods of liposomes have traditionally relied on different lipid rehydration
methods, which are difficult to scale up for commercial production. This complicates the transfer of
promising liposome-based adjuvants to the clinic, and therefore scalable manufacturing methods may
ease the process of preparing novel formulations for large-scale manufacture.

We successfully transferred the manufacture of CAF09b from a complex and time-consuming
multi-stage protocol to a microfluidic-based single-step liposome synthesis process. Satisfactory
physicochemical characteristics could be achieved within a window of parameter levels, namely
particle size and colloidal stability. Thus, we found that especially the FRR was an important
determinant of the resulting particle sizes, while the [Lipid] and [DMSO] affected the colloidal stability.
Physicochemical characteristics important for the adjuvant function; the zeta potentials and poly(I:C)
adsorption rates were not altered for the formulation samples tested by microfluidic manufacture.
Consequently, the CD8+ T-cell responses induced against the HPV-16 E7 antigen were not different
between CAF09b prepared by high shear mixing and microfluidics.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/12/1237/s1,
Figure S1: RSM model of samples manufactured at 30% EtOH at day 7 of storage at 4◦C. Figure S2: Release of
poly(I:C) from CAF09b after SDS treatment. Table S1: Statistical significance of parameters in the RSM models.
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