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Abstract: Background: Busulfan pharmacokinetics exhibit large inter-subject variability. Our objective
was to evaluate the influence of glutathione S-transferase A1 (GSTA1) gene variants on busulfan
oral clearance (CLo) in a population of patients undergoing hematopoietic stem cell transplantation.
Methods: This is a quasi-experimental retrospective study in adult patients (n = 87 included in the final
analyses) receiving oral busulfan. Pharmacokinetics data (area under the plasma concentration-time
curve (AUC) determined from 10 blood samples) were retrieved from patients’ files and GSTA1
*A and *B allele polymorphisms determined from banked DNA samples. Three different limited
sampling methods (LSM) using four blood samples were also compared. Results: Carriers of GSTA1*B
exhibited lower busulfan CLo than patients with an *A/*A genotype (p < 0.002): Busulfan CLo was
166 ± 31, 187 ± 37 vs. 207 ± 47 mL/min for GSTA1*B/*B, *A/*B and *A/*A genotypes, respectively.
Similar results were obtained with the tested LSMs. Using the standard AUC method, distribution of
patients above the therapeutic range after the first dose was 29% for GSTA1*A/*A, 50% for *A/*B, and
65% for *B/*B. The LSMs correctly identified ≥91% of patients with an AUC above the therapeutic
range. The misclassified patients had a mean difference less than 5% in their AUCs. Conclusion:
Patients carrying GSTA1 loss of function *B allele were at increased risk of overdosing on their initial
busulfan oral dose. Genetic polymorphisms associated with GSTA1 explain a significant part of
busulfan CLo variability which could be captured by LSM strategies.

Keywords: busulfan; glutathione S-transferase; genetic polymorphism; limited sampling strategy;
pharmacokinetics

1. Introduction

In current hematopoietic stem cell transplantation (HSCT) practices, busulfan is a commonly used
alkylating agent. When combined with other drugs, busulfan exhibits a beneficial immunosuppressive
effect [1]. The drug has a very narrow therapeutic index which requires close therapeutic monitoring.
Low concentrations of busulfan can result in an increased risk of graft failure and recurrence of the
disease whereas high concentrations of busulfan can result in an increased risk of hepatic toxicity [2,3].
Current therapeutic monitoring methods of the drug involve taking numerous (often up to 10) blood
samples to calculate patient’s plasma concentration vs. time area under the curve (AUC) [4]. However,
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we and others have demonstrated the value of limited sampling strategies to estimate mean busulfan
plasma concentration and compute required busulfan doses in these leukemic patients [5–9].

The glutathione S-transferase enzymes (GSTs) are important Phase II biotransformation enzymes
that catalyze the conjugation of many hydrophobic and electrophilic compounds with reduced
glutathione [10,11]. Based on their biochemical, immunologic, and structural properties, soluble GSTs
(including cytosolic and mitochondrial forms) are divided into several classes; alpha, mu, kappa
(mitochondrial), theta, pi, omega, and zeta [10,11]. The GST alpha 1 (A1) isoform is mainly expressed
in the liver, intestine, kidneys and endocrine tissues and contributes to the metabolism of several
anticancer drugs as well as steroids and products of lipid degradation [12,13]. The GSTA1 gene has
been mapped to the GST-alpha gene cluster on chromosome 6p12, it is approximately 12 kb long and
contains seven exons [14]. GSTA1 expression is influenced by a genetic polymorphism that consists
of two alleles, GSTA1*A and GSTA1*B, containing three linked base substitutions in the proximal
promoter, at positions −567, −69, and −52 [14,15]. The G-to-A change at position −52 appears to be
responsible for the differential promoter activities of GSTA1*A and GSTA1*B, expression of GSTA1*A
being greater than GSTA1*B.

Busulfan pharmacokinetics properties are highly variable among patients and dosing regimens are
affected by patients’ characteristics such as body weight, age and genotype [16]. For instance, busulfan
pharmacokinetics in children differs largely from that observed in adults as clearance decreases with
age even when expressed relative to body weight or body surface area [17]. Notably, busulfan is a
lipophilic molecule with highly variable absorption and bioavailability [18]. The drug is highly protein
bound and extensively metabolized in the liver with less than 2% being excreted unchanged in the
urine [19,20]. Busulfan is mainly metabolized through conjugation with glutathione by the major
hepatic isoform GSTA1. In vitro experiments showed that two other isoenzymes, GSTM1 and GSTP1,
contribute to a lesser extent in the formation of busulfan glutathione conjugates (46% and 18% of
GSTA1 busulfan activity, respectively) [19]. At this time, the relevance of GSTA1 polymorphisms on
busulfan pharmacokinetics in adults, following oral administration, has been suggested but not clearly
established [16,21–25].

The primary objective of our study was to investigate the influence of GSTA1 gene variants on
busulfan oral clearance in adult patients. Our secondary objective was to combine use of genetic
information and AUCs calculated from various limited sampling models (LSM) to characterize the
predictive value of these joint strategies for required oral busulfan dose.

2. Methods

This is a quasi-experimental retrospective study. De-identified pharmacokinetic data generated
in the context of a standard of care procedure was collected from adult patients who underwent
HSCT preparation at Maisonneuve-Rosemont hospital over a 4-year period. The research protocol was
approved by the ethics committee of Maisonneuve-Rosemont hospital (No. 06068; 5 October 2006).

2.1. Clinical Study Design

Adult patients (n = 119) aged 18 years and older receiving an oral dose of busulfan 4 mg/kg/d
(using ideal body weight) divided into 4 doses per day for 4 days (total of 16 doses) were included in
this study. Patients were excluded if they vomited in the hour following administration of the first dose.
Patients who vomited and who required the administration of additional busulfan tablets were also
excluded. Patients were also excluded if a complete pharmacokinetic profile could not be generated or
if a DNA sample for genotype determination could not be obtained (e.g., patient’s refusal to participate
in Maisonneuve-Rosemont DNA banking for research purposes). A total of 97 pharmacokinetic profiles
were obtained following the first administration of busulfan or after the second dose for 3 patients
(therapeutic monitoring could not be performed on the first dose and standard dose was administered
on first and second dose). Standard therapeutic drug monitoring consisted of obtaining 10 blood
samples drawn at 0, 20, 40, 60, 90, 120, 180, 240, 300 and 360 min following the first busulfan dose on
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day one. Additional therapeutic drug monitoring was performed on subsequent doses in patients
for whom the dose of busulfan was modified based on their pharmacokinetic profile (target AUC at
Maisonneuve-Rosemont hospital = 1150–1450 µmol·min/L; 283, 245–357, 140 ng·min/mL).

2.2. Pharmacokinetic Profile Determination

Pharmacokinetic profiles were obtained by reviewing medical charts. Busulfan plasma levels
were determined by a validated HPLC assay with UV detection [26]. The drug concentration–time data
were analyzed by standard noncompartmental methods using WinNonLin® 10.0 software (Certara,
Mountain View, CA, USA) to determine AUC0→∞(considered as the reference AUC). Apparent oral
clearance (CLo) of busulfan was calculated as CL/F = Dose(oral)/AUC0→∞ (oral).

2.3. Genotyping Procedure

GSTA A1 C<-69>T polymorphism was determined by polymerase chain reaction-restriction
fragment length polymorphism as described by Kusama et al. with minor modifications. [24] A 821 bp
fragment in the promoter region of the GSTA1 gene was amplified with a forward primer (F: 5′-CCC
TAC ATG GTA TAG GTG AAA T-3′) and reverse primer (R: 5′-GTG CTA AGG ACA CAT ATT AGC-3′).
PCR reactions were performed in a PTC-100 Thermal Cycler (MJ Research Inc., Watertown, MA, USA)
under the following conditions: an initial 5 min denaturation step at 95 ◦C, followed by 35 cycles
of 1 min for each step i.e., denaturation at 96 ◦C, annealing at 63 ◦C and extension at 72 ◦C, and a
final extension step at 72 ◦C for 5 min. PCR products were digested with Hinf I for 3–4 h at 37 ◦C and
separated by electrophoresis (100 V, 45 min) on a 2% agarose/Synergel.

2.4. Validation Cohort

Genotyping procedures for GSTA1 were also performed in random samples (n = 116) obtained
from a genetic bank constituted of isolated DNA samples provided by a group of individuals (18–25
years old) without known cardiovascular diseases. These analyses were performed to establish GSTA1
allele frequencies in “young heathy” adults. Consent was obtained from each individual prior to
participation in this DNA banking initiative.

2.5. Comparison of the Standard Sampling Strategy to LSMs

We compared results of the standard sampling model to LSMs. From our previous paper, we
have determined that the Bullock 4 limited sampling model as well as the New 4.2 and the New 4.3
LSM would be ideal for this study [5,6]. The Bullock 4 LSM requires blood samples at 0.5, 1, 4, and 6 h
after the first dose whereas the New 4.2 LSM require blood samples at 1, 1.5, 3, and 6 h after the first
dose while New 4.3 LSM requires blood samples at 1, 2, 4 and 6 h post-dose.

2.6. Statistical Analyses

Data are expressed as mean ± SD. The AUCs and oral clearance of busulfan were compared across
the genotype groups of GSTA1 using non-parametric tests. Tukey correction was used to determine
the p values for multiple comparisons. The allele and genotype frequencies, and Hardy-Weinberg
equilibrium were analyzed. Statistical analyses were performed using GraphPad v7.05 (GraphPad
Software, Inc., San Diego, CA, USA).

3. Results

Over the four-year period of our study, 119 patients received oral busulfan. Therapeutic monitoring
was performed on the first (or second dose, n = 3) of busulfan. A total of 100 pharmacokinetic profiles
were obtained from those patients’ medical charts. Genetic analyses were performed in 89 patients of
which two patients were excluded (DNA quality). The characteristics of the 87 patients included in our
final analysis are presented in Table 1. Fifty-five percent (55%) of these patients were male. Mean age
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was 48.3 ± 9.7 (range 25–65) years, adjusted body weight was 65.2 ± 10 (range 46–88) kg, and their lean
body weight was 63.3 ± 9.6 (44–84) kg. Acetaminophen, which could decrease glutathione reserve, was
co-administered in 23 patients. Antifungals such as voriconazole and fluconazole but not itraconazole
(which has been associated with a decrease in busulfan clearance) were co-administered in six patients
(n = 1 and 5, respectively). The mean initial dose of busulfan administered was 65 mg and the mean
population AUC was 358,066 ng·min/mL.

Table 1. Patient demographics.

Variable
GSTA1 Genotype Groups p-Value

*A*A *A*B *B*B

Age: Years ± SD (range) 50 ± 11 (27–65) 48 ± 9 (27–63) 48 ± 10 (25–60) 0.8

Gender: Male/female (% male) 13/11 (54) 26/14 (65) 9/14 (39) 0.4

Weight (Kg)

Real Body Weight 74 ± 11 73 ± 15 76 ± 19 0.8

Adjusted Ideal Body Weight 65 ± 9 66 ± 11 64 ± 11 0.7

Lean Body Weight 64 ± 9 64 ± 10 61 ± 10 0.3

Bilirubin (U/L) 11 ± 6 14 ± 10 10 ± 5 0.2

AST (U/L) 22 ± 10 24 ± 9 22 ± 11 0.7

ALT (U/L) 27 ± 22 34 ± 23 33 ± 34 0.5

Albumin (g/L) 41 ± 4 42 ± 3 43 ± 5 0.3

Alkaline Phosphatase (U/L) 95 ± 38 86 ± 36* 81 ± 23 0.01

LDH (U/L) 280 ± 285* 166 ± 59 169 ± 43 0.01

Previously received
chemotherapy (%) 22 (92) 35 (88) 19 (83) 0.2

Previously received
radiotherapy (%) 3 (13) 4 (10) 2 (13) 0.8

Number of patients taking
Acetaminophen (%) 9 (37) 8 (20) 6 (26) 0.02

Number of patients taking
Antifungal Drugs (%) 2 (8) 3 (7) 1 (4) 0.4

First dose administered (mg) 65 ± 8 66 ± 12 65 ± 14 0.9

* Tukey’s multiple comparison analysis, the group (*) was statistically different vs. the 2 other genotype groups.

The genotype frequencies found in our cohort were 27.5% (n = 24), 45.9% (n = 40), and 26.4% (n = 23)
for the GSTA1*A/*A, *A/*B, and *B/*B groups, respectively. These frequencies were in Hardy-Weinberg
equilibrium but differ from the distribution of alleles observed in our validation cohort (Table 2);
more patients presented with a *B*B genotype (26.4%) compared to young healthy subjects (20%).
Demographic data among GSTA1 genotype groups are presented in Table 1. There was no significant
difference observed in most of these parameters among the groups except for alkaline phosphatase
(APL) and lactate dehydrogenase (LDH) levels. The difference observed for the LDH results can
be explained by outlier values for two individuals in the GSTA1*A*A group. A higher proportion
of patients receiving acetaminophen was found in the GSTA1*A*A group. However, there was no
statistically significant difference in measured AUC or in the apparent oral clearance of busulfan
between acetaminophen users and non-users (p = 0.6).
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Table 2. GSTA1 genotype frequencies.

Patients/Cohort n GSTA1 Genotypes % (n)

*A*A *A*B *B*B

Adult patients treated at HRM (study population) 87 27.6% (24) 46% (40) 26.4% (23)

Healthy man subjects (validation cohort) 116 31% (36) 49% (57) 20% (23)

Pharmacokinetic profiles obtained from patients demonstrated that 33/87 (38%) patients reached
therapeutic range on the first dose: 12 patients were exhibiting subtherapeutic levels while 42 patients were
having supratherapeutic levels. Figure 1 illustrates that higher AUCs were observed in patients with a
GSTA1*B*B genotype (395,562±77,083 ng/mL/min) compared to GSTA1*A/*B (357,062 ± 53,100 ng/mL/min)
and GSTA1*A/*A patients (323,691 ± 65,906 ng/mL/min; p < 0.001). Hence, carriers of GSTA1*B (n = 64)
were significantly associated with lower busulfan CLo compared to wild-type GSTA1*A: 179 ± 36 vs.
207 ± 47 mL/min (p = 0.003). Busulfan CLo among the three genotype groups are illustrated in Figure 2:
166 ± 31, 187 ± 40 and 207 ± 47 mL/min, for GSTA1*B/*B, *A/*B and *A/*A, respectively.Pharmaceutics 2019, 11, x 5 of 10 
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Figure 1. Busulfan plasma concentrations (AUC0–∞) measured after administration of the initial oral
1 mg/kg dose (1 mg/kg/day, four times a day, for 4 days) observed among the individual GSTA1
genotypes for 89 patients enrolled in this study.
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Figure 2. Oral clearance of busulfan calculated after administration of the initial oral dose as a function
of patients (n = 89) GSTA1 genotypes.

Using the standard AUC method, distribution of patients (%) above the therapeutic range after
the first dose was 29% for GSTA1*A/*A, 50% for *A/*B and 65% for *B/*B (Figure 3). Patients with a
GSTA1*A/*A genotype were more likely to have achieved therapeutic levels (overall 42%) after the first
dose of treatment compared to subjects with a GSTA1*B/*B genotype (26%).
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Figure 3. Distribution of patients with an AUC below, within and above the therapeutic range after the
initial oral dose of busulfan for each GSTA1 genotype.

The LSMs correctly associated 91% of patients with their therapeutic level category. In our final
patients’ cohort (n = 87), percent of patients with busulfan mean concentrations in the therapeutic
range were 38%, 37%, 38% and 41% for the standard model (AUC with 10 time points), Bullock 4
model, New 4.2 and New 4.3 models, respectively (Supplemental Figure S1). Patients with busulfan
mean concentrations above the therapeutic range were 48%, 47%, 44% and 44% for the standard model,
Bullock 4 model, New 4.2 and New 4.3 models, respectively. The misclassified patients had a mean
difference less than 5% (±4.8%, range AUCref/AUCLSM 0.89–1.05) in their AUCs. The proportion of
patients and their corresponding therapeutic levels using LSMs is illustrated in Figure 4 for the three
GSTA1 genotype groups. The LSMs correctly identified busulfan’s AUC above the therapeutic range
for individuals carrying GSTA1*B*B genotype for 15/15 (100%) using the Bullock 4 model and for
14/15 using New 4.2 and New 4.3 models. The only misclassified patient had a difference of 6% in the
estimated AUCs compared to the standard AUC determination model.
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4. Discussion

In this study, we demonstrated that the administration of an initial standard oral dose of busulfan
(1 mg/kg of a 4 mg/kg/day regimen) to patients with a GSTA1*B*B genotype was associated with higher
plasma concentrations of busulfan and consequently, with lower estimated oral clearance of the drug.
More patients with a GSTA1*B*B genotype were exhibiting mean plasma concentrations above the
targeted therapeutic range for busulfan after the initial dose which could predispose them to increased
toxicity from the drug. We also demonstrated that patients from the various GSTA1 genotypes could
be efficiently classified for their therapeutic level status by limited sampling strategies using four blood
samples instead of 10.

Busulfan pharmacokinetics has been the subject of intense research due to important inter-subject
variability and its narrow therapeutic index [2,3,16]. Clinical consequences of inappropriate dosing
are well established with significant loss of efficacy in patients with sub-therapeutic levels and
toxicity in patients with supra-therapeutic levels of the drug [2]. Various determinants of busulfan
pharmacokinetics have been identified including weight, age and genetics. Dosing based on lean
body weight and dose adjustment with age are well established [17]. However, the role of genetic
polymorphisms still remains to be confirmed.

In the early 1960s, it was established that busulfan spontaneously reacts with glutathione and
that conjugation with glutathione is the primary route of elimination [27,28]. Studies conducted with
various purified human liver GST isoforms established that the highest busulfan-conjugating activity
was observed with GSTA1 [19]. Genetic studies described the genomic organization of the human GST
gene cluster and characterized the functional activity of genetic polymorphisms in the GSTA1 promoter
region [14,15]. From these studies, hypotheses were generated suggesting that decreased functional
activity associated with the GSTA1*B allele would result in a decreased clearance of busulfan.

In 2006, Kusama et al., investigated for the first time the role of GSTA1 polymorphisms on busulfan
pharmacokinetics in a series of 12 patients [24]. Their results demonstrated that the heterozygous
group (GSTA1*A*B; n = 3) had lower oral clearance, prolonged elimination half-life and higher plasma
levels than the wildtype individuals (GSTA1*A/*A; n = 9). One year later, Kim et al. reported on the
first association between GSTA1 polymorphisms and response to busulfan therapy. [29] To date, very
few studies have reexamined the role of GSTA1 polymorphisms on busulfan pharmacokinetics after
oral administration in adult patients. The study by Abbasi et al. reported on a decrease in busulfan
clearance in their GSTA1*B*B patients’ group treated with oral busulfan while Bremer et al. reported on
increased averaged concentration and steady-state (Css) in GSTA1*B*B patients [21,25]. The magnitude
of changes in busulfan oral clearance observed in our study (20%) in patients with a GSTA1*B/*B
genotype compared to GST*A/*A patients agrees with these results.

The role of GSTA1 polymorphisms in adults and in children as well as the impact of polymorphisms
on other GST isoforms (GSTM1 or GSTP1) on busulfan disposition, effects or toxicity are still
controversial [16,21–23,25,30–39]. For instance, Rocha et al. established an association between GSTP1
and chronic graft vs. host disease but Goekkurt et al. did not observe any correlation between various
GST polymorphisms and liver toxicity [30,33]. Following intravenous administration, ten Brink et al.,
Kim et al. and Choi et al., found a decrease in busulfan clearance ranging from about 12–15% in
expresser of the GSTA1*B allele while Abbasi et al. found no association [16,23,25,40].

One important observation of our study was that 2/3 of the patients with a GSTA1*B*B genotype
had mean plasma levels above the upper limit of the therapeutic range (357,140 ng·min/mL) after the
first oral dose of busulfan (442,711 ± 46,830 ng·min/mL). A 23% decrease in their subsequent oral doses
was required to achieve therapeutic levels. Similar results were observed by Abbasi et al. in their
GSTA1*B*B patients where a 20% decrease in dose was required between Dose 1 and 5 in order to
achieve therapeutic levels [25].

The frequency of the GSTA1*B*B observed in our validation healthy subject cohort (20%) was almost
identical to the one observed in two other Caucasian populations (20 and 20.8%, respectively) [41,42].
In our adult study cohort receiving busulfan, the *B variant was found in slightly higher frequency
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(26% for the *B*B genotype). An increased frequency of GSTA1*B*B expressers was also observed in
other Caucasian patients’ population [15,43,44]. The significance of these observations would need to
be confirmed in larger studies.

Finally, we have reported previously on the value of limited sampling strategies (four blood
samples) to estimate mean plasma levels of patients undergoing treatment with oral busulfan [5]. This
type of approach is of great relevance in sparing blood in patients with leukemia or other blood-related
diseases. Bullock et al. also reported very similar results using slightly different time points (4) to
calculate AUC [6].

5. Conclusions

Our study suggests that genetic polymorphisms associated with GSTA1 explain a significant part
of the variability observed for busulfan pharmacokinetics. Our data support the utility of busulfan
LSMs strategy clinically and for the interpretation of pharmacogenetics results.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/11/9/440/s1,
Figure S1. Percentage of patients with an AUC below, within and above the therapeutic range after the initial
oral dose of busulfan using the refence AUC vs. 3 limited sampling methods (LSMs) based on 4 blood samples:
Bullock 4, New 4.2 and New 4.3.
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