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Abstract: The great advantage of virus-like particle (VLP) nano-vaccines is their structural
identity to wild-type viruses, ensuring that antigen-specific B-cells encounter viral proteins in their
natural conformation. “Wild-type” viral nanoparticles can be further genetically or biochemically
functionalized with biomolecules (antigens and adjuvants). Flagellin is a potent inducer of innate
immunity and it has demonstrated adjuvant effectiveness due to its affinity for toll-like receptor 5
(TLR5). In contrast to most TLR ligands, flagellin is a protein and can induce an immune response
against itself. To avoid side-effects, we incorporated a less inflammatory and less immunogenic
form of flagellin as an adjuvant into HIV-based nanoparticle B-cell-targeting vaccines that display
either the HIV-1 envelope protein (Env) or a model antigen, hen egg lysozyme (HEL). While flagellin
significantly enhanced HEL-specific IgG responses, anti-Env antibody responses were suppressed.
We demonstrated that flagellin did not activate B-cells directly in vitro, but might compete for CD4+

T-cell help in vivo. Therefore, we hypothesize that in the context of VLP-based B-cell nano-vaccines,
flagellin serves as an antigen itself and may outcompete a less immunogenic antigen with its antibody
response. In contrast, in combination with a strong immunogen, the adjuvant activity of flagellin
may dominate over its immunogenicity.
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1. Introduction

Virus-like particle (VLP)-based nano-vaccines are a promising tool for HIV-1 vaccine
development [1–3]. On the one hand, non-infectious VLPs show a higher overall safety profile
than life attenuated/inactivated viral vaccines. On the other hand, their structural identity to the
prototype viruses provides advantages over synthetically created nano-vaccines in immune system
recognition [3,4]. HIV-1-based VLPs can directly target and activate antigen-specific B-cells in vitro [5]
and efficiently deliver B- and T-cell antigens into secondary lymphoid organs in vivo [6]. Additionally,
VLPs efficiently initiate and modulate B- and T-cell crosstalk both in vitro [7,8] and in vivo [9,10]. Thus,
HIV-based VLPs can be considered as efficient B-cell-targeting nano-vaccines.
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Flagellin, a principal component of bacterial flagella, is a virulence factor that is recognized by the
immune system via the toll-like receptor 5 (TLR5) pathway [11]. An increasing number of studies have
demonstrated the effectiveness of flagellin as an adjuvant as well as its ability to promote cytokine
production by a range of innate immune cell types. Moreover, it triggers the recruitment of T- and
B-cells to secondary lymphoid sites and activates dendritic cells (DCs) and T lymphocytes [12]. Using
inorganic nanoparticle B-cell-targeting vaccines functionalized with a model antigen, hen egg lysozyme
(HEL), we demonstrated that additional functionalization with flagellin improves antibody responses
against HEL in mice [13]. To avoid the high antigenicity of flagellin and the dose-related inflammatory
injury induced by flagellin in mice [14,15] we selected a truncated form of nonpathogenic Escherichia coli
K12 strain-derived flagellin (KF) in which the main antigenicity region (i.e., domains ND2–D3–CD3)
was replaced by HIV-1 p24 antigen. The truncated form induced less systemic inflammatory responses
and KF-specific antibodies as well as abrogated detectable inflammatory side effects on mice, but kept
the adjuvant properties of KF [16]. Here, we generated a membrane-bound form of truncated flagellin
(KF∆) and investigated whether functionalization of HIV-based VLP’s with KF∆ has an adjuvant effect
on the immune stimulatory capacities of virus-based nanoparticle B-cell vaccines.

2. Materials and Methods

2.1. Mice, Ethical Statement

Six- to eight-week-old female C57BL/6J (Bl6) (Janvier, France), Balb/c (Charles River, Germany),
and C3H/HeOuJ (C3H) (Charles River, Germany) wild-type (wt) mice, as well as mice with transgenic
B-cell receptors (BCR) specific for HIV-1 Env (b12 mice, in-house breeding, kindly provided by
Dr. D. Nemazee, The Scripps Research Institute, La Jolla, CA, USA) were used in this study. Mice were
housed in singly-ventilated cages in the animal facility of the Faculty of Medicine, Ruhr University
Bochum, Germany, in accordance with the national law and were handled according to instructions
of the Federation of European Laboratory Animal Science Associations. All animal experiments
were approved by an external ethics committee of the North Rhine-Westphalia Ministry for Nature,
Environment and Consumer Protection (license 84-02.2011.A111).

2.2. Cell Lines, Plasmids

293T cells (obtained from European Collection of Cell Cultures, Salisbury, UK) were cultured in
Dulbecco’s modified Eagle Medium (DMEM) (Life Technologies, Carlsbad, CA, USA) with 10%
fetal calf serum (FCS) (Life Technologies) and appropriate antibiotics. The plasmids Hgpsyn
(a codon-optimized HIV-GagPol sequence) [17], pConBgp140GCD (a codon-optimized HIV-Env
clade B consensus sequence) [7], pC–HEL-TM (a sequence of a membrane-anchored form of HEL) [5],
pKF (encodes the flagellin sequence of E. coli K12 strain MG1655) [18], and pKFD–p24 3D (a sequence
of soluble KF in which the domains ND2–D3–CD3 are replaced by HIV p24) [16] have been described.

2.3. Construction of an Expression Plasmid Encoding Membrane-Anchored KF∆ (pKF∆-TM)

The pKF∆-TM expression plasmid was generated by insertion of the amplified fragments
ND0–ND1–linker (Linker: With two repeats of 11 amino acids in the human IgG3 hinge region) from
plasmid pKFD–p24 3D as well as the sequence CD1–CD0 from plasmid pKF using the In-Fusion HD
Eco Dry Kit from Clontech (Figure A1).

2.4. VLP Production and Characterization

VLPs were produced as described previously [7] with slight modifications: 293T cells were
transiently co-transfected in 175 cm2 flasks using polyethylenimine (PEI) with corresponding plasmids
encoding structural and envelope proteins (Table 1). The transfection medium was replaced 6 h after
transfection with fresh AIM-V® medium (Life Technologies) and cells were subsequently incubated
for 48 h. VLPs were purified and concentrated by ultracentrifugation through a 30% sucrose cushion.
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The purified VLP pellet was reconstituted in sterile phosphate-buffered saline (PBS), aliquoted,
and stored at −80 ◦C until further use.

Table 1. HIV-based virus-like particle preparations used in the study.

Abbreviations Envelope Proteins Structural Proteins

VLP - HIV-Gag/Pol 7

VLP-KF∆ KF∆ 1 HIV-Gag/Pol 7

Env-VLP HIV-Env 2 HIV-Gag/Pol 7

Env-VLP-KF∆ HIV-Env 3; KF∆ 4 HIV-Gag/Pol 7

HEL-VLP HEL 5 HIV-Gag/Pol 7

HEL-VLP-KF∆ HEL 6; KF∆ 4 HIV-Gag/Pol 7

1 Plasmid pKF∆-TM, 40 µg per transfection; 2 plasmid pConBgp140GCD, 40 µg per transfection; 3 plasmid
pConBgp140GCD, 20 µg per transfection; 4 plasmid pKF∆-TM, 20 µg per transfection; 5 plasmid pC-HEL-TM, 40 µg
per transfection; 6 plasmid pC-HEL-TM, 20 µg per transfection; 7 plasmid Hgpsyn, 40 µg per transfection.

Determination of HIV-Gag p24, HIV-Env, and HEL concentrations in VLP preparations was
performed with specific ELISAs as reported elsewhere [5,7]. Western blot (WB) analyses for HIV–Gag
were performed as reported elsewhere [19]. Rabbit anti-flagellin polyclonal antibodies (ab93713, Abcam)
were used for KF∆ protein detection. Secondary anti-rabbit antibodies coupled with horseradish
peroxidase (Dako) were used in combination with Chemiglow Kit (Alpha Innotech, San Leandro, CA,
USA) to stain the blots. Dynamic light scattering (DLS) was performed with a Zetasizer nanoseries
instrument (Malvern Nano-ZS, Malvern Panalytical GmbH, Kassel, Germany). All nanoparticle size
data refer to scattering intensity distributions (z-average).

2.5. Isolation and Purification of Splenic Cells, In Vitro Culture Experiments

A single-cell suspension of splenic cells was prepared as described before [5]. Naïve untouched
B-cells were isolated from single-cell suspension of splenic cells with the B-Cell Isolation Kit (#130-90-862,
Miltenyi Biotec, Bergisch Gladbach, Germany). DCs were enriched by positive selection with
anti-CD11c magnetic beads (#130-52-001, Miltenyi Biotec). All isolations were performed according to
the manufacturer’s instructions. The resulting cells were routinely >98% pure.

Cells in R10 medium (RPMI-1640 (Gibco, Life Technologies, Thermo Fisher Scientific, Carlsbad,
CA, USA), supplemented with 10% fetal calf serum, 50 µM β-mercaptoethanol, 10 mM HEPES buffer,
and penicillin–streptomycin were plated in U-bottom 96-well plates at a density of 5× 105 cells in 200 µL
R10/well. All VLP preparations were added at the final concentration of 100 ng/mL of HIVEnv. R10
medium serves as a negative control (NIL), and 3 µg/mL of LPS (L6529, Sigma-Aldrich Chemie GmbH,
Munich, Germany) were used as a positive control. After 24 h of incubation, the cells were collected,
washed, stained with anti-CD11c-APC for DCs, anti-B220-Alexa647 for B-cells, anti-CD86-PeCy7
antibodies (all from eBioscience, Thermo Fisher Scientific), and analyzed by flow cytometry using BD
FACSCanto II (BD Biosciences, Heidelberg, Germany) and evaluated with FlowJo (Tree Star, Ashland,
OR, USA).

2.6. Immunization Experiments, Collection of Blood Samples

Bilateral intramuscular (.) VLP injections were performed in the upper leg under isoflurane
anesthesia. Mice received VLPs at the final concentration of 400 ng target antigen per mouse
(either HIV-Env for Balb/c mice or HEL for C3H mice). Routinely, mice were immunized twice:
At day 0 and at day 35. For serological follow-up, mice were immunized three times: At days 0, 35,
and 56.

Mice were bled by puncture of the retroorbital sinus with a heparinized 10 µL hematocrit capillary
(Hirschmann Laborgerate, Germany) under isoflurane anesthesia. The sera were obtained after 5 min
of centrifugation at 8000 rpm and stored at −20 ◦C until further use. Routinely, mice were bled at
day 0 before immunization (pre-immune sera), at day 28 (3 weeks after the first immunization), and at
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day 49 (2 weeks after the second immunization). For serological follow-up, additional bleedings were
performed at days 63 and 77.

2.7. Analyses of Humoral Immune Responses

Antibody responses in 1:100 diluted sera were determined by antigen-specific ELISA as previously
described for HIV-Env [7] and HEL [13]. For ELISA measuring of KF-specific antibody responses,
recombinant KF protein was produced and purified as described elsewhere [16]. 96 F Maxisorp
white microwell plates (Thermo Scientific) were coated with 100 µL of 1 µg/mL of recombinant KF
protein in 0.1 M bicarbonate buffer (pH 9.6) overnight at 4 ◦C. After washing with PBS containing
0.05% Tween-20 (PBS-T), wells were blocked with 5% skimmed milk powder in PBS-T (blocking
buffer) for one hour at room temperature (RT). Following another washing step, sera diluted 1:100
in blocking buffer were added to wells for one hour at RT. After washing, the wells were incubated
with HRP-conjugated anti-mouse IgG (Bethyl), IgG1, or IgG2a (both from BD Biosciences) diluted
1:1000 in blocking buffer for 1 h at RT. Bound HRP-conjugated antibodies were detected with an
enhanced chemiluminescence solution composed of 5 mL Luminol solution (3-aminophtolhydrazide,
Sigma-Aldrich), 50 µL solution B (p-coumaric acid, Sigma-Aldrich), and 1.6 µL 30% H2O2 (Merck,
Darmstadt, Germany). Humoral immune responses were measured with Berthold Detection Systems
Orion Microplate Luminometer (Berthold Technologies) and are expressed as log10-transformed
relative light units per second (RLU/s log10).

2.8. Characterization of Cellular Immune Responses

Two weeks after the second immunization (day 49), Balb/c mice were sacrificed, draining inguinal
lymph nodes were removed, and single-cell suspensions were prepared. Cells from non-immunized
animals served as a negative control (contr.). Cells were re-stimulated with MHC-II-restricted HIV-Env
peptide GVPVWKEATTTLFCASDAKA in the presence of 2 µg/mL anti-CD28 (37.51; eBioscience)
and 2 µmol monensin as described elsewhere [9]. After 6 h of stimulation, cells were surface-stained
with anti-CD4-FITC and intracellular-stained with anti-IFN-γ-PE antibodies (all from eBioscience) as
described [9]. Data were acquired on BD FACSCanto II (BD Biosciences) and analyzed with FlowJo
(Tree Star).

2.9. Statistical Analysis

Calculations were performed as indicated in the figure legends using GraphPad Prism 7 software
(GraphPad, San Diego, CA, USA).

3. Results and Discussion

3.1. Generation of a Membrane-Bound Form of Truncated KF for HIV-VLP Functionalization

HIV-derived enveloped VLPs can efficiently serve as surface antigen displays consisting of a
common HIV-Gag protein backbone and the cellular lipid membrane in which the antigen of interest
can be expressed. Previously, we functionalized HIV-Gag viral nanoparticles with model antigens that
originally are soluble non-viral proteins [5].

Now, we used this genetic approach to integrate a truncated form of soluble bacterial flagellin of a
nonpathogenic E. coli strain that lacks the domains D2 and D3 into HIV-Gag-based viral nanoparticles.
Deletion of hypervariable domains ND2–D3–CD3 reduced the immunogenicity of the protein and the
systemic inflammatory response against it, but retained the TLR5 agonist activity [16,20]. We used
sequences of original plasmids [5,16] (Figure 1A) to insert N-terminal D0–D1 domains (ND0–ND1)
connected via a linker with C-terminal D1–D0 domains (CD1–CD0) between the sequences coding for
the leader peptide and the transmembrane, as well as the cytoplasmic domains of the vesicular stomatitis
virus G-protein (VSV-G). Figure 1A represents the resulting pKF∆-TM construct. The rationale behind
this design was: (i) To create HIV-based nanoparticles displaying multiple flagellin molecules on the
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surface with an orientation optimized for TLR5 recognition [21], and (ii) to enhance molecule flexibility
and achieve cis-dimerization of the N-terminal and C-terminal D0–D1 domains by introducing a
flexible linker in-between (Figure 1B).
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Figure 1. Membrane-anchored form of KF∆ for HIV-VLP functionalization. (A) Schematic
representation of the pKF∆-TM plasmid. Amp: Ampicillin resistance; BGHpA: Bovine growth
hormone polyadenylation signal; CD: Cellular domain of VSV-G; CMV: Cytomegalovirus promoter;
GTM: Transmembrane domain of VSV-G; LP: Leader peptide of VSV-G; SV40ori: Simian virus
40 promoter; SV40pA: Simian virus 40 polyadenylation signal. (B) Diagram of HIV-based VLP with
membrane-anchored KF∆ (VLP-KF∆) and single membrane-anchored KF∆ domain. (C) FACS analysis
of 293T cells stained for the presence of KF protein on the cell surface two days after transfection
with the expression plasmid pKFD-p24 3D or pKF∆-TM encoding a soluble or a membrane-anchored
KF∆ protein, respectively. (D) 293T cells were co-transfected with Hgpsyn alone or together with
pKF∆-TM plasmid. Pelleted nanoparticles obtained by ultracentrifugation of the conditioned media
were analyzed for the presence of KF and HIV-Gag proteins by Western blot analyses. (E) Dynamic
light scattering data of VLP and VLP-KF∆ particles with average particle diameter in nm (Z-ave) and
polydispersity index (PdI).
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The flow cytometry analysis of HEK293T cells transiently transfected with pKF∆-TM or with
soluble KFD-p24 3D confirmed the presence of KF∆ protein on the cell surface in the expected
orientation as a type 1 membrane protein exposing its N-terminus to the extracellular space (Figure 1C).
After co-transfection of 293T cells with pKF∆-TM and Hgpsyn (a codon-optimized expression plasmid
that encodes HIV-1 GagPol proteins), VLPs could be pelleted by ultracentrifugation through a sucrose
cushion. Western blot analyses demonstrated the presence of both HIV-Gag (p55, Gag; p24, capsid)
and KF∆ in the pelleted nanoparticles (Figure 1D). HIV-Gag-mediated budding does not change the
orientation of the protein, and therefore KF∆ is presented at the outer surface of the nanoparticles as
an ordinary envelope protein.

As reported by Yuan Lu et al., when D0-stabilized flagellin was chemically attached to non-enveloped
Hepatitis B core protein VLPs with the D0 domain facing outward, the tendency of flagellin to polymerize
caused the VLPs to precipitate. However, attaching the D0 domain to the VLP surface produced a stable
nanoparticle adjuvant [21]. According to our pKF∆-TM design, KF∆ flagellin domains have capacities
for cis-dimerization during the particle production by the cell, and released nanoparticles have D0
domains facing the particle surface (Figure 1A,B). To control trans-dimerization and nanoparticle
conjugation, we measured HIV-Gag protein backbone VLPs and VLPs functionalized with KF∆
(VLP-KF∆) by dynamic light scattering. No abnormal VLP-KF∆ precipitates were observed (Figure 1E).

Thus, we developed an effective genetic method for functionalization of HIV-based viral nanoparticle
membranes with the truncated form of flagellin.

3.2. Activation of Antigen-Presenting Cells in Vitro

To analyze the immunomodulatory effects of KF∆ functionalization on the activation of
antigen-specific (cognate) and non-specific (non-cognate) B-cells, we produced native HIV-1
nanoparticles, containing GagPol and Env proteins of HIV-1 (Env-VLP), and Env-VLPs functionalized
with KF∆ (Env-VLP- KF∆). The amount of Env (the antigen of interest) in VLP preparations was
routinely measured with Env ELISA, and the presence of KF∆ was confirmed with WB.

As it was shown before, soluble KFD-p24 3D activates DCs from wt mice, but not from
TLR5-knockout mice in vitro [14]. Therefore, we first proved the bioactivity of the KF∆-functionalized
nanoparticles on freshly isolated splenic DCs from wt Bl6 mice. DCs were cultured in the presence
of either Env-VLP or Env-VLP-KF∆. The results clearly indicate the bioactivity effects of the
KF∆-functionalized nanoparticles on the primary innate immune cells (Figure 2A).Pharmaceutics 2019, 11, x FOR PEER REVIEW 7 of 16 
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Figure 2. Activation of dendritic cells (DCs) and cognate B-cells with Env-VLP-KF∆ nano-vaccines.
(A) DC, (B) splenocyte, or (C) B-cell suspensions from wild-type (wt) Bl6 or BCR-transgenic b12
mice were incubated for 24 h in the presence of same amounts of either Env-VLP or Env-VLP-KF∆.
After incubation, the cells were stained with anti-CD11c (A), anti-B220 (B,C), and anti-CD86 (A–C)
antibodies and analyzed with flow cytometry. Data are depicted as mean fluorescent intensity (MFI) of
anti-CD86 antibody staining for CD11c+ DC cells (A) and B220+ B-cells (B,C). Data are presented as
the means ± SEM of three independent experiments. * p < 0.05; ** p < 0.005; **** p < 0.0001; one-way
ANOVA with Tukey multiple comparison post-hoc test.
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Previously, we demonstrated that HIV-based nanoparticle vaccines can directly target and activate
naive cognate B-cells in vitro [5]. To investigate whether KF∆ functionalization is able to: (i) further
improve the activation capacities of Env-VLP on cognate HIV-Env-specific B-cells, and (ii) induce
polyclonal activation of non-cognate B-cells, we incubated spleen cell suspensions from wild-type Bl6
and BCR-transgenic b12 mice with either Env-VLP or Env-VLP-KF∆. LPS stimulation was used as an
internal positive control for the cell activation inducibility (all cells used could be activated with LPS,
data not shown). B-cells from b12 mice are able to recognize HIV-Env with their BCRs, which results
in B-cell activation. Functionalization of Env-VLPs with KF∆ significantly increased the activation
capacities of the Env-based nanoparticles on the cognate B-cells, but had no influence on non-cognate
Bl6 B-cells (Figure 2B).

The observed adjuvantive effect on cognate B-cells might be either due to: (i) a synergistic mode
of BCR activation and the direct sensing of KF∆ by activated B-cells, or (ii) a synergistic effect of BCR
activation and paracrine influence of KF∆-activated innate immune cells from the spleen suspension.
To evaluate the nature of the adjuvantive effect (direct vs. indirect), we isolated primary b12 B-cells
out of the spleen cell suspensions and directly stimulated them with Env-VLP or Env-VLP-KF∆.
In contrast to the spleen cell suspensions, no adjuvantive effect of KF∆ functionalization was observed
(Figure 2C). These data are consistent with results of Gururjan et al., who demonstrated that mouse
naive follicular B-cells do not express TLR5 and do not respond to flagellin stimulation in vitro [22].
Taken together, HIV-1-based viral nanoparticles demonstrated a direct stimulatory effect on dendritic
cells and an indirect adjuvantive effect on VLP-stimulated cognate B-cells in co-culture systems after
functionalization with KF∆.

3.3. Modulation of Env-Specific Antibody and CD4+ T-Cell Responses In Vivo

In order to analyze the adjuvantive effects of KF∆ functionalization on the induction of
anti-Env-specific antibody responses, we immunized wt Balb/c mice with Env-VLP or Env-VLP-KF∆
containing the same amounts of HIV-Env antigen. Nanoparticles were applied intramuscularly
(a clinically relevant administration route) two times over the four-week interval. Two weeks after the
second immunization, total anti-Env IgG antibody responses (Figure 3A) as well as anti-Env-specific
IgG1 (Figure 3B) and IgG2a (Figure 3C) subclasses in sera of immunized mice were measured and
compared with those in sera before immunizations (pre-immune).

Unpredictably, the KF∆ functionalization significantly decreased anti-Env Ab levels of total
IgG and IgG1 subclass (Figure 3A,B) levels and totally abrogated induction of IgG2a (Figure 3C),
the predominant antiviral IgG antibody subclass in the mouse [23]. To exclude that the KF∆
functionalization only transiently decreases antibody responses, mice were immunized three times
and a serological follow-up over 11 weeks was performed. Anti-HIV-Env-specific IgG antibody
levels induced by Env-VLP-KF∆ immunization continued to be lower than in Env-VLP immunized
mice (Figure A2). Then, we measured the immunogenicity of KF∆ and observed strong induction
of anti-KF-specific antibodies with equally strong production of both IgG1 and IgG2a antibodies
(Figure 3D–F).

In the splenocyte co-cultures, we observed the adjuvantive effect of KF∆ on Env-specific B-cell
activation (Figure 2B). However, in vivo compartmentalization of the immune system components
might prevent such indirect effects. After i.m. HIV-based VLP injection, DCs take up the nanoparticles,
become activated, and migrate into the T-zones of the secondary lymphoid organs to further activate
and instruct cognate CD4+ T-cells. Simultaneously, a direct contact with VLPs facilitates B-cell
activation in B-cell zones [6,24]. Activated cognate T- and B-cells migrate to contact each other, because
the T-/B-cell collaboration is essential for the generation of antibody-producing plasma cells [24].

Since (i) primary in vivo activation of antigen-specific B-cells requires a direct cognate VLP
triggering rather than interactions with VLP-loaded DCs [6] and (ii) Env-VLP-KF∆ demonstrated no
direct adjuvantive effect on Env-specific B-cells (Figure 2C), in vivo induction of cognate CD4+ T-cells
by DCs might play a role in the regulation of anti-Env antibody production [25,26].
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We analyzed Env-specific CD4+ T-cell responses after immunization with Env-VLP vs.
Env-VLP-KF∆. IFN-γ production by CD4+ T-cells after re-stimulation with HIV-Env MHC-class-II
restricted immunodominant peptide was significantly impaired in mice immunized with Env-VLP-KF∆
(Figure 3G), which is consistent with the strong decline in IgG2a antibodies [27].

Taken together, immunization of Balb/c mice with HIV-1-based viral nanoparticles functionalized
with KF∆ decreased the Env-specific CD4+ T-cell activation and anti-Env antibody production, while
anti-KF antibodies were prominently produced.
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Figure 3. Immunogenicity of Env-VLP nano-vaccines functionalized with KF∆. Wt Balb/c mice were
immunized i.m. twice (at day 0 and day 35) with either Env-VLP or Env-VLP-KF∆ containing 400 ng
HIV-Env/mouse. The sera samples were obtained at day 0 before immunization (pre-immune sera) and
at day 49 (2 weeks after the second immunization). Humoral immune responses against HIV-Env (A–C)
and KF (D–F) were measured in 1:100 diluted sera samples and expressed as log10-transformed relative
light units per second (RLU/s log10). Each experimental group included six mice. The pre-immune sera
group contains samples of 12 mice correspondingly. The columns represent the mean values ± SEM.
(G) Characterization of HIV-Env-specific cellular immune responses in the draining lymph nodes was
performed at day 49 (2 weeks after the second immunization). Percentage of CD4+ T-cells producing
IFN-γ after in vitro stimulation with HIV-Env T helper peptide was measured by intracellular cytokine
staining. The columns represent the mean values of six animals ± SEM. * p < 0.05; ** p = 0.0015;
**** p < 0.0001; one-way ANOVA with Tukey multiple comparison post-hoc test.



Pharmaceutics 2019, 11, 204 9 of 15

3.4. Adjuvantive Effect on HEL-Specific Antibody Responses In Vivo

The results obtained after Env-VLP-KF∆ immunization of Balb/c mice, however, were in
contradiction with data previously published by us [13] and others [28]. Using B-cell targeting
calcium–phosphate (CaP) nanoparticles functionalized with hen egg lysozyme as a model antigen, we
demonstrated that additional functionalization with the full length flagellin from Salmonella enterica
significantly improved anti-HEL antibody responses in C3H mice [13].

To verify these results for KF∆ functionalization in the context of HIV-based viral nanoparticles,
we produced HEL-VLP (VLPs carrying HEL as a surface antigen [5]) and HEL-VLP functionalized
with KF∆ (HEL-VLP-KF∆) (see Table 1). After immunization of C3H mice with either HEL-VLP or
HEL-VLP-KF∆, we observed positive adjuvantive effects of KF∆ functionalization on the induced
anti-HEL antibody responses (Figure 4A–C). The anti-HEL total IgG (Figure 4A) and IgG2a (Figure 4C)
subclass levels were significantly higher in mice immunized with HEL-VLP-KF∆, while induced
anti-KF antibody responses remained relatively moderate (Figure 4D–F vs. Figure 3D–F). Thus,
functionalization of B-cell-targeting HEL-VLP vaccines with KF∆ demonstrated an adjuvantive effect
and increased anti-HEL IgG antibody responses in C3H mice.
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Figure 4. Induction of humoral immune responses in C3H mice with HEL-VLP nano-vaccines
functionalized with KF∆. Wt C3H mice were immunized i.m. twice (at day 0 and day 35) with either
HEL-VLP or HEL-VLP-KF∆ containing 400 ng of HEL/mouse. The sera samples were obtained at
day 0 before immunization (pre-immune sera) and at day 49 (2 weeks after the second immunization).
Humoral immune responses against HEL (A–C) and KF (D–F) were measured in 1:100 diluted sera
samples and expressed as log10-transformed relative light units per second (RLU/s log10). Each
experimental group included six mice. the pre-immune sera group contains samples of 12 mice
correspondingly. The columns represent the mean values ± SEM. * p = 0.0169; *** p = 0.0009;
**** p < 0.0001; one-way ANOVA with Tukey multiple comparison post-hoc test.



Pharmaceutics 2019, 11, 204 10 of 15

3.5. Immunogenicity Balances between the Target Antigens and KF∆

C3H mice are genetically predisposed to strongly react to HEL protein with antibody
production [29]. We compared induction of the total IgG humoral immune response (Figure 5A) and
the potent antiviral IgG2a subtype response (Figure 5B) in C3H mice against HEL proteins with those
in Balb/c mice against HIV-Env proteins four weeks after a single immunization with corresponding
VLPs. Based on the differences in the magnitude of antigen-specific antibody induction on the same
amount of antigens between Balb/c and C3H mice, one might consider that HIV-Env is a rather weak
immunogen in Balb/c mice.

Pharmaceutics 2019, 11, x FOR PEER REVIEW 11 of 16 

 

 
Figure 5. Immunogenicity balance between different envelope proteins of HIV-based nano-vaccines. 
(A, B) Wt mice were immunized with Env-VLP (Balb/c) or HEL-VLP (C3H) in total amount of 400 ng 
antigen/mouse. 28 days after the single immunization total IgG (A) and IgG2a (B) humoral responses 
against corresponding antigens were measured in 1:100 diluted sera samples and expressed as log10-
transformed relative light units per second (RLU/s log10). The columns represent the mean values ± 
SEM (n = 6). *p = 0.0329; ****p < 0.0001; two-tailed paired t-test. Fold of increase in the signal intensity 
(numbers in red) was calculated for each individual mouse (n = 6) as ratio: (Untransformed signal at 
day 28)/(untransformed signal at day 0). Means of six values are present. (C, D) Data represent 
humoral immune responses against KF vs. HIV-Env (C) and KF vs. HEL (D) in the individual Balb/c 
(C) and C3H (D) mice at day 49 (2 weeks after the second immunization with Env-VLP-KFΔ (C) or 
with HEL-VLP-KFΔ (D)). 

Although at least one Env MHC-class-II-restricted immunodominant peptide for Balb/c mice is 
known, after immunization with Env-VLP-KFΔ, there was no induction of Env-specific IFN-γ 
producing CD4+ T-cells observed. This lack of T-cells was accomplished with diminished anti-Env 
IgG2a antibody responses. At the same time, significant levels of anti-KF IgG2a antibodies were 
detected, suggesting that KFΔ has no negative influence on IgG2a class-switch per se (Figure 3). One 
can speculate that in the context of VLP-based B-cell nano-vaccines, KFΔ serves as a protein antigen 

Figure 5. Immunogenicity balance between different envelope proteins of HIV-based nano-vaccines.
(A,B) Wt mice were immunized with Env-VLP (Balb/c) or HEL-VLP (C3H) in total amount of 400 ng
antigen/mouse. 28 days after the single immunization total IgG (A) and IgG2a (B) humoral responses
against corresponding antigens were measured in 1:100 diluted sera samples and expressed as
log10-transformed relative light units per second (RLU/s log10). The columns represent the mean
values ± SEM (n = 6). * p = 0.0329; **** p < 0.0001; two-tailed paired t-test. Fold of increase in the signal
intensity (numbers in red) was calculated for each individual mouse (n = 6) as ratio: (Untransformed
signal at day 28)/(untransformed signal at day 0). Means of six values are present. (C,D) Data represent
humoral immune responses against KF vs. HIV-Env (C) and KF vs. HEL (D) in the individual Balb/c (C)
and C3H (D) mice at day 49 (2 weeks after the second immunization with Env-VLP-KF∆ (C) or with
HEL-VLP-KF∆ (D)).
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Although at least one Env MHC-class-II-restricted immunodominant peptide for Balb/c mice
is known, after immunization with Env-VLP-KF∆, there was no induction of Env-specific IFN-γ
producing CD4+ T-cells observed. This lack of T-cells was accomplished with diminished anti-Env
IgG2a antibody responses. At the same time, significant levels of anti-KF IgG2a antibodies were
detected, suggesting that KF∆ has no negative influence on IgG2a class-switch per se (Figure 3).
One can speculate that in the context of VLP-based B-cell nano-vaccines, KF∆ serves as a protein
antigen itself and may outcompete a less immunogenic antigen with its antibody response via the CD4+

T-cell-dependent mechanism, which was recently described as a model of B-cell competition for T-cell
help [30]. In contrast, in combination with a strong immunogen (such as HEL in C3H mice) the adjuvant
activity of flagellin may dominate over its immunogenicity. This might explain the contradictory data
previously published by Vassilieva et al., in which flagellin functionalization enhanced the Env-specific
humoral responses to Env-VLP immunization in guinea pigs [28]. Guinea pigs are phylogenetically
distant from mice and have higher immunoglobulin combinatorial diversity [31]. These animals are
broadly used in HIV studies due to their ability to induce HIV-Env neutralizing antibodies [32], which
might indicate a stronger immunogenicity of HIV-Env in guinea pigs than in mice.

To consolidate our hypothesis, we analyzed the immunogenicity balances between the VLP
envelope antigens and the KF∆ adjuvant for individual Balb/c and C3H mice. The results summarized
in Figure 5C–D provide an empirical support of the antigen competition idea and suggest that by
functionalization of viral nanoparticle vaccines, the immunogenicity of flagellin itself has to be taken into
consideration. The adjuvantive potency of flagellin might be dependent on both the immunogenicity
of each particular antigen used and the genetic background (e.g., MHC-class-II variants) of the vaccine.

In contrast to MHC-class-II mediated presentation to CD4+ T-cells, cross-presentation of
VLP-derived antigens to CD8+ T-cells is usually restricted to a subset of CD8+ DCs [33]. However, this
CD8+ DC subset that has the ability to cross-present [34] demonstrates the lowest level of relative TLR5
expression in comparison to the other conventional DCs [35]. This implies the need for comprehensive
studies on the cross-presentation of flagellin-functionalized VLPs by different DC subsets. Although
induction of cytotoxic T-lymphocyte (CTL) responses for prophylactic HIV-1 vaccines was formally
concluded in 2007 with the unexpected lack of efficacy in the STEP trial [36], the genetic functionalization
of cell-derived nanoparticles (enveloped VLPs and exosomes [37]) with truncated flagellin might be of
interest for the further development of CTL-inducing anti-viral and anti-cancer vaccines.

4. Conclusions

In summary, we developed an effective genetic method for functionalization of HIV-1-based viral
nanoparticle membranes with a truncated form of flagellin. KF∆ is presented at the outer surface of
the nanoparticles as an ordinary envelope protein. Rational design of the KF∆ molecule prevents
precipitation of nanoparticles and exposes the TLR-5 binding site outwards. KF∆-functionalized
HIV-based nanoparticles demonstrated bioactivity in vitro. Functionalization of B-cell-targeting viral
nanoparticle vaccines with KF∆ demonstrated both inhibitory and adjuvantive immunostimulatory
effects on humoral immune responses against target antigens. The overall outcome of immunizations
was based on the immunogenicity balance between the antigen and KF∆. Therefore, in contrast to
other TLR-ligands, the antigenic property of flagellin in comparison to the immunogenicity of the
target antigen has to be considered for the functionalization of viral nanoparticle vaccines.
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Figure A1. Cloning strategy for the generation of the pKF∆-TM expression plasmid. The pKF∆-TM
expression plasmid consisted of the pC-HEL-TM backbone as well as sequences coding for domains
CD1–CD0 of flagellin and the ND0–ND1-linker, which additionally encoded a linker composed
of two repeats of 11 amino acids of the human IgG3 hinge region [14]. Because of the VSV-G
leader peptide and the VSV-G TM domain, pC-HEL-TM was used as backbone for pKF∆-TM after
removal of the HEL sequence by digesting with BamHI. The fragments of the ND0–ND1-linker and
CD1–CD0 were separately amplified from the pKFD-p24 3D expression plasmid in PCR1:Primer sequences:
ND0–ND1-linker fwd:5′-CGTGAACTGCGGATCCGCACAAGTCATTAATACCAACAGCCT-3′ and
ND0–ND1-linker rev:5′-ATCCGTGGTTTTACCTCCTGATGTGTGTGTAGTATCACCAAGAGGTGTGC-3′

and from the pKF expression plasmid in PCR2:Primer sequences: CD1–CD0 fwd:5′-GGTAAA
ACCACGGATCCGCTGA-3′ and CD1–CD0 rev:5′-TGTCGCCGAAGGATCCACCCTGCAGCAGAGA
CAGAACC-3′. The insertion of both fragments into the pC-HEL-TM backbone was performed using
the In-Fusion HD Eco Dry Kit from Clontech according to the manufacturer’s protocol.
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