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Abstract: Kinsenoside (KD), an active compound isolated from Anoectochilus roxburghii, has demonstrated
multiple pharmacological activities including hepatoprotection, antihyperliposis, antihyperglycemia,
and antiosteoporosis. To the best of our knowledge, there are no available data concerning its
preclinical pharmacokinetics and bioavailability in beagle dogs. To support preclinical pharmacokinetic
and bioavailability study, a reliable LC-MS/MS method was developed for KD concentration
measurements in beagle dog plasma. The chromatographic separation was achieved on a Waters
Atlantis® Hilic Silica column with an optimum mobile phase consisting of 5 mM ammonium acetate
in water (pH 3.0 adjusted with acetic acid) and acetonitrile at a flow rate of 0.2 mL/min. Mass
spectrometric analyses were carried out by monitoring multiple reaction monitoring transitions at
m/z 265.2→102.9 for KD and m/z 174.0→128.0 for L-phenyl-d5-alanine-2,3,3-d3 (IS). The stability of
KD in beagle dog whole blood and plasma was systematically evaluated. Lowering the temperature
played a more critical role in stabilizing KD than decreasing the pH and adding esterase inhibitors,
indicating that the major reason for instability of KD was probably due to chemical hydrolysis rather
than esterase-mediated degradation. The currently developed method was validated and applied to
a pharmacokinetic and bioavailability study of KD in beagle dogs following oral administration at a
dose of 3 mg/kg. The absolute oral bioavailability for KD was determined to be 27.6%. Compared
with typical glycosides, KD has a better bioavailability and is suitable for developing an oral
dosage form.
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1. Introduction

Kinsenoside (KD) is a major known active compound isolated from Anoectochilus roxburghii
(Orchidaceae), a traditional herb used in many Asian countries for medicinal and culinary purposes [1].
Extensive preclinical research in KD was carried out due to its multiple pharmacologic activities.
Previous investigations showed that KD possessed hepatoprotective properties by decreasing the levels
of the cytosolic enzymes such as lactate dehydrogenase (LDH), glutamic-oxalacetic transaminease
(GOT), and glutamate pyruvic transaminease (GPT) [2,3]. KD was also reported to exert antidiabetic,
antioxidant, and antiosteoporosis activities [4–6]. In addition, KD demonstrated vascular protective
properties due to oxidative stress inhibition and vascular endothelial structure maintenance [7].
More recently, our colleagues reported that KD exhibited immunosuppression against autoimmune
hepatitis by disrupting dendritic-cell-induced cross-priming of CD8+T cell response [8].
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Although KD presents promising therapeutic potential, its pharmacokinetic properties remain
largely unexplored. Pharmacokinetic and oral bioavailability studies provide valuable information
on drug candidates to define a proper dosage form during the drug development stage. To the
best of our knowledge, there are no available data concerning its preclinical pharmacokinetics and
bioavailability in beagle dogs. To support preclinical pharmacokinetic study, a reliable bioanalytical
method was required. Most of the previous analytical methods reported for the quantitation
of KD utilized high-performance liquid chromatography with ultraviolet or evaporating light
scattering detectors [3,4,8,9]. Due to their poor sensitivity, such methods are not suitable for in vivo
pharmacokinetic research. In 2015, Shaheed Ur Rehman et al. developed a liquid chromatography–
tandem mass spectrometry (LC-MS/MS) method employing a Waters Acquity UPLC BEH C18 column for
metabolic stability investigation of KD [10]. However, reverse-phase columns demonstrated obvious
shortcomings for highly polar compounds such as KD due to their poor retention. Subsequently,
a hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS) method
was developed for the determination of KD in rat plasma [11]. In this paper, the authors paid attention
to the plasma stability issue of KD and specific strategies were employed to improve the stability of the
analyte of interest. However, the stability of KD in rat whole blood has not been investigated. Although
stability in plasma is considered as an indicator of the analyte stability in blood, there are exceptions
for which the stability behavior of the drug in blood is different from that in plasma [12]. Moreover,
the stability of KD in whole blood and plasma from different species such as beagle dog remains
unknown. Therefore, the current work performed systemic stability assessment of KD in beagle dog
whole blood and plasma and thereafter established blood sampling and treatment procedures to
ensure a reliable concentration determination of the analyte. Finally, the developed and validated
LC-MS/MS method was applied for pharmacokinetic and bioavailability study of KD in beagle dogs
for the first time.

2. Materials and Methods

2.1. Chemicals and Reagents

Kinsenoside was isolated from Anoectochilus roxburghii and purified in our own lab. The purity of
kinsenoside was >98%, as measured by a high-performance liquid chromatography (HPLC) system
with an evaporative light scattering detector. L-phenyl-d5-alanine-2,3,3-d3 (internal standard, IS) was
obtained from CDN Isotopes (Pointe-Claire, QC, Canada). 2,2-Dichlorovinyl dimethyl phosphate
(DDVP) and phenylmethanesulfonyl fluoride (PMSF) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Sodium fluoride (NaF) was obtained from Sinopharm Chemical Reagent Co. Ltd. (Shanghai,
China). HPLC-grade acetonitrile (ACN) was purchased from Fisher Scientific (Fair Lawn, NJ, USA).
K2EDTA-containing vacutainer tubes (3 mL) and 22 G IV catheters (0.9 mm × 25 mm) were obtained
from BD Biosciences (Franklin Lakes, NJ, USA). All other reagents were of analytical grade.

2.2. LC-MS/MS Conditions

Analysis was performed using a Shimadzu Prominence UFLC system (Shimadzu Corporation,
Kyoto, Japan) coupled with an API 4000 QTrap® triple quadrupole mass spectrometer (AB Sciex,
Foster City, CA, USA) equipped with an electrospray ionization (ESI) source.

Chromatographic separation was achieved on a Waters Atlantis® Hilic Silica column (2.1 mm ×
100 mm, 3 µm) preceded by a 0.22 µm in-line filter (Waters Co., Milford, MA, USA). The mobile phase
consisted of 5 mM ammonium acetate in water (pH 3.0 adjusted with acetic acid) (Solvent A) and ACN
(Solvent B). A gradient profile was applied by starting at 90% B, decreasing to 50% B within 2 min,
holding 50% B for 3 min, and returning to initial 90% B within 0.1 min, followed by an equilibration of
1.9 min, resulting in a total run time of 7 min. The column temperature was maintained at 30 ◦C and
the injection volume was 10 µL.
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Mass spectrometric detection was carried out under the positive ion electrospray mode
using multiple reaction monitoring (MRM), monitoring the precursor-to-product ion transitions of
m/z 265.2→102.9 and m/z 174.0→128.0 for KD and L-phenyl-d5-alanine-2,3,3-d3 (IS), respectively.
The source parameters were optimized as follows: curtain gas, 30 psi; collision gas (CAD), medium;
ionSpray voltage, 5500 V; temperature, 600 ◦C; nebulizer gas, 30 psi; auxiliary gas, 30 psi; and interface
heater, on. The optimum values for compound-dependent mass spectrometric parameters including
declustering potential (DP), collision energy (CE), entrance potential (EP), and cell exit potential (CXP)
were set at 36, 15, 10, and 10 V, respectively, for KD and at 52, 24, 10, and 15 V, respectively, for IS. Data
acquisition and processing were controlled by Analyst 1.6.1 software (AB Sciex, Foster City, CA, USA).

2.3. Preparation of Calibration Standards, Quality Control (QC) Samples, and Esterase Inhibitor Solutions

The stock solutions of KD and IS were prepared in ACN–water (1:1, v/v) at concentrations of
2.5 mg/mL and 1 mg/mL, respectively. Working solutions containing 125, 250, 500, 1250, 2500, 12,500,
25,000, and 50,000 ng/mL KD or 500 ng/mL IS were prepared by serial dilution with ACN–water
(1:1, v/v) from corresponding stock solutions. Both stock and working solutions were stored at −80 ◦C
until use.

To prepare calibration standards, 5 µL working solutions were added to 120 µL aliquots of blank
dog plasma, yielding a series of calibration standards with final concentrations of 5, 10, 20, 50, 100, 500,
1000, and 2000 ng/mL for KD. QC samples were prepared in a similar manner at three different levels
(15, 150, and 1500 ng/mL). Esterase inhibitor solutions containing 500 mM DDVP, NaF, and PMSF
were prepared in ACN–water (1:1, v/v), water, and dimethylsulfoxide (DMSO), separately. All three
esterase inhibitor solutions were stored at −80 ◦C until use.

2.4. Sample Preparation

After thawing at 4 ◦C, 50 µL aliquots of calibration standards, QC samples, and actual plasma
samples were spiked with 25 µL IS working solution. Thereafter, 250 µL acetonitrile containing 0.1%
acetic acid (AA) was added. The mixture was vortexed for 5 min and then centrifuged at 15,000× g
for 10 min at 4 ◦C. Subsequently, 200 µL of the supernatant was aspirated and evaporated to dryness
under nitrogen flow at 4 ◦C. The dry extracts were reconstituted in 100 µL ACN–water (9:1, v/v) and
used for LC-MS/MS analysis.

2.5. Stability Evaluation in Dog Whole Blood and Plasma

The stability of KD in fresh dog whole blood and plasma was studied by decreasing pH, lowering
temperature, and adding different esterase inhibitors. All experiments were performed in triplicate
using three different lots of fresh dog whole blood or plasma. To decrease the pH of the matrixes,
1% formic acid (FA) or 1% AA was individually added to the fresh blank whole blood or plasma with
a ratio of 1:9. Likewise, DDVP, NaF, and PMSF were separately added to fresh blank whole blood
or plasma to obtain a final concentration of 50 mM. After 5 min pre-incubation, KD was spiked with
pretreated whole blood or plasma to obtain final concentrations of 15, 150, and 1500 ng/mL. The whole
blood mixture was maintained at room temperature or on wet ice for 2 h except for samples of time
zero, which were centrifuged immediately to collect plasma, while the plasma mixture was maintained
at room temperature or on wet ice for 0, 2, and 6 h. Then, the obtained plasma samples were cleaned
up using the previously mentioned sample preparation procedures. The remaining percentage of KD
was calculated by dividing the plasma concentration of KD under different incubation conditions by
the concentration of time zero samples [13].

2.6. Method Validation

The method validation was conducted according to FDA’s Guidance for Bioanalytical Method
Validation. Specificity, the limit of detection (LOD), lower limit of quantification (LLOQ), calibration
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curve, accuracy, precision, recovery, matrix effect, carry-over, stability, and dilution integrity were all
investigated [14].

The specificity was assessed by comparing the blank dog plasma chromatograms achieved from
six different sources with that of plasma spiked with KD at the LLOQ level to exclude interfering peaks
at the retention times of KD and IS. LOD was defined as the concentration that produced a signal three
times above the noise level. LLOQ was defined as the lowest concentration with acceptable accuracy
and precision with a signal-to-noise ratio above 5. The calibration curves were assayed and constructed
in three different batches by plotting the peak area ratios of the analyte to IS against the nominal
concentrations using a 1/x2 weighting scheme. The deviations of each backcalculated concentration
should be within 85–115% of the nominal values except for LLOQ, for which 80–120% was permitted.
Intra-day and inter-day accuracy and precision were assessed by analyzing six replicates of LLOQ
and QC samples on three different runs. The extraction recovery was evaluated from the ratio of the
mean peak areas of six replicates of extracted QC samples compared with those of post spiked blank
plasma samples with the equivalent concentration of analyte and IS. The matrix effect was determined
by calculating the ratio of the mean analyte peak areas of the post spiked QC samples to the response
from the same concentration in ACN–water (1:1, v/v). Carry-over was investigated by analyzing one
blank plasma sample after the highest concentration of calibration standard.

The stability of stock solutions (2.5 mg/mL for KD and 1 mg/mL for IS) and working solutions
(125 and 50,000 ng/mL for KD and 500 ng/mL for IS) was evaluated at room temperature for 6 h and
at −80 ◦C for 31 days. The matrix stability was evaluated from three replicates of each QC sample
stored in different conditions using freshly prepared calibration standards. The QC samples were
analyzed after storage on wet ice for 2 h (short-term stability) and at −80 ◦C for 21 days (long-term
stability). The freeze–thaw stability was determined after freezing at −80 ◦C and thawing on wet ice
for three cycles. To evaluate the post-preparative stability, QC samples were analyzed after being held
in the autosampler for 24 h at 4 ◦C. The samples for stability evaluation were considered stable if the
deviation was within ±15% of the nominal concentration.

The dilution integrity was evaluated by diluting plasma samples spiked at 16,000 ng/mL with
blank dog plasma with a ratio of 1:9 to a final concentration of 1600 ng/mL. The dilution integrity was
considered acceptable if the precision was within 15% and the accuracy was within 85–115%.

2.7. Pharmacokinetic and Bioavailability Study of KD in Beagle Dogs

The validated method was applied to a preclinical pharmacokinetic and bioavailability study
of KD in beagle dogs following intravenous and oral administration. The study protocol (Project ID:
HUST-D-201802004) was approved on 5 March 2018 by the Animal Ethics Committee in Tongji Medical
College, Huazhong University of Science and Technology (Wuhan, China). Six beagle dogs (3 males
and 3 females) weighing 10.0 ± 2.0 kg were purchased from Ruikesen Experimental Animal Co.,
Ltd. (Wuhan, China). All dogs were individually housed at a temperature of 25 ◦C and 50% relative
humidity under a 12 h light/dark cycle. A laboratory standard diet and water were provided ad libitum.
After overnight fasting with unlimited access to water, the six beagle dogs were randomly divided
into two groups. One group was intravenously injected via lateral saphenous vein with 3 mg/kg
KD, while the other group was given a single oral dose of 3 mg/kg KD. After a 7-day washout
period, each group received the other treatment. For intravenous administration, blood samples
(approximately 1 mL) were collected via cephalic vein into 3 mL K2EDTA-containing vacutainer tubes
at pre-dose and at 0.083, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, and 5 h after administration. For oral
administration, blood samples (approximately 1 mL) were collected at pre-dose and at 0.25, 0.5, 0.75, 1,
1.25, 1.5, 2, 2.5, 3, 4, 5, 6, and 7 h post-dose. Blood samples were maintained on wet ice and centrifuged
under 4 ◦C at 3500 × g for 5 min to obtain plasma. Plasma samples were immediately transferred to
pre-cooled plastic Eppendorf tubes and stored at −80 ◦C until analyzed.



Pharmaceutics 2018, 10, 87 5 of 13

2.8. Pharmacokinetic Parameter Calculation

The pharmacokinetic parameters were calculated using noncompartmental analysis by Phoenix
WinNonlin software (Version 6.4, Pharsight Corporation, Princeton, NC, USA). The maximum
plasma concentration (Cmax) and time to reach Cmax (Tmax) were obtained directly from the plasma
concentration time course. The area under the plasma concentration versus time curve (AUC) from time
zero to the last measured time point (AUC0–t) and from time zero to infinity (AUC0–∞) were estimated
using the log-linear trapezoidal rule, while the elimination half-life (t1/2), the total body clearance (CL),
and the apparent volume of distribution (Vd) were processed by Phoenix WinNonlin software. Oral
bioavailability (F) was calculated using the formula F = (AUCpo/AUCiv) × (Doseiv/Dosepo).

2.9. Statistical Analyses

Statistical analyses were carried out using GraphPad Prism 6.0 (GraphPad Software Inc., USA).
Differences between the two groups were analyzed using Student’s t-test. A value p <0.05 was
considered statistically significant.

3. Results and Discussion

3.1. Method Optimization

The mass spectrometric (MS) parameters were optimized to maximize the MS response. By direct
infusion of 100 ng/mL KD or IS neat solution prepared in ACN–water (1:1, v/v), MS spectra revealed
peaks for the most abundant protonated molecular ions [M + H]+ m/z 265.2 and 174.0 under positive
mode for KD and IS, respectively. In the product scan mass spectrum, the major fragment ions observed
in each product spectrum were m/z 102.9 and 128.0 for KD and IS, respectively. The chemical structure
and characteristic diagnostic product ions of KD and IS are presented in Figure 1.
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The chromatographic conditions including column type, mobile phase composition, and gradient
profile were optimized for improved analyte retention and chromatographic peak shape on the basis
of the previously published method [11]. As expected, poor retention on reversed-phase C18 and
C8 columns is one of the most challenging issues to determine highly polar compounds such as
KD. Therefore, an HILIC column was used because of its better retention for KD. Different from the
previous method, at least 5% polar solvent was maintained in the whole gradient condition to ensure
that silica particles were hydrated. Moreover, 5 mM ammonium acetate in water adjusted to pH 3.0
using acetic acid instead of 0.1% formic acid in distilled water was employed as the aqueous phase to
improve the analytical reproducibility and peak shape of KD during LC-MS/MS analysis.

The previously published method employed an acidified mixture of acetonitrile and methanol
as the precipitating solvent. However, the resultant supernatant directly obtained after precipitation
was found to be inappropriate due to the bad peak shape of the analyte (data not shown). Since
chromatographic behavior on HILIC columns was readily affected by the sample solvent, sample
clean-up was further optimized in the current assay. Compared with the previously reported sample
treatment method, a procedure including evaporation to dryness under nitrogen flow at 4 ◦C followed
by reconstitution in ACN–water (9:1, v/v) was employed to achieve a better peak shape for KD.

As for the choice of the internal standard, a stable-isotope-labeled IS of the analyte is preferred
for LC-MS/MS analysis. However, such IS of KD is not commercially available. Several compounds
with high polarity such as isoorientin and galuteolin were tried first. The retention time of these two
compounds was close to that of KD, but significant ion suppression was observed for isoorientin and
galuteolin (data not shown). Nicotine, a liquid alkaloid used as an internal standard in the previously
reported analytical method, was also found to be unsuitable under our evaporation procedure due to
its high vapor pressure. It may cause cross-contamination, losses during the evaporation processes,
and ubiquitous presence at low but measurable levels in biological samples [15]. The function group
(alicyclic amine) of nicotine contains a lone pair of electrons on the nitrogen atom and may suffer
stability issues in biological samples [16]. Besides this, the retention behavior of nicotine is not similar
to that of KD under the current chromatographic condition. Since amino acid possesses high polarity
and it could be retained on the HILIC column, L-phenyl-d5-alanine-2,3,3-d3, a deuterium-labeled
amino acid, was tested as the IS. The ionization efficiency of KD and L-phenyl-d5-alanine-2,3,3-d3 was
different, but the main purpose of utilizing ISs in LC-MS/MS bioanalysis was to improve the accuracy
and precision of quantitation as well as the robustness of bioanalytical methods. In the current method,
both the matrix factor and the IS-normalized matrix factor of KD were close to 1.0, which indicated
that there were no co-eluting matrix components that impacted the ionization efficiency of KD.
Furthermore, the recovery of KD was consistent with that of IS. Finally, L-phenyl-d5-alanine-2,3,3-d3,
a deuterium-labeled amino acid, was selected as IS due to the similar retention behavior and no
appreciable matrix effect.

3.2. Stability Evaluation of KD in Dog Whole Blood and Plasma

KD has been proven to be unstable in rat plasma (ex vivo), most probably owing to a lactone group
in the aglycone ring [11]. Lactone-containing compounds were proved to undergo both chemical
hydrolysis and enzymatic breakdown caused by the action of esterases in matrixes [17,18]. Since
the stability of KD in dog whole blood and plasma remains unknown, the stability of KD in such
biological matrixes was systemically studied and several strategies including decreasing pH, lowering
temperature, and adding different esterase inhibitors were tried to overcome the stability issue of
KD. As expected, KD was found to be unstable in both dog whole blood and plasma. As shown
in Figure 2A, only 60% KD remained in dog whole blood after 2 h incubation at room temperature.
Moreover, pH controlling and addition of different esterase inhibitors had little effect on stabilizing
KD in dog whole blood when the samples were incubated at room temperature. Subsequently, whole
blood samples were incubated on wet ice using the same strategies to investigate the influence of
temperature on the stability of KD in dog whole blood. Interestingly, temperature played a more
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crucial role than did pH control and addition of esterase inhibitors in stabilizing KD in dog whole
blood. As shown in Figure 2B, around 90% KD remained after 2 h incubation on wet ice at three
different concentration levels. In addition to lowering temperature, which is a common strategy used
to stabilize analytes in biological matrixes [19], the addition of esterase inhibitors and adjusting pH
offer effective approaches to stabilize the ester-containing analytes. Unexpectedly, the combination of
different esterase inhibitors with wet ice reduced the remaining KD compared to the wet ice condition.
The most rational reason for this phenomenon might be that the addition of esterase inhibitors
such as PMSF could cause matrix effects and lead to ionization suppression [20]. Another plausible
explanation for the decreased remaining KD in whole blood might be an altered blood-to-plasma
distribution/partitioning process caused by esterase inhibitors [21,22]. Similarly, lowering pH by
either FA or AA did not have a synergistic effect on stabilizing KD in dog whole blood. Considering
the fact that pH significantly affects esterase activities compared with temperature [23], we proposed
that the major reason for instability of KD in dog whole blood was probably due to chemical hydrolysis
rather than esterase-mediated degradation. Therefore, neither adjusting pH to a certain level beyond
the enzymatic working pH window nor the addition of esterase inhibitors could effectively minimize
degradation of KD.
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Figure 2. Remaining percentage of kinsenoside in fresh beagle dog whole blood after 2 h incubation
under (A) room temperature and (B) wet ice conditions (n = 3). The red dash lines indicate the
stability criterion (85% of the nominal analyte concentrations). FA: formic acid; AA: acetic acid; DDVP:
2,2-Dichlorovinyl dimethyl phosphate; NaF: sodium fluoride; PMSF: phenylmethanesulfonyl fluoride.
* p < 0.05 compared with whole blood samples incubated on wet ice after 2 h.

The stability of KD in dog plasma was similarly investigated. Temperature was also found to play
a critical role in stabilizing KD in dog plasma. As shown in Figure 3A, lowering the temperature could
adequately stabilize KD in dog plasma for up to 2 h and more than 90% KD remained when the plasma
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samples were incubated on wet ice. Moreover, the stability of KD in neutral and acidified plasma was
similar. When the incubation time was prolonged up to 6 h, as shown in Figure 3B, the percentage
remaining of KD in neutral and acidified plasma samples incubated on wet ice was around 85%,
suggesting that both sample treatment time and temperature should be strictly controlled.
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incubation under room temperature and wet ice conditions (n = 3). The red dash lines indicate the
stability criterion (85% of the nominal analyte concentrations). FA: formic acid; AA: acetic acid; DDVP:
2,2-Dichlorovinyl dimethyl phosphate; NaF: sodium fluoride; PMSF: phenylmethanesulfonyl fluoride.
* p < 0.05 compared with plasma samples incubated on wet ice after 2 h; # p < 0.05 compared with
plasma samples incubated on wet ice after 6 h.

3.3. Method Validation

The specificity was evaluated by comparing chromatograms of six different lots of blank dog
plasma with corresponding blank samples spiked with the analyte and the IS at the LLOQ level.
No interfering peaks were observed at the retention time of both analyte and IS. The typical
chromatograms of extracted blank dog plasma, processed samples spiked with the analyte, and the
IS at the LLOQ level as well as plasma sample obtained 1 h after intravenous administration of
3 mg/kg of KD are shown in Figure 4. The LOD and LLOQ were found to be 2 and 5 ng/mL,
respectively. The calibration curves were linear over the concentration range of 5–2000 ng/mL for KD.
The correlation coefficients for all calibration curves were >0.99. The deviation of the backcalculated
values from the nominal standard concentrations were less than 15%.
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The accuracy and precision data of the method are summarized in Table 1. The intra-day accuracy
and precision were 97.43–103.67% and≤5.02%, respectively, while the inter-day accuracy and precision
were 96.78–104.07% and ≤5.52%, respectively. The results of both accuracy and precision were all
within the acceptance criteria, which confirmed that this assay was reproducible and reliable for
quantification of KD in dog plasma samples. A summary of extraction recoveries and matrix effects of
the analyte is shown in Table 2. The recovery of KD at all QC levels ranged from 79.92% to 86.14%.
Furthermore, satisfactory results of matrix effect were obtained for the analyte. The extraction recovery
and matrix effect of IS were found to be 84.75% and 97.55%, respectively. Therefore, no co-eluting
substance influenced the ionization of the analyte and IS. No carry-over was observed after analysis of
the highest concentration of calibration standard (data not shown). The accuracy and precision of the
dilution integrity indicated that dilution with blank plasma did not affect accurate determination of
samples with concentration above the limit of quantification (data not shown).

Table 1. Intra-day and inter-day accuracy and precision of kinsenoside in beagle dog plasma.

Run Nominal Conc. (ng/mL) Calculated Conc. (ng/mL) Accuracy (%) Precision (% RSD)

Intra-day
(n = 6)

5 4.87 ± 0.19 97.43 3.82
15 15.55 ± 0.71 103.67 4.54

150 154.50 ± 7.76 103.00 5.02
1500 1595.00 ± 41.93 100.78 4.67

Inter-day
(n = 18)

5 4.84 ± 0.27 96.78 5.52
15 15.61 ± 0.68 104.07 4.34

150 152.61 ± 7.62 101.74 4.99
1500 1547.78 ± 66.13 103.19 4.27
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Table 2. The recovery and matrix effect of kinsenoside and internal standard.

Compound Nominal Conc.
(ng/mL)

Extraction Recovery (n = 6) Matrix Effect (n = 6)

Mean (%) RSD (%) Mean (%) RSD (%)

kinsenoside
15 79.92 3.67 93.01 5.66
150 86.14 5.81 101.49 3.71

1500 80.90 3.17 95.27 3.08

IS 500 84.75 4.88 97.55 4.44

The stability test results showed that the plasma samples were stable on wet ice for 2 h, at −80 ◦C
for 21 days, and after three cycles of freezing and thawing (Table 3). There was also no significant
degradation during the storage of processed samples in the autosampler for 24 h. All stock and
working solutions were found to be stable in ACN–water (1:1, v/v) under their corresponding storage
conditions (data not shown).

Table 3. Summary of kinsenoside stability in beagle dog plasma under various storage conditions
(n = 3).

Stability Nominal Conc.
(ng/mL)

Calculated Conc.
(ng/mL)

Accuracy
(%)

Plasma samples on wet
ice for 2 h

15 14.27 ± 0.74 95.11
150 140.80 ± 2.98 93.87
1500 1374.13 ± 24.63 91.61

Plasma samples stored at
−80 ◦C for 21 days

15 13.63 ± 0.36 90.89
150 137.67 ± 2.62 91.78
1500 1406.67 ± 26.25 93.78

Plasma samples after
three freeze–thaw cycles

15 13.43 ± 0.46 89.53
150 136.33 ± 4.50 90.89
1500 1386.67 ± 24.94 92.44

Post-preparative samples
stored at 4 ◦C for 24 h

15 13.42 ± 0.37 89.47
150 137.50 ± 4.99 91.67
1500 1333.33 ± 34.60 88.89

3.4. Preclinical Bioavailability Study

The plasma concentration–time profiles of KD following intravenous and oral administration
are presented in Figure 5. Since plasma samples collected from the intravenous group at 0.083, 0.25,
0.5, and 0.75 h were above the upper limit of quantification, such samples were diluted 10-fold with
blank dog plasma prior to LC-MS/MS analysis. The major pharmacokinetic parameters are listed
in Table 4. After an oral dose of 3 mg/kg, KD was quickly absorbed and the Cmax was reached at
around 1.04 h, followed by a rapid elimination with a half-life of 0.915 h. The mean AUC0-t values
were 6820 and 1880 ng·min/mL for intravenous and oral doses of 3 mg/kg KD. Based upon such data,
the bioavailability of KD following oral administration (3 mg/kg) was found to be 27.6%. Compared
with those of the majority of extensively researched isoflavone glycosides, the bioavailability of KD
was at least 4-fold higher [24–26]. One of the plausible reasons for this is that KD has been reported
to be stable against liver microsomal enzyme-associated metabolism, indicating that KD was not
readily metabolized in the liver and, thus, a greater fraction of KD could reach the general circulation
unchanged [10]. Another possible reason might be that KD lacks intestinal metabolism and possesses
excellent absorption through the gastrointestinal tract. Although this study provides the groundwork
for knowing the oral bioavailability of KD, comprehensive studies are required to further investigate
absorption, distribution, metabolism, and excretion processes in preclinical animal models.
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Table 4. Major pharmacokinetic parameters in beagle dogs following intravenous or oral administration
of kinsenoside at a dose of 3 mg/kg.

Pharmacokinetic Parameter Intravenous Group Oral Group

AUC0–t (ng·h/mL) 6820 ± 295 1880 ± 17.6
AUC0–∞ (ng·h/mL) 6830 ± 295 1910 ± 42.5

Cmax (ng/mL) 11,400 ± 996 965 ± 59.7
Tmax (h) 0.0833 1.04 ± 0.102
λz (1/h) 1.47 ± 0.0404 0.764 ± 0.0737
t1/2 (h) 0.47 ± 0.0130 0.915 ± 0.0940

CL (mL/h/kg) 440 ± 18.7 NA
Vd (mL/kg) 300 ± 17.1 NA

Bioavailability NA 27.6%

NA, Not applicable.

4. Conclusions

An improved LC-MS/MS method for the determination of KD in dog plasma was reported after
elaborate investigation of analyte stability as well as intensive optimization of sample preparation
and chromatographic conditions. The stability of KD in beagle dog whole blood and plasma was
systematically evaluated. Using optimized sample preparation and chromatographic conditions,
the bioanalytical method was validated and successfully applied to preclinical pharmacokinetic and
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bioavailability study of KD in beagle dogs. The bioavailability of KD after oral administration was
reported for the first time. In summary, this study provides valuable pharmacokinetic information for
the development of a suitable dosage form of KD.
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