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Abstract: Over the past decades, a large number of drugs as well as drug candidates with poor
dissolution characteristics have been witnessed, which invokes great interest in enabling formulation
of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification
system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be
broken through. Minimizing a drug’s size is an effective means to increase its dissolution and
hence the bioavailability, which can be achieved by specialized dispersion techniques. This article
reviews the most commonly used dispersion techniques for pharmaceutical processing that can
practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests
focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion
(drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or
capsulizing), covering the formulation development, preparative technique and potential applications
for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug
such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed.
Various dispersion techniques provide a productive platform for addressing the formulation challenge
of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be
successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach
to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse
the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged
to develop for formulation of poorly water-soluble drugs.
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1. Introduction

Drugs with poor aqueous solubility are still an ongoing challenge in the successful formulation of
therapeutic products due to their low oral bioavailability. It is a hard nut to crack that has discouraged
pharmaceutical practitioners for many years. In the 1990s; the biopharmaceutical classification system
(BCS) was introduced to characterize various drugs according to their solubility and permeability [1].
It reports that over 70% of drugs and active entities are poorly water-soluble compounds (BCS II or BCS
IV) due to the considerable involvement of high throughput screening and combinatorial chemistry [2].
These active pharmaceutical ingredients (APIs) often suffer from formulation challenges because of
limited dissolution and/or low permeability. Accordingly; applicable formulation techniques are
highly aspired to improve the apparent solubility or dissolution of poorly soluble drugs and thus
enable them become bioavailable.
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A variety of formulation strategies have been explored to overcome the poor aqueous solubility of
drugs, including micronization [3], nanocrystalization [4], salification [5], cyclodextrin inclusion [6,7],
cocrystallization [8], micelle solubilization [9], solid dispersion [10], liquisolid technique [11], and
encapsulation in nanoparticles [12]. Generally, there are two methods to prepare nanodrug, namely
top-down and bottom-up techniques. The former is a straightforward approach to reducing a drug’s
size by the mechanical force (grinding or crushing); the latter is a simple and self-dispersion process
where the drug is embedded or dissolved in carrier excipients/vehicles in molecular or amorphous
state by solubilization or self-assembly [13]. Of course, recrystallization from molecular solution by
antisolvent precipitation also represents a bottom-up technique for preparing drug nanocrystals [14].
However, the products produced by the top-down technique tend to result in broad size distribution
and insufficient physical stability due to potential Ostwald ripening, which limits its potential
application of this technique. The bottom-up technique, dispersion starting from molecules, almost can
maximize the dispersion of a drug and lead to more stable dispersion systems (amorphous, molecular
or colloidal). Therefore, the bottom-up dispersion technique represents the most promising approach
for pharmaceutical processing.

Pharmaceutical engineering involves all sorts of dispersion systems, including suspension system,
colloidal system and solution system, in which a drug can be dispersed by itself or in a solid matter,
a semisolid matter, a solvent or nanoparticles. Among these, solid dispersion (SDs), lipid-based
dispersion and liquisolid dispersion are well-developed and more commonly used pharmaceutical
dispersion techniques. These dispersion systems have been widely applied to formulation of poorly
water-soluble drugs to address the issues related to solubility and permeability. Solid dispersion
technology is a method of dispersing a drug in an inert carrier excipient (normally a water-soluble
polymer) in the solid form. This technique allows complete removal of drug crystallinity and molecular
dispersion of a poorly soluble drug in a hydrophilic polymeric carrier [15]. In solid dispersions, the
specific surface area of drug is dramatically amplified and the drug is always in high-energy state,
which greatly facilitates the dissolution. The performance of SDs as bioavailability enhancer has been
widely evaluated for different drugs with encouraging results [16]. Lipid-based formulations are a
series of preparations consisting of oils or lipids as basic excipients [17], in which the drug is highly
dispersed or completely solubilized in the lipophilic core. In addition to providing a supersaturated
drug concentration in the gastrointestinal tract, lipid formulations have the advantages of motivating
intestinal lymphatic drug transport and optimizing enterocyte-based drug transport and disposition
whereby to reduce the first-pass effect and increase the lipophilic drug’s absorption [18]. The potential
utility of lipid formulations as a means of bioavailability enhancer for poorly water-soluble drugs has
been critically reviewed [19,20].

Liquisolid system as a viable alternative to the conventionally used dispersion techniques for
dissolution and bioavailability improvement has received considerable attention in recent years [21].
Liquisolid formulations involve liquid medication in solid powdered form that possess a drug
delivery mechanism similar to soft capsules [22]. In the liquisolid systems, a drug is completely
dissolved in a non-volatile solvent and molecularly dispersed in suitable carrier and coating
materials. Liquisolid system breaks away from the constraint of Van der Waals’ attraction and
hydrophobic interaction between drug particulates, thus presenting the highest dispersibility and
physical stability among various dispersion systems. Better bioavailability for an orally administered
poorly water-soluble drug can be achieved through a liquisolid formulation since the drug is already in
solution. Of course, other dispersion techniques are also in active development, such as co-precipitation,
concomitant crystallization and inclusion complexation. These techniques provide flexible options to
tackle the low bioavailability of “problem” drugs caused by poor aqueous solubility.

In this article, a comprehensive survey on the use of solid dispersion, lipid-based solubilization
and liquisolid technique for dissolution and bioavailability enhancement of poor water-soluble
drugs are carried out. Specific aspects focus on the formulation development, excipient application,
preparative techniques and oral delivery efficiency of these dispersion-based formulations. In addition,
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other dispersion techniques that can improve the dissolution as well as bioavailability are also briefly
outlined. It is strongly recommended that these promising pharmaceutical dispersion techniques can
well serve for the development of oral dosage forms of poorly water-soluble drugs.

2. Interrelation between Dispersion and Drug Dissolution/Absorption

Dispersion is a technique resulting in a substance dispersed or embedded in another molecule or
continuous phase. A dispersion can be classified in a number of ways according to the size and the
state of dispersed matter. Generally, there are three main types of dispersions as depicted in Figure 1:
coarse dispersions (suspensions); colloidal dispersions (nanoparticles); and molecular dispersions
(true solution, liquid or solid state). The term “dispersion” does not involve covalent bonds, and
instead generates a reversible agglomerate containing two or more substances by van der Waals forces,
hydrogen bond, hydrophobic interaction and/or physical entanglement [23]. Dispersing a drug in
another material is an effective means to overcome the intermolecular force between drug molecules
and realize a quick dissolution.
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Figure 1. Dimension and physical properties of different kinds of dispersions.

Drug dissolution refers to a process that the interaction between drug molecules is displaced by the
one between the drug and dissolution medium [24]. If the intermolecular force between drug molecules
is prematurely minimized, the dissolution will be significantly speeded up. Weak interactions between
drug and carrier formed in dispersions not only well maintain the dispersion state of a drug in
a carrier, but also produce a higher internal energy between drug and carrier than between drug
molecules. This high-energy state greatly contributes to the drug dissolution. Drug dissolution
from formulations is particularly important for those drugs with a short absorption window, since
they might have passed their absorptive sites by the time they have dissolved. Dissolution is the
prerequisite of drug absorption by the gastrointestinal epithelia. Low aqueous solubility always results
in a slow drug dissolution rate in the coarse dispersion systems. Formulating poorly soluble drugs
into ultrafine dispersions can lower the energy barrier for dissolution in advance and thus enhance the
dissolution rate. For BCS II drugs, it is a feasible way to promote the oral absorption by preparing
dissolution-unconfined dispersions. However, for BCS IV drugs, it is not enough to improve the
absorption extent utilizing a dispersion strategy that merely overcomes the dissolution limit [25].
It must simultaneously surmount the dissolution and absorption barriers. Formulation techniques that
have the function of dispersion plus absorption-promoting effect are intrinsically required to develop.
In this respect, lipid-based formulations have demonstrated great potential in absorption betterment
due to high biocompatibility and interaction with the cell membrane [26]. Of course, lipid dispersions,
often in the form of nanoparticles, do not have to experience a dissolution process for subsequent
absorption. Anyhow, formulating a poorly soluble drug into eligible dispersions can create favorable
conditions for its dissolution and absorption.
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3. Solid Dispersion Technique

3.1. Solid Dispersions

Solid dispersions are a dispersion mixture of one or more active ingredients in an inert carrier at
the solid state prepared by melting, solvent, solvent-melting or other methods. The approaches used
for preparing SDs are referred as solid dispersion techniques. According to Noyes–Whitney equation,
the dissolution rate of a drug in a given medium depends on the concentration difference between
the dissolving interface and the bulk solution. For poorly water-soluble drugs, the dissolving rate
on the interface is positively associated with the particle size of drug, especially above 100 nm [27].
SDs can maximize the reduction of a drug‘s size by dispersing it in a large quantity of carrier excipient,
thus increasing the absorption area, hence the bioavailability. In SDs, the drug can be in presence as
molecular, amorphous, microcrystal or colloidal state (Figure 2), which is dependent on the formulation
and preparative process thereof. The high-energy or metastable state of drug in SDs makes it tend
to dissolve in a medium, as opposed to the bulk drug. Apart from drug solubilization, SDs can
also improve the gastrointestinal absorption of poorly soluble drugs by affecting the absorptive
epithelia, in particular those surfactant-based and absorption enhancer-containing SDs. Currently, the
scale-up manufacturing of SDs has no longer been a limitation factor that hinders their success to the
clinical application. SDs can either serve as a pharmaceutical intermediate used for preparation of
various dosage forms such as tablets, capsules and granules, or as a final pharmaceutical product,
e.g., pellets produced by one-step granulation in fluidized bed. During the past decades, there more
than ten commercial SDs-based products have been marketed [10]. SDs are presenting an inspiring
vision to solve the dissolution and bioavailability issues of poorly soluble drugs. Solid dispersion
technique is more suitable for those drugs with low viscosity, less hygroscopicity and high glass
transition temperature.
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3.2. Carrier Excipients of SDs

Carrier excipients play an essential role in formation of SDs, drug dissolution and absorption, and
stability of SDs. Pharmaceutical excipients that have been used for production of SDs are exhaustively
collected in Table 1. The carrier excipients of SDs are generally classified into low-molecular-weight
carriers, polymeric carriers and surfactant carriers [28]. They are highly water-soluble or hydrophilic
in nature in the case of poorly water-soluble drugs. In physical property, low-molecular-weight
carriers are generally crystalline (e.g., saccharides), amphiphilic copolymer carriers are semi-crystalline
(e.g., Poloxamer), and homopolymer carriers are amorphous, such as polyethylene glycol (PEG) and
polyvidone (PVP). In the early development of SDs, low-molecular-weight carriers were tentatively
used, such as urea, saccharides and organic acids. These carrier excipients have high requirements for
drug and solvent used. Moreover, the resulting SDs tend to become aging and unstable. In some cases,
the low-molecular-weight compounds such as glucose and lactose negatively affect the gastrointestinal
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absorption of API, since the body preferably takes up the nutrients rather than the non-nutritive
excipients. Compared to low-molecular-weight carriers, polymeric carriers possess larger molecular
weight that can afford higher dispersibility and stronger recrystallization inhibition for drugs. For this
end, polymeric carriers are currently widely used for the preparation of SDs, such as PEG, PVP and
hydroxypropylmethylcellulose (HPMC). Nevertheless, the high viscosity, plasticity and hygroscopicity
associated with macromolecules that make problems for production compromise their application in
SDs. Polymeric carriers, not including surfactants, have inadequate absorption-promoting effect for
poorly permeable drugs, which just provide necessary dispersibility. Carriers that possess a surfactant
property, beyond dispersion powder, have the advantage of increasing drug absorption through
interaction with the absorptive epithelia and inhibiting drug efflux transporters. To improve the
performance of polymeric carriers, copolymers and functionalized polymers (e.g., PEGylated polymers)
are developed for SDs. These novel carrier excipients are provided with excellent amphiphilicity,
formability, solubilization or absorption-promoting characteristics. Examples include fatty acid
macrogolglycerides (e.g., Gelucire 44/14 and Gelucire 50/13), poly(vinylpyrrolidone-co-vinyl acetate)
(PVP/VA), and poly(vinyl acetate-co-vinyl caprolactame-co-ethylene glycol) (Soluplus®).

Table 1. Summary of the commonly used excipients for preparation of solid dispersions.

Carrier Excipients Example Comments Reference

Saccharides

Sucrose
Glucose
Lactose

Dextrose

Ordinary dispersibility; having potential
effect on drug absorption. [29–33]

Alcohols Mannitol
Sorbitol

Ordinary dispersibility; weak
absorption-promoting effect.

[34,35]
[36]

Organic acids Citric acid
Tartaric acid

Effervescent dispersion;Simple dispersing
material, not applicable for acid-labile API.

[37,38]
[39]

Polyethylene glycol PEG 4000
PEG 6000

High dispersibility; able to solubilize drug
and delay aging of SDs.

[40]
[41,42]

Polyvidone PVP k15
PVP k30

High dispersibility; able to inhibit
recrystallization.

[42]
[23,43,44]

Cellulose derivative
HPMC
HPC
MC

High dispersibility; less plasticity and
hygroscopicity, easy to process.

[45,46]
[47,48]

[49]

Poly(oxyethylene–co
-oxypropylene)

Poloxamer 188
Poloxamer 407

High dispersibility; able to solubilize drug
and having absorption-promoting effect.

[50,51]
[52]

Carboxypolymethylene Carbopol 947
Carbopol 907

Ionic polymers; good dispersibility; rapid
drug release in the intestine.

[53]
[54]

Polyoxyethylene stearate Polyoxyethylene (40)
stearate

Fine dispersibility; contribute less to
dissolution; used rarely. [55]

Fatty acid macrogolglycerides Gelucire 44/14
Gelucire 50/13

Functional dispersing materials; either able
to enhance dissolution or to promote

drug absorption.

[56,57]
[58,59]

Poly(vinylpyrrolidone-co-vinyl
acetate) PVP/VA Fine dispersibility but low hygroscopicity;

superior to PVP in function. [60,61]

Poly(vinyl acetate-co-vinyl
caprolactame-co-ethylene glycol) Soluplus® Novel dispersing material; excellent

capability to form solid solution. [62,63]

Gelucire 44/14 and Gelucire 50/13 are non-ionic water dispersible surfactants composed
of well-characterized PEG-esters, a small glyceride fraction and free PEG, which are able to
self-emulsify upon contact with aqueous media, forming a fine dispersion [64]. The surface
activity of such PEGylated carriers can improve the solubility and wettability of API in vitro and
in vivo. Enhanced bioavailability was reported to be related with strong inhibition of P-glycoprotein
efflux and metabolizing enzyme CYP3A4 [65]. Furthermore, this kind of carriers have good
thermoplasticity suitable for use in the melt process. PVP/VA copolymers possesses proper flexibility,
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bioadhesion, water remoistenability and hardness, and have found usage in SDs as carrier excipient [60].
In comparison with PVP, PVP/VA has a lower hygroscopicity but higher bioadhesion, conferring it
easy processing and good absorption-promoting capacity. These advantages make it more suitable
for preparation of SDs for oral drug delivery. Soluplus®, a polyethylene glycol, polyvinyl acetate
and polyvinylcaprolactame-based graft copolymer, has been extensively investigated for preparation
of SDs [62,63]. Soluplus® is a transparent solid excipient and can form solid solutions with many
drugs [66]. Soluplus® is an innovative excipient that enables new levels of solubility and bioavailability
for poorly soluble APIs. Soluplus® shows superior performance in forming solid solutions in the hot
melt extrusion process thanks to its high flowability and excellent extrudability. The resulting solid
solution makes API available in a dissolved state, resulting in significantly enhanced bioavailability
in vivo. The products above-mentioned represents the latest development in carrier excipients of SDs,
which will become the dominant excipients for production of SDs in the future [67].

3.3. Preparative Processes of SDs

There are many kinds of techniques available for the production of SDs (Figure 3) [67], including
melting, solvent evaporation, solvent-melting, milling, spray-drying, hot-melt extrusion, supercritical
fluid processing, KinetiSol®, etc. Among these, some are applicable to scale-up production of SDs,
while others just can be implemented in the laboratory. In the following section, we give a brief
discussion on a variety of preparative processes involved in SDs.
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3.3.1. Melting Method

Melting method is the earliest technique used for SDs preparation proposed by Sekiguchi and
Obi in 1961. They prepared sulfathiazole SDs by melting the drug with urea and investigated the drug
absorption in the form of eutectic mixture [68]. In this process, drug and carrier are mixed evenly
and then heated to make all components molten. Subsequently, the molten materials are subjected
to quenching against a cold plate to obtain the congealed mass. Melting method is a straightforward
and solvent-free process that is suitable for heat-stable drugs. But, this technique possesses some
shortfalls such as high-temperature operation and difficulty in the later processing (e.g., product
harvesting and pulverization) that limits its success in industrial production. Nevertheless, melting
method can yet be regarded as a convenient preparative process for preliminary survey on the
suitability of solid dispersion if the candidate is thermostable. For example, Alhayali et al. prepared
ezetimibe/PVP/Poloxamer SDs by melt-quenching method [69]. The resulting SDs were more soluble
than that produced by spray-drying.
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3.3.2. Solvent Evaporation Method

Solvent evaporation method circumvents the suffering of high temperature, thus suitable for
heat-labile APIs. In this process, both drug and carrier are dissolved in organic solvent. After dissolving,
the solvent is evaporated using a special apparatus, rotatory evaporator. The solid mass is ground,
sieved and dried. It requires that the drug and selected carrier excipient can completely dissolve in
the solvent so as to form amorphous dispersions or solid solution. Of course, this approach likewise
confronts challenges from two aspects: to remove the residual solvent and to harvest the SDs. Ethanol is
the proposed solvent to use in the production of SDs. But, in some cases, other harmful solvents have
to be adopted in order to dissolve some water-insoluble drugs. If the issues of solvent residue and
product harvesting in the evaporator can be overcome, solvent evaporation method may after all
be accepted as workable technology for manufacturing SDs. With this technique, Dos Santos et al.
developed SDs of β-lapachone using PEG 6000 and PVP k30 as hydrophilic polymers and evaluated
the dissolution rate in aqueous medium [70].

3.3.3. Solvent-Melting Method

Solvent-melting method is an improvement to melting method and solvent evaporation method.
In this process, API is first dissolved in a small quantity of solvent and then added into the molten
carrier excipient. The solvent used can be removed through instant evaporation upon contacting
with the hot carrier or through an evaporator. This technique overcomes the disadvantages of high
temperature and the use of larger volume of solvent, which is suitable for moderately thermostable and
practically insoluble APIs. However, it also requires the therapeutic dose of API to be low. For instance,
Chen et al. prepared emulsified SDs containing docetaxel by three approaches, i.e., melting method,
solvent-melting method and solvent method [71]. It was shown that the dissolution of docetaxel from
SDs prepared by the solvent-melting method was higher than that prepared by the melting method.

3.3.4. Milling Method

Milling method, also known as co-grinding method, refers to a preparative process of SDs by
exploiting external mechanical power to knead the drug and carrier together. The drug and carrier are
physically mixed for some time in a blender and then charged into the chamber of a colloid mill or
fluid-energy mill to grind strongly with or without a small amount of solvent. The resulting dispersions
are collected, dried and pulverized ready for use. As an example, chlordiazepoxide and mannitol SDs were
produced by this method [72]. Of note, SDs prepared by this technique generally exhibit inferior dissolution
improvement than does the solvent evaporation or melting processes. Nevertheless, this technique is more
suitable for scale-up production of SDs, which can be easily carried out using a grind machine.

3.3.5. Spray-Drying Method

Spray-drying method refers to the preparation of SDs by dissolving or suspending the drug and
carrier in a common solvent or solvent mixture and then drying it in a hot air stream to remove the
solvent, which can be deemed as an improvement on the solvent method. Upon atomization, the
solvent promptly evaporates and SDs are formed simultaneously. Spray-drying method can directly
obtain SDs powders with good flowability or pellets by co-precipitating on the surface of blank beads
using fluid-bed coating. It can completely yield drugs in the amorphous or molecular state [23], though
sometimes drug crystallization partially takes place during the processing [73]. Spray-drying method
provides a high feasibility for scale-up production of SDs using spraying dryers, especially using a
fluidized equipment.

3.3.6. Supercritical Fluid Processing

Supercritical fluid (SCF) technology shows tremendous advantages and favorable operating
conditions (low temperature and high dissolving power), making the method more attractive for SDs



Pharmaceutics 2018, 10, 74 8 of 33

production. The most commonly used SCF for a variety of pharmaceutical applications is supercritical
carbon dioxide (CO2). Apart from lower critical temperature (Tc = 31.1 ◦C) and pressure (Pc = 73.8 bar),
CO2 is nontoxic, nonflammable and inexpensive for use. In general, two basic SCF techniques can be
utilized to prepare SDs [74], namely rapid expansion of supercritical solution (RESS) and gas antisolvent
precipitation (GAS). In RESS technique, a solution containing drug and carrier in the supercritical state
is expanded rapidly through a nozzle. Due to rapid changes in density and solvent power, the solution
becomes highly supersaturated and consequently SDs are immediately formed [75]. In GAS technique,
drug and carrier are first dissolved in an organic solvent in a vessel. The solution is then pressurized
with a supercritical fluid, resulting in precipitation of the solid as a fine powder upon solvent extraction
by SCF [76]. Yin et al. prepared itraconazole SDs with HPMC, Pluronic F-127 and L-ascorbic acid
using GAS in an attempt to enhance its dissolution and bioavailability [77]. Powder X-ray diffraction
and Fourier transform infrared spectra indicated that itraconazole existed as an amorphous state in
SDs. SCF technology provides a novel alternative approach to preparing SDs with high surface area,
excellent flowability property and low solvent residue. This technology is equally applicable for scale-up
production of SDs and can avoid most of the drawbacks associated with the routine methods.

3.3.7. Hot-Melt Extrusion

Hot-melt extrusion is a process of applying heat and pressure to melt a polymer or mixture and
force it through an orifice in a continuous process, which was introduced into the pharmaceutical field
for SDs manufacturing in 1980s. The drug/carrier mixture is simultaneously melted, homogenized and
then extruded with a twin-screw extruder. The resulting intermediates can be further processed into
conventional dosage forms, such as tablets and capsules. The prominent advantage of hot-melt
extrusion lies in the shorter subjection to high temperature, approximately for 1~2 min, which
secures APIs that are somewhat heat-labile. Hot-melt extrusion has been successfully explored for the
preparation of Soluplus®/artemisinin SDs [63]. Although artemisinin is a thermolabile drug, it can
be processed under 110 ◦C to produce the SDs. Hot-melt extrusion can be regarded as an innovation
toward the melting method, which reduces the difficulty of follow-up processing of SDs and is suitable
for mass production likewise.

3.3.8. KinetiSol® Technique

KinetiSol® technology represents a new processing paradigm for amorphous SDs, which can
satisfy some unmet needs. Poorly soluble drugs that have high melting point and low solubility in
organic solvents are becoming commonplace. KinetiSol® dispersing is a new fusion-based process that
has been developed to rapidly form SDs by exerting high shear and friction force without external
heat input [78]. It can be conducted in a custom built compounder designed for pharmaceutical
processing. The unit consists of a product containment vessel with a rotating shaft that has several
blades facing outward from it. During operation, the blades rotate at a high velocity that rapidly
processes the materials through the heat developed by shear and frictional motion of product within
the vessel. The fusion mode is unique among various possessing technologies of SDs where no
external energy input is required. This thermo-kinetic mixing is termed as KinetiSol® dispersing.
KinetiSol® dispersing rapidly transfers drug and polymer blends into a molten state that thoroughly
mixes the API with selected carrier excipient on a molecular level to achieve a single-phase amorphous
system. The real-time temperature of dispersions is monitored by a computer-controlled module.
Once reaching the designated end point, the molten material is immediately ejected from the unit.
The total processing time is generally less than 20 s, and elevated temperature is typically not more
than 5 s before discharge and cooling. KinetiSol® provides technical supplement to the hot-melt
extrusion and spray-drying processes when the API is thermally labile or unstable in organic solution.
For example, LaFountaine et al. utilized this technique to formulate ritonavir, a drug with thermal,
rheological and soluble limitations, into amorphous SDs using polyvinyl alcohol as carrier and
confirmed the feasibility of this processing for production of SDs [79]. KinetiSol® dispersing can be



Pharmaceutics 2018, 10, 74 9 of 33

operated semi-continuously in a custom built device with the product throughput up to 1000 kg/h.
Therefore, the technique is incredibly applicable to the commercial processing of SDs.

3.4. SDs-Based Dissolution and Bioavailability Enhancement

For poorly water-soluble drugs, especially BCS II ones, the limited step of gastrointestinal
absorption is the dissolution process of drugs from their preparations. According to Noyes-Whitney
equation, the dissolution rate is proportional to the surface area of dissolution. Reducing the particle size
or enhancing the dispersibility of drug is an effective means to increase the surface area of dissolution.
Solid dispersion technique not only can enhance the drug dispersibility, hence the surface area, but
also can result in a high-energy state of drug (e.g., amorphous, molecular or colloidal crystal state) that
largely facilitates the drug dissolution. In addition, some carrier excipients such as Poloxamer and
Gelucire have the abilities of promoting drug absorption and inhibiting drug efflux. These advantages
impart SDs excellent performances for oral delivery of various therapeutic agents [80].

Piperine, an alkaloid with poor water solubility, has been prepared into SDs with sorbitol, PEG
and PVP by solvent evaporation method [36]. Piperine SDs with three different kinds of carriers all
exhibited superior performance for enhancement of dissolution compared to physical mixtures and
pure piperine. The transformation from crystalline to amorphous form as well as the assistance of
hydrophilic carriers was assumed responsible for dissolution improvement. Deng et al. developed
SDs formulations using Pluronic F68 and PEG as carriers to enable the oral delivery of α-asarone, a
phytomedicine with poor solubility and bioavailability [81]. SDs prepared using hydrophilic polymers
significantly enhanced the dissolution in vitro and oral bioavailability in vivo of α-asarone, showing a
great potential for developing oral dosage form of α-asarone. In another example, SDs formulations
consisting of itraconazole and Soluplus®were produced by hot-melt extrusion [82]. Higher maximum
plasma concentration (Cmax) and area under plasma concentration-time curve (AUC) were achieved
through SDs after oral administration compared to the levels resulting from a marketed product
(Sporanox®). Efonidipine hydrochloride ethanolate (NZ-105) is a novel API with calcium antagonist
activity, but has a very low solubility in water. Otsuka et al. employed the microwave technology,
a modified melting method, to prepare NZ-105 SDs using hydroxypropyl methylcellulose acetate
succinate as a carrier and urea as an auxiliary component [83]. It was showed that SDs prepared through
such technique resulted in eightfold improvement in oral bioavailability compared with NZ-105 alone
in beagle dogs. These cases indicated that SDs as a dosage form or intermediate have become a viable
option for addressing the dissolution and bioavailability issues of poorly water-soluble drugs.

4. Lipid Dispersion Technique

Lipid dispersion refers to formation of nanoparticles using lipid excipients. Distinct from solid
dispersion, the products resulting from lipid excipients are generally in the form of liquid dispersion.
Even though solidified by spray-drying or lyophilization, they possess poor powder property, low
storage stability, and great difficulty to pulverize. Nonetheless, formulating drug into lipid carriers
represents an effective dispersion technique that can enhance the dispersibility of drug and create a
supersaturated concentration in the gastrointestinal lumen for drug absorption. Herein, it is obviously
inappropriate using the terms of solubility and dissolution to describe the dissolution characteristics
of lipid-formulated drugs. Solubilization and release turn into the descriptors to characterize the
drug lipid dispersions. Lipid dispersion technique is more applicable for formulation of highly
lipophilic, low-melting-point, and poorly permeable drugs. These drugs are easily prepared into lipid
nanoparticles with satisfactory physiochemical stability.

4.1. Lipid Dispersions Accomplished by Lipid Nanoparticles

Dispersion of drug can either be accomplished through excipient-free top-down (milling) and
bottom-up (recrystallizing) methods that forms drug nanocrystals [84], or through excipient-assisted
nanosizing that forms nanoparticles [85]. The drug dissolves or disperses in the hydrophobic



Pharmaceutics 2018, 10, 74 10 of 33

excipients followed by being formulated into a variety of lipid-based nano-formulations. In general,
the hydrophobic excipients are lipids or amphiphilic materials containing lipid moiety. A liquid
formulation containing nanoparticles or nanocarriers is normally termed as “nanosuspensions”,
too. From the viewpoint of dispersion, the nanosuspensions resemble the drug nanocrystals where
the difference is only that the drug is dispersed in the lipid core rather than in the bulk solution.
On the other hand, nanosuspensions can also be transferred into the solid modality by dehydration.
The solidified or dried products are the same as SDs made from polymers with respect to dispersibility.
Poorly water soluble drugs can completely form highly dispersed lipid dispersions with suitable
excipients. However, lipid dispersions both in the form of nanosuspensions and lyophilized state are
different from SDs with respect to drug release, absorption feature, processibility, usage and storage.
The most predominant difference is the drug transport process where drug release does not have to
take place for lipid dispersions and the active ingredient can be assimilated through nanocarriers or
reconstituted colloidal particles [86]. SDs accelerate the drug dissolution and absorption by improving
the apparent solubility and dissolving rate of drug, while lipid dispersions augment the surface
area for drug absorption by providing supersaturated drug concentration in the gastrointestinal
lumen (Figure 4). Lipid dispersion and solid dispersion achieve the same goal by different means.
Lipid-based formulations provide a straightforward and ready-to-use dispersion for drug absorption
that undergoes no disintegration and dissolution processes.
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4.2. Commonly Used Lipid Dispersion Systems

4.2.1. Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs) represent the first generation of lipid nanoparticles composed
of a high-melting-point solid lipid and a small number of surfactant, which are developed on the
base of from O/W emulsions [20]. SLNs present a solid state both at room and body temperature,
thus possessing high physical stability. They show multiple advantages as drug delivery system,
such as high drug loading, sustaining drug release, facilitating drug absorption, and ease of scale-up
production [87]. These features of SLNs make them more suitable for formulating poorly water-soluble
drugs to ameliorate their oral bioavailability. High-pressure homogenization (HPH) is the most
frequently used technique for the production of SLNs [88]. SLNs have become as a potential enhancer
of bioavailability for various poorly soluble drugs [26].

4.2.2. Nanostructured Lipid Carriers

SLNs exclusively involve solid lipids that have a high crystallinity in the lipid core, thus existing
potential drug expulsion upon storage [89]. The solid lipids typically exhibit low capacity of dissolving
poorly soluble drugs compared with liquid lipids. In this context, nanostructured lipid carriers (NLCs)
are invented to overcome the limitations associated with SLNs owing to the highly ordered structure.
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NLCs are derived from SLNs by incorporating spatially incompatible liquid lipid into the solid core.
The participation of liquid lipid creates an imperfect crystal matrix, resulting in higher drug loading
and drug/lipid compatibility [90]. Depending on superb solubilizing and dispersing capacities, NLCs
have turned into a promising nanocarrier and have been widely investigated for oral drug delivery [91].

4.2.3. Nanoemulsions

Pharmaceutical nanoemulsions are generally O/W emulsions in the nanometer scale made up
of oil phase, water phase, emulsifier, and a selected co-emulsifier. By virtue of facile preparation and
smaller particle size, nanoemulsions have been getting considerable attention in recent years as smart
drug delivery system [92]. The oil used in the nanoemulsions formulation is a liquid lipid, which
provides a great practicality for high load of poorly soluble drugs. Nanoemulsions can spontaneously
form in the presence of massive surfactants (~20% of the oil phase, w/w) [93]. The excellence in
particle size (<100 nm) renders nanoemulsions a high dispersibility for drug and a great surface
area for absorption. Nanoemulsions can either be water-containing formulation or water-free
formulation. An example as water-free formulation is the self-microemulsifying drug delivery system
(SEDDS), generally being developed into the dosage form of soft capsules [94]. Drug dispersing
(molecularly dissolving) in the oil phase of nanoemulsions is equivalent to dispersing in the solid
carrier. They just appear in different state and dispersibility, but have no substantial distinction.
Therefore, nanoemulsions containing liquid lipid (oil) are also a kind of efficient dispersing vehicle.

4.2.4. Liposomes and Phytosomes

Liposomes are spherical vesicles consisting of one or more bilayers formed by phospholipid
and cholesterol. Due to flexible controllability and good biocompatibility, liposomes have become a
talented drug delivery system, and several liposomal products are clinically available at present [95].
Liposomes not only can encapsulate hydrophilic molecules but also encapsulate hydrophobic
molecules [96–99], thanks to holding both aqueous cavity and hydrophobic bilayer in structure.
Among various preparative processes of liposomes, the film hydration method is the commonly used
and more mature technique. In the process of lipid film formation, the drug is utterly dispersed in the
lipid mixture. Liposomes as oral delivery vehicle have been extensively explored for a variety of active
therapeuticals and have shown a huge potential for enhancement of bioavailability [100].

Unlike liposomes, phytosomes are not vesicle-based drug carrier. They are phospholipid
dispersions containing a natural active ingredient [101]. Phytosomes are chemically conjugated
drug-phospholipid complexes prepared by reacting a botanical active ingredient with phospholipid
in an opportune solvent, which can be considered as novel entities [102]. The plant extracts or its
monomers are firmly bound to phosphatidylcholine, a main constituent of phospholipids, resulting in
a lipid compatible molecular complex. Phytosomes can significantly improve the pharmacokinetic
and pharmacodynamic profiles of phytomedicines compared to the unmodified modalities [103].
Phytosomes are originally developed for handling the water-soluble phytomedicines with poor oral
absorption due to their large molecular size and lack of lipophicity, but now not limited to water-soluble
active compounds. Some highly hydrophobic molecules have been successfully formulated into
phytosomes, such as silymarin [104], curcumin [105], and apigenin [106]. Phytosome technology has
been widely utilized to potentiate various active ingredients including phytomedicines and chemical
drugs, and has proven to be a useful tool for strengthening the potency of poorly water-soluble drugs.

4.3. Lipid Excipients

Lipids are substances consisting of fatty acids and their derivatives, including oils, fats, waxes,
sterols, monoglycerides, diglycerides, triglycerides, and phospholipids. Lipid-based drug delivery
systems are mostly constructed upon lipid vesicles or matrixes. The lipid excipients have abilities
to solubilize, disperse, encapsulate and stabilize lipophilic drugs that are poorly water-soluble in
nature, thus enhancing their bioavailability. The unique characteristics of lipid excipients have been
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motivating the pharmaceutical practitioners to develop various lipid-based formulations for coping
with challenges from compounds with inadequate solubility and permeability [107]. Apart from the
true solution and simple dosage forms, almost all colloidal dispersion systems are largely dependent
on the use of lipid excipients. For instance, in the formulation of emulsions, the hydrophilic drugs are
solubilized in the inner oil phase of emulsion droplets. In the case of liposomes, the hydrophilic drugs
are entrapped into the lipid bilayer of vesicles. In SLNs and NLCs, the hydrophilic drugs are dissolved
or dispersed in the lipid core of nanoparticles. For phytosomes, the natural compounds are physically
coupled or chemically conjugated with the phospholipids. Lipid excipients are generally inert, in vivo
biodegradable and biocompatible with the body, thus possessing high safety and accessibility for drug
delivery. Many kind of lipid excipients have been approved by the regulatory agency (Food and Drug
Administration, FDA) for use in pharmaceutical products [108]. Meanwhile, severe adverse reactions
have not been reported on lipid excipients or formulations as yet. Table 2 lists the commonly used
lipid excipients at large that are involved in the lipid-based formulations. With the advancement of
excipients, it will usher in the rapid development of lipid-based formulations to revitalize poorly
soluble and/or permeable drugs.

Table 2. Commonly used lipid excipients in lipid-based nanocarriers.

Lipid Excipient Chemical Carrier Type Comments Reference

Soybean oil Long-chain triglycerides Nanoemulsions;
NLCs

Liquid, high biocompatibility,
negligible physiological effect,

solubilizing capacity a little weak.
[109–112]

Olive oil Long-chain triglycerides Nanoemulsions;
NLCs

Liquid, good health benefits,
containing more monounsaturated

fatty acid, easy to emulsify.
[110,113–116]

Hemp oil
Medium/long-chain

triglycerides blended with
low-molecular-weight lipids

Nanoemulsions

Liquid; rich in essential fatty acids,
having tocopherols, tocotrienols,
phytosterols, phospholipids, etc.,

excellent hydrophilicity and
self-emulsifiability.

[93,117]

Caprylic/capric
triglycerides Medium-chain triglycerides Nanoemulsions;

NLCs

Liquid, fine solubilizing capacity,
good compatibility with other lipids,

easy to emulsify.
[118–123]

Captex® series
Medium/short-chain

triglycerides
Nanoemulsions;
SEDDS; NLCs

liquid, fine solubilizing and
emulsifying capacities, miscible with

other lipids.
[124–126]

Capmul MCM Medium-chain
mono/diglycerides

Nanoemulsions;
SEDDS; NLCs

Liquid, excellent solvent powder for
many organic compounds, can use

as emulsifier.
[127–130]

Capmul MCM C8 Glyceryl monocaprylate Nanoemulsions;
SEDDS; NLCs

Liquid, properties similar to that of
Capmul MCM. [131–133]

Maisine TM 35-1 Glyceryl monolinoleate SEDDS Liquid, solubilizer, bioavailability
enhancer, oil phase in SEDDS. [134–137]

PeceolTM Glyceryl monooleate SEDDS; NLCs;
Cubosomes;

Liquid, lipid dispersion agent,
oil-soluble surfactant, moisturizer. [138–140]

Lauroglycol® 90 Propylene glycol monolaurate Nanoemulsions;
SEDDS; NLCs

Liquid, water insoluble surfactant of
SEDDS, solubilizer, bioavailability

enhancer, skin penetration
solubilizer enhancer.

[141–143]

CapryolTM series
Propylene glycol
monocaprylate

Nanoemulsions;
SEDDS; NLCs

Liquid, properties similar to that of
Lauroglycol® 90. [144–146]

Labrafil M 1944 CS Oleoyl polyoxyl-6 glycerides Nanoemulsions;
SEDDS; NLCs

Liquid, water dispersible surfactant,
able to self-emulsify, good miscibility

with other lipids, bioavailability
enhancer, solubilizer, co-emulsifier.

[147–149]

Lecithin
Phosphatidylcholine blended
with a small amount of other

lipid components.

Liposomes;
phytosomes; sorts

of lipid
nanoparticles

Semi-solid, an amphiphilic lipid, used
as vesicles-forming material,

solubilizing, emulsifying, and
stabilizing agents.

[150–154]



Pharmaceutics 2018, 10, 74 13 of 33

Table 2. Cont.

Lipid Excipient Chemical Carrier Type Comments Reference

Gelucire® series

Lipid blends consisting of
mono-, di-, or triglycerides

and fatty acid
macrogolglycerides

SEDDS; SLNs;
NLCs

Semi-solid, non-ionic water soluble
surfactant for solid/semi-solid

dispersions and SEDDS,
bioavailability enhancer,

micelles-forming material,
solubilizing and wetting agent.

[146,155,156]

Monostearin Glyceryl monostearate SLNs; NLCs
Solid, lipid matrix for SLNs and

NLCs; thickening, solidifying and
control release adjusting agent.

[133,157]

Precirol® ATO 5 Glyceryl distearate SLNs; NLCs

Solid, lipid matrix for SLNs and
NLCs, hydrophobicity and melting

point greater than
glyceryl monostearate.

[158,159]

Compritol® 888
ATO

Glyceryl behenate SLNs; NLCs; solid
lipid dispersions

Solid, high melting point lipid, used
for preparation of SLNs and NLCs,
lipid matrix for sustained release,

used as atomized powders.

[160–162]

Trilaurin Glyceryl trilaurate SLNs; NLCs;
Solid, lipid matrix for SLNs and

NLCs, sustained release material,
thickening agent.

[163–165]

Cetyl palmitate Palmityl palmitate SLNs; NLCs; Solid, wax-like substance, used for
preparation of SLNs and NLCs. [166,167]

Tripalmitin Glyceryl tripalmitate SLNs; NLCs; Solid, as lipid matrix of SLNs and
NLCs, skin-conditioning agent. [168,169]

4.4. Lipid Nanocarriers-Based Enhancement of Bioavailability

The merits of lipid-based formulations for oral drug delivery have been profoundly
reviewed [2,107,170]. Lipid-based formulations, in most cases, are colloidal dispersion systems that
circumvent the rate-limiting steps of drug absorption related to conventional solid dosage forms, such
as tablets, capsules and granules. It does not require the formulations to disintegrate and dissolve for
drug absorption. Lipid-based formulations in the form of nanosuspensions provide a sufficiently large
surface for drug absorption in the gastrointestinal gut. Even being digested, they can also result in a
supersaturated drug concentration by way of reconstitution into micelles [171]. These characteristics create
favorable conditions for drug absorption. Oral bioavailability of lipophilic drugs such as itraconazole can
be improved even though they are co-administered with a fat-rich meal or vegetable oil. Lipid nanocarriers
have positive effects on drug absorption by making supersaturated drug concentration, preventing drug
precipitation, enhancing membrane permeability, inhibiting efflux transporters, reducing CYP enzymes,
providing bioadhesion to the absorptive epithelia, stimulating secretion of chylomicrons and improving
lymphatic transport [172]. As a result of lipid dispersion, it greatly augments the absorption rate and extent
of lipophilic drugs. Oral route is the most preferred option that patients take a medication. Taking full
advantage of the potential of lipid nanocarriers will enable some drug candidates that are normally
believed unpromising to stay away from suspension or abortion.

To ameliorate the oral bioavailability, various lipid nanocarriers have been explored for oral
delivery of poorly water-soluble drugs. For instance, Wang et al. utilized SLNs to orally delivery
sorafenib, an anticancer agent for hepatocarcinoma, in order to achieve a desirable liver targeting [173].
The designed sorafenib-loaded SLNs possessed a smaller particle size and high entrapment efficiency
and resulted in enhancement of drug selectivity and bioavailability after oral administration compared
with its suspensions. In our group, we developed different kinds of NLCs for the oral delivery of
oridonin and tripterine, two natural active ingredients. A biotin-modified NLCs formulation was first
investigated for its performance in bioavailability enhancement of oridonin [174]. Compared with the
common NLCs, biotin-modified NLCs apparently improved the absorption rate of oridonin rather than
absorption extent. However, both biotinylated NLCs and common NLCs significantly enhanced the
bioavailability of oridonin relative to the suspensions formulation. The second typical example is the
broccoli lipid-based NLCs for the oral delivery of tripterine. We extracted the lipidic components from
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broccoli using 1-octanol as solvent in an attempt to further the intestinal permeability of NLCs [175].
The results showed that the intestinal permeability and bioavailability of tripterine were largely
improved through such functional NLCs. Nanoemulsions, another representative lipid nanocarrier,
have also demonstrated a great potential in promoting oral absorption of poorly water-soluble drugs.
Yin et al. developed biocompatible nanoemulsions using hemp oil and less surfactants for the oral
delivery of baicalein [93], and Chavez-Zamudio et al. prepared lysophosphatidylcholine-stabilized
nanoemulsions for the oral delivery of curcumin [176]. The constructed nanoemulsion systems
unexceptionally enhanced the oral bioavailability of payloads in comparison with their coarse
dispersions. A nanoemulsion system loading dabigatran etexilate phospholipid complex was also
proposed for use to improve the lipophilicity and oral bioavailability of drug [177]. In terms of
liposomes, there were also some reports related to their use in the oral delivery of poorly water-soluble
drugs [100]. As an example, Rushmi et al. formulated black seed oil (Nigella sativa) into liposomes
using the ethanol injection method aiming to enhance the oral bioavailability and improve the
therapeutic activity of such analgesic in small animal studies of analgesia [178]. The in vivo studies
showed that the liposomal formulation demonstrated a significant analgesic activity in mice. In recent
years, phytosomes (phospholipid complexes) are also being widely used for oral drug delivery [103].
For example, Freag et al. developed self-assembled phytosomal nanocarriers for improving the
solubility and oral bioavailability of celastrol [151], and Telange et al. developed apigenin-loaded
phytosomes to improve the drug’s aqueous solubility, dissolution, in vivo bioavailability, and
antioxidant activity [106]. It demonstrates that phytosome technique is a promising and viable
formulation strategy for enhancing the delivery efficiency of poorly water-soluble drugs.

Although lipid carriers have been proven to be potential as oral delivery vehicles, it should
be noted that the lipolysis of lipid carriers substantially takes place in the gastrointestinal transport
process. As a matter of fact, the in vivo degradation of lipid nanoparticles is not contradictory with their
absorption-promoting effect, since lipids can facilitate drug absorption by co-transport and cytosis in the
form of intact nanoparticles or reconstituted micelles [20]. The in vivo lipolysis-reconstitution mechanism
of lipid nanocarriers have been confirmed by Wu’s laboratory utilizing an environment-responsive
probe [179,180]. The fact that water-quenched fluorescent dye encapsulated in lipid nanoparticles can
be rekindled by the reconstitution of lipolytic products after lipolysis of nanoparticles provides pivotal
evidence for the gastrointestinal disposition of lipid nanocarriers.

4.5. Translation of Liquid Lipid Dispersions into Solid Formulations

Lipid-based formulations are generally liquid preparations that have low physiochemical stability,
which will cause inconveniences for storage and quality control. Although lipid nanocarriers belong
to colloidal dispersion system, they are just stable on a short-term basis. When storing for a long time,
the phenomena of nanoparticle aggregation and precipitation would inevitably occur due to particle
collision and gravitational settling [181]. The stability study for lipid nanoparticles in literature is relatively
insufficient, and the investigation period for reserved samples is also short, oftentimes not more than
one month. For oral delivery, the physical instability of lipid dispersions is not a serious problem, unless
rancidity or contamination takes place in the formulation. However, in aqueous conditions, the lipid
excipients and drugs tend to deteriorate and degrade, resulting in harmful chemical molecules. In view of
safety and conveniences for storage and use, it is best to solidify the liquid preparations. Despite numerous
merits, one long-standing historical challenge for the practical application of lipid nanocarriers remains
unmet: redispersibility after drying. How to realize the translation of liquid lipid dispersions into solid
formulations has gotten into the research focus of nanomedicine [182].

4.5.1. Freeze Drying

Freeze drying is a practicable technique to settle the long-term storage of colloidal nanoparticles.
By removing the water from the aqueous dispersions, a dried form of lipid dispersions is harvested
whereby to improve the physiochemical stability of colloidal nanoparticles. Freeze drying of
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nanosuspensions not only requires consideration for the formulation factors, but also the lyophilization
process. The process conditions have a crucial effect on the stability of nanoparticles during and after freeze
drying. During lyophilization, the nanoparticles will be subjected to various stresses, such as particles
agglomeration and desiccation, which may be detrimental to the stability of nanoparticles. Therefore, a
proper cryoprotectant and optimized lyophilization process must be adopted so as to minimize damage to
the nanostructures. For example, Howard et al. tested nine kinds of cryoprotectants and different freeze
drying conditions to optimize lyophilization process of solid lipid nanoparticles loading dexamethasone
palmitate for improving the long-term stability [183]. The resulting lyophilized SLNs exhibited slightly
larger but acceptable particle size and polydispersity index. Drug loading and particle shape were well
maintained by lyophilization. The lyophilized SLNs possessed a consistent particle size and less drug
content loss during a three month period. To improve the dissolution and intestinal permeability of
diosmin, Freag et al. utilized the lyophilization technique to prepare diosmin-loaded phytosomes [184].
The lyophilized phytosomal nanocarriers exhibited the lowest particle size to 316 nm, adequate ζ-potential
for stabilization of colloidal particles, and good in vitro stability. Phytosomes obtained by freeze drying
significantly improved the drug’s dissolution and permeation characteristics. Freeze drying is proven to
be an effective means to achieve a long-term stability of lipid nanocarriers.

4.5.2. Spray Drying

Spray drying is proposed for use as a promising alternative to stabilize and preserve the colloidal
nanoparticles in a dried form. In spraying drying, the liquid is promptly evaporated when the liquid
lipid dispersions are sprayed into the hot air stream, in which solid micropowders such as starch and
aerosil or blank pellets are pre-charged. The nanoparticles immediately precipitate on the surface
of carriers upon water evaporation. This dehydration-solidification technique intended for lipid
nanoparticles is normally termed as nano spray drying [185,186]. It is worth noting that spray drying
of lipid nanoparticles must prevent particle adhesion, coalescence, and fusion. It requires the spray
speed, temperature and carrier excipients to be of optimal conditions. By controlling the processing
parameters precisely, the maintenance of colloidal characteristics of nanoparticles can be substantiated
through spray drying. For instance, Tian et al. investigated and characterized solidification of
nanostructured lipid carriers (NLCs) onto pellets by spray drying using a fluid-bed [187]. To achieve
good coating and redispersibility of nanoparticles, PVP k17 was used as the carrier dispersant to load
the solidified NLCs. It was found that reconstituted NLCs had spherical morphology similar to the
original modality, but had an augmented particle size. Nevertheless, both solidified NLCs and original
NLCs showed parallel in vitro lipolysis profiles and pharmacokinetics in beagle dogs. The study
indicates that spray drying is a practicable approach to solidifying lipid nanoparticles [188].

4.5.3. Self-Emulsifying

Self-emulsifying drug delivery systems (SEDDS) are emulsifiable water-free formulations made
up of oil and emulsifier with or without hydrophilic co-solvent. SEDDS are utilized to solve
low bioavailability issues of poorly soluble and highly permeable drugs [189]. Self-emulsifying
formulations can rapidly disperse in the gastrointestinal tract in contact with the digestive fluids
under the agitation of gastrointestinal peristalsis to spontaneously form nanoemulsions, so-called
in situ self-emulsification. SEDDS are physically stable formulations and can be manufactured into the
semisolid soft capsules (e.g., Sandimmun®) [190] or liquisolid tablets [191]. Water-free formulations
offer an opportunity to realize the commercial success of nanoemulsions.

4.5.4. Developing Liquisolid Hybrid Formulations

This approach converts liquid lipid nanoparticles into powdered form and then formulates them
into tablets or capsules, which differs from the following liquisolid system directly developed from
a drug solution. The liquid lipid dispersions must be concentrated to a relatively small volume that
can be fully adsorbed by additional adjuvants, such as microcrystalline cellulose (MCC) and aerosil.
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Liquisolid compact tablets or capsules can be obtained after lipid dispersions are loaded into adsorptive
excipients and form dry-looking, freely flowing and compressible powders. For example, Nnamani et al.
developed low-dose liquisolid tablets of artemether-lumefantrine (AL) from NLCs and estimated their
potential for oral delivery of AL in malariogenic Wistar mice [192]. The results highlighted that
AL-loaded NLCs could be further processed into oral tablets to improve the patient’s compliance.

5. Liquisolid Dispersion Technique

5.1. Overview of Liquisolid System

Molecular solution represents the highest dispersion of drug in a variety of formulations.
In SDs, a poorly water soluble drug can form solid solution with a suitable carrier excipient.
Solid pharmaceutical intermediates are readily processed into a final dosage form, such as tablets
and capsules. Accordingly, there should be a possibility by which liquid substances can be changed
into the solid form. Liquisolid dispersion technique is the right means to materialize solidification of
liquefied drug. A liquisolid system refers to formulation implemented by conversion of lipophilic drug
in a nonvolatile solvent into dry-looking, freely flowing and compressible powders by blending a drug
solution with adsorptive excipients followed by processing into suitable dosage forms (as illustrated
in Figure 5) [193]. The liquisolid system greatly maintains the molecular dispersion of candidate
drug and provides the most favorable dissolution condition, freely diffusing into the dissolution
medium. Therefore, the liquisolid system possesses a number of advantages: (1) drug dispersion in the
solid formulation as solubilized liquid form; (2) enabling solidification of liquid drug; (3) quicker drug
dissolution from formulations due to superior wettability and miscibility; (4) low cost of production; and
(5) liquisolid dispersions able to be developed either into immediately-release or into sustained-release
preparations. Besides these advantages, it requires the dose of drug for developing a liquisolid system
to be relatively low in order that the drug solution can be fully loaded within the solid carriers.
Liquisolid dispersion technique is becoming an innovative and promising formulation strategy that can
improve the dissolution and bioavailability of poorly water soluble drugs [194]. Liquisolid dispersion
technique is mainly implemented to enable the formulation of amphiphobic drugs. These drugs tend to
precipitate from carriers, even though they are temporarily entrapped in nanoparticles.
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5.2. Formulation Components of Liquisolid System

Liquisolid dispersion system is developed based on the principle of converting liquid medication into
freely flowing, readily compressible and apparently dry powders by physical adsorption using selected
excipients. In addition to common excipients involved in tablets or capsules, a liquisolid dispersion
system generally consists of non-volatile solvent, carrier material and coating material. The formulation
composition of a typical liquisolid system (e.g., liquisolid compact tablets) is generalized in Table 3.
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Table 3. Components generally involved in a liquisolid formulation.

Excipients Type Characteristics Function Examples Reference

Non-volatile solvent
Inert, water-miscible, compatible

with drug candidate, excellent
dissolving powder.

Non-volatile solvent acts as a solvent and
a binding agent in a liquisolid system.

PEG series; glycerin; propylene glycol;
polysorbate; Cremophor® EL;
Transcutol HP; CapryolTM 90;
2-pyrrolidone; Labrasol, etc.

[195–202]

Carrier material
Porous, large specific surface area,
sufficient adsorption ability, good
flowability and compressibility.

Carrier material plays a fundamental role
in forming the dry form of powders from

liquid medication.

Microcrystalline cellulose (MCC, e.g.,
Avicel®, Ceolus®, Vivapur®,
Emcocel®); lactose; mannitol;

Magnesium Aluminometasilicate
(Neusilin®); Dibasic calcium phosphate

anhydrous (Fujculin®);

[196,197,203–207]

Coating material Ultrafine and highly adsorptive
particles, good flow-aided effect.

Coating material contributes to covering
the wet surface of particles by adsorbing
excess liquid to ensure a good flowability

of powders.

Colloidal silicon dioxide (e.g., Aerosil®,
Cab-O-Sil® M5); Neusilin®; Calcium

Silicate (Florite®)
[195,196,204,208,209]

Other adjuvants
Disintegrant, lubricant, release

modifiers, flavoring and coloring
agents, etc.

The selected adjuvants can improve the
quality of solid dosage forms.

Sodium starch glycolate (CMS-Na);
crospovidone; L-HPC; PVP k25; PEG

6000; HPMC; Eudragit.
[22,210]
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Non-volatile solvent used in liquisolid systems should be inert, lowly viscous, preferably
water-miscible and meanwhile have a strong solvent power as liquid vehicle. Various solvents with
high boiling point are explored for the formulation of liquisolid systems, including PEG, propylene
glycol, glycerin, and polysorbate. The non-volatile solvent simultaneously acts as a solvent and a
binding agent in the liquisolid formulation. It has been shown that the solvent had a significant effect
on drug release from the liquisolid system [211]. For rapid-release purpose, a liquid vehicle in which
the API is most soluble is normally selected. In the case of sustained-release preparation, the solvent
with a highly viscosity is usually used to dissolve the drug, such as glycerin and Cremophor® EL.
Of course, other hydrophilic or amphipathic solvents such as Transcutol®, Solutol® and Labrasol® are
also oftentimes involved in the liquisolid systems.

In the liquisolid system, carrier materials play the key role in gaining the dry form of
powders from the solubilized liquid drug. Carrier materials mainly contribute to liquid adsorption.
It requires that the carrier should be porous and possess large enough specific surface area
(SSA) [212]. Carrier selection depends on its liquid adsorption capacity, flowability of powders
and compressibility. The most commonly used carriers in liquisolid formulations include MCC (e.g.,
Avicel® and Ceolus®), lactose, sorbitol, anhydrous dibasic calcium phosphate (Fujicalin®), amorphous
magnesium aluminometasilicate (Neusilin®), etc. Among these, Fujicalin® and Neusilin® represent the
newly-developed carrier materials, which exhibit especially large SSA, up to 40 m2/g and 300 m2/g,
respectively [210]. Neusilin® not only can be used as a carrier material, but also function as a coating
material by virtue of excellent adsorption and flowability properties [204].

Coating material plays a key role in covering the wet carrier particles to form dry-looking and
freely flowing powders. It should be a material possessing fine and highly adsorptive micropowders
that can adsorb excess liquid to ensure good flowability of the admixture. In the liquisolid system,
coating material and carrier material must be used in conjunction in order to enhance the flowing
and compressing properties of powders as illustrated in Figure 6. Currently, the most commonly
used coating material in the liquisolid formulation is colloidal silicon dioxide, such as Aerosil® and
Cab-O-Sil® M5. Amorphous silica gel (e.g., Syloid®), Neusilin®, calcium silicate (Florite®) and ordered
mesoporous silicates that have suitable flowability and compressibility can also be used to prepare
liquisolid formulation [11].
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Apart from non-volatile solvent, carrier and coating materials, the liquisolid system usually use
some other additives to develop solid dosage forms. Tablets or capsules normally experience the
disintegration process before dissolution. Therefore, disintegrants such as sodium starch glycolate,
croscarmellose sodium, and low-substituted hydroxypropyl cellulose (L-HPC) are generally included
in liquisolid formulation to allow a fast disintegration. In addition, release modifier (e.g., HPMC) and
crystal growth inhibitor (e.g., PVP) are frequently contained in the liquisolid compact tablets [203,213].
These additives improve the dissolution profile and physical stability of liquisolid systems.
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5.3. Preparation of Liquisolid Compacts

A given powder can only retain limited amount of liquid medication while maintaining acceptable
flowability and compressibility. Before preparation, it generally performs the pre-formulation studies,
including solubility study, determining the flowable liquid retention potential (Φ-value), calculating
the liquid load factor (Lf), and measuring the repose angle of admixture. Theory on liquisolid system
was developed in 1992 by Spireas and his colleagues based on the concept of powdered solution [214].

According to the pre-formulation’s information, the candidate drug is dissolved in the required
quantity of nonvolatile solvent, and then the resulting drug solution is incorporated into the calculated
amounts of carrier and coating materials. Generally, the mixing process is carried out in three steps as
proposed by Spireas and Bolton [215]. During the first stage, the liquid medication and carrier material
were mixed using a blender at a speed of 60 rpm for 1 min around in order to evenly distribute the
liquid mixture in the powders. Afterwards, the coating material in calculated amount is added and
blended homogeneously. In the second stage, the resulting admixture was evenly spread as a uniform
layer on the surfaces of a mortar and left standing for approximately 5 min to facilitate a complete
adsorption of liquid medication by the powder particles. In the third stage, the powders were scraped
off from the mortar surface and then blended with a suitable disintegrant at a higher rate for another
several minutes. Finally, the prepared liquisolid system that has been subjected to critical evaluation
for flowability and compressibility can be further compressed or encapsulated into a specific solid
dosage form [216].

5.4. Liquisolid System-Based Enhancement of Dissolution and Bioavailability

Liquisolid dispersion technique has been widely used to improve the dissolution and
bioavailability of poorly water-soluble drugs with a low dose [210]. A liquisolid formulation
allows an insoluble drug to be solubilized, almost molecularly dispersed in a solid dosage form,
which greatly enhances the dissolution rate of solubility-limiting drugs due to ameliorative wetting
property and dissolution surface area, hence the oral bioavailability. There a great number of poorly
water-soluble drugs have been developed into liquisolid formulations in an attempt to enhance their
dissolution and/or bioavailability, including Rosuvastatin [195], Aprepitant [217], Fenofibrate [218],
Curcumin [198], Indomethacin [219], Griseofulvin [205], Loperamide [208], Ketoprofen [220],
Olmesartan Medoxomil [207], Loratadine [221], Nimesulide [222], Furosemide [223], Lovastatin [224],
Carbamazepine [203], Telmisartan [200], Valsartan [225], and Mosapride Citrate [196].

Sharma et al. developed a liquisolid system to improve the dissolution rate and bioavailability
of curcumin using PEG as liquid vehicle, Avicel® PH102 as carrier material and Aerosil® as coating
material [198]. The systems were screened for pre-compression properties before being compressed to
liquisolid tablets, followed by post-compression tests and in vitro dissolution. The optimized formulation
exhibited a higher accumulative drug release than directly compressed tablets. Ex vivo permeation
of curcumin was significantly enhanced, and the oral bioavailability was increased 18.6-fold in New
Zealand rabbits. The authors concluded that solubility promotion of curcumin in liquisolid tablets
contributed significant enhancement to its permeation and bioavailability. Fexofenadine hydrochloride
(FXD) possesses poor water solubility and pharmacokinetic property. To increase its oral bioavailability
and shorten the time to reach the maximum plasma concentration, Yehia et al. formulated FXD into
liquisolid tablets with propylene glycol or Cremophor® EL, Avicel® PH102 and Aerosil® 200 as functional
excipients [199]. It was found that Cremophor-based liquisolid powders showed acceptable to good
flow property suitable for compaction. The physicochemical properties and disintegration time were
appropriate for tablet qualities. Dissolution of prepared tablets could be completed within 5 min, and the
oral bioavailability of FXD was enhanced by 62% relative to commercial tablets (Allegra®).

In another work, Khames et al. developed risperidone liquisolid formulation using versatile
solvents (Transcutol HP, Labrasol and Labrasol/Labrafil (1:1) mixture) as liquid vehicles and evaluated
its dissolution and bioavailability [202]. The results showed that liquisolid tablets prepared using
Labrasol/Labrafil (1:1) mixture as liquid vehicle with 10% risperidone was a compatible formula
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with low drug crystallinity and higher dissolution rate (100% in 25 min). The oral bioavailability of
risperidone was significantly enhanced through liquisolid tablets in comparison to the conventional
tablets (1441.711 µg·h/mL vs. 321.011 µg·h/mL in AUC). The examples above indicate that liquisolid
technique was a potential tool in increasing dissolution and bioavailability of poorly water-soluble drugs.

6. Other Dispersion Techniques

6.1. Co-Precipitation Technique

Co-precipitation technique refers to a process by dissolving a drug in a solvent containing an
insoluble adsorbing material and then evaporating them to result in drug precipitation onto the
surface or the internal pore of the absorbing material, thus forming solid dispersions [226]. It is
different from the solvent evaporation method used for preparation of SDs. In this process, the drug is
completely dissolved in a volatile solvent, but the carrier material is suspended in the selected solvent.
The carrier materials are generally water insoluble and possess strong adsorptive capacity and high
porosity. The commonly used carrier materials include crospovidone (PVPP), sodium starch glycolate
(CMS-Na), L-HPC, mesoporous silica, mesoporous carbons, etc. Upon the solvent evaporating,
the drug precipitates onto the carrier excipient to form drug/excipient dispersions. The viscosity of
dispersions produced by such technique is lower than that prepared by the solvent evaporation method,
but the drug dispersibility is lower than the latter. Shin et al. prepared coprecipitates of furosemide and
crospovidone by a solvent evaporation method [227]. The dissolution rate of furosemide was markedly
enhanced by coprecipitating with crospovidone. They confirmed that physicochemical modifications
at the molecular level have taken place between furosemide and crospovidone in the coprecipitates that
changed the thermal property and increased the dissolution of furosemide. Planinsek et al. prepared
carvedilol/porous silica dispersions from acetone solution through evaporating the solvent to cause
drug precipitation and adsorption into the pores of silica [228]. The dispersions resulted in a significant
improvement in drug dissolution compared with raw material and its physical mixture. It was shown
that amorphous form of carvedilol in the dispersions, improved wettability and weak interactions
between the drug and carrier contributed to dissolution enhancement.

6.2. Concomitant Crystallization Technique

In recent years, pharmaceutical cocrystals have gained increasing attention to developing drug in
solid-state formulations [229], which can be achieved through a concomitant crystallization technique.
Cocrystal complexes structurally contain drug candidate and co-crystallizing agent (coformer).
Cocrystals are formed by intermolecular interactions or synthons between the drug and co-crystal
former, which results in the creation of supramolecular assembly. The physiochemical properties of
drug depends on its molecular order in the solid form, and changes in intermolecular interactions
have important effects on these properties, including melting point, stability, solubility and dissolution.
From the micromilleu of drug being, co-crystals can be viewed as a kind of pharmaceutical dispersions.
Although the drug is always crystallized in the cocrystals, the physiochemical properties can be
greatly modified through developing cocrystals. For poorly soluble drugs, the most predominant
changes in cocrystal system refer to its apparent solubility and dissolution improvement [230].
Pharmaceutical cocrystals can be manufactured by two basic methods: (1) solvent-free technique
(grinding, solvent-assisted grinding and sonication) and (2) solvent-based technique (slurring, solvent
evaporation, and antisolvent cocrystallization). For example, Du et al. successfully obtained
two novel cocrystals of lamotrigine with 4,4′-bipyridine and 2,2′-bipyridine as coformer by neat
grinding and liquid assisted grinding [231]. The resulting cocrystals exhibited significantly improved
solubility and dissolution rate in comparison with the monocrystal drug. In another case, a highly
soluble carbamazepine (CBZ) cocrystal with glutaric acid (GLA) was developed by Yamashita and
Sun through solvent evaporation [232]. The dissolution rate of CBZ was improved in the case
of CBZ/GLA cocrystals due to solubility increase and precipitation inhibition during dissolution.
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Pharmaceutical co-crystals provide new opportunity to modify the physicochemical properties of
poorly water-soluble drugs whereby to enhance their dissolution rate and bioavailability.

6.3. Inclusion Complexation Technique

In most cases, inclusion complexes are not regarded as a pharmaceutical dispersion. However, it is
unreasonable to exclude inclusion complexes from pharmaceutical dispersions, since the guest molecule
(drug) is fully incorporated into the cavity of host molecule that results in a complete dispersion of drug.
It is merely that, in solid dispersions, the drug is embedded between carrier molecules, but in inclusion
complexes, the drug is embedded within the molecule. In addition, solid dispersions and cyclodextrin
inclusion complexes shared some common preparative techniques, such as kneading method and solvent
evaporation method. From these points of view, drug inclusion into another molecule can be deemed
as a practicable dispersion technique. Cyclodextrin complexation, but not limited to cyclodextrins, has
shown the potential to precisely improve the aqueous solubility, dissolution rate, and bioavailability of
poorly water-soluble drugs [233]. For instance, Ezawa et al. prepared piperine/cyclodextrin inclusion
complexes by the co-grinding method and tested their solubility and dissolution [7]. They found that
piperine could form inclusion complexes with α-cyclodextrin and γ-cyclodextrin in a stoichiometric ratio
of 1/2 and 1/1, respectively, and the complexes of piperine/α-cyclodextrin exhibited higher solubility
than that of piperine/γ-cyclodextrin. Mady et al. utilized a coprecipitation method to investigate the
complexing effect of finasteride, a BCS II drug, with different kinds of β-cyclodextrin derivatives [234].
It was found that the dimethyl-β-cyclodextrin (DM-β-CYD) inclusion system gave rise to the highest
complexation efficiency for solubility improvement and hence the bioavailability. These cases indicate
that dispersion resulting from inclusion complexation can act as the enhancement of pharmacokinetics of
poorly water-soluble drugs [235].

7. Conclusions

To date, oral administration remains the most preferred route that patients take the
medicine, and solid dosage forms are the prevalent modality of pharmaceutical preparations.
Pharmaceutical processing always results in a dispersion of a drug in the solid, semisolid or liquid
excipient in particulate, colloidal, amorphous or molecular state. Super-advanced dispersion can
engender additional benefits for dissolution and bioavailability of poorly soluble drugs, which, of
course, greatly depends on effective dispersion techniques. It has been shown that solid dispersion,
lipid-based dispersion and liquisolid dispersion are becoming useful tools to solve the formulation
challenges of poorly soluble drugs.
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